学术信息网 西电导航 关于 使用说明 搜索 系统首页 登录 控制面板 收藏 吴金建的留言板
学术论文

 

部分代表性论文:

期刊:

  1. Jinjian Wu, Yongxu Liu, Weisheng Dong, Guangming Shi, Weisi Lin, “Quality Assessment for Video with Degradation Along Salient Trajectories”, IEEE Transactions on Multimedia, Early Access, Mar. 2019. (PDF) (CODE) (Degradation along motion trajectory plays a dominant role in VQA.)
  2. Jinjian Wu, Man Zhang, Leida Li, Weisheng Dong, Guangming Shi, Weisi Lin, “No-Reference Image Quality Assessment with Visual Pattern Degradation”, Information Sciences, Accepted, 2019.
  3. Guangming Shi, Wenfei Wan, Jinjian Wu*, Xuemei Xie, Weisheng Dong, Hong Ren Wu, “SISRSet: Single Image Super-Resolution Subjective Evaluation Test and Objective Quality Assessment”, Neurocomputing, Accepted, 2019.
  4. Weiping Ji, Jinjian Wu*, Man Zhang, Guangming Shi, Xuemei Xie, “Blind Image Quality Assessment with Joint Entropy Degradation”, IEEE Access, Vol.7, pp.30925-30936, Mar. 2019. (PDF) (Quality degradation is analyzed from the perspective of information theory.)
  5. Jinjian Wu, Guangming Shi, Weisi Lin, “Survey of visual just noticeable difference estimation”, Frontiers Comput. Sci. Vol.13, No.1, pp.4-15, Feb. 2019. (PDF)
  6. Jinjian Wu, Jichen Zeng, Weisheng Dong, Guangming Shi, Weisi Lin, “Blind Image Quality Assessment with Hierarchy: Degradation From Local Structure to Deep Semantics”, Journal of Visual Communication and Image Representation, Vol.58, pp.353-362, Jan. 2019. (PDF) (The concept of hierachical quality degradation is proposed.)
  7. Weiping Ji, Jinjian Wu*, Guangming Shi, Wenfei Wan, Xuemei Xie, “Blind Image Quality Assessment with Semantic Information”, Journal of Visual Communication and Image Representation, Vol.58, pp.195-204, Jan. 2019. (PDF) (Measuring the image quality from the perspective of semantic degradation.)
  8. Jinjian Wu, Yongxu Liu, Leida Li, Guangming Shi, “Attended Visual Content Degradation Based Reduced Reference Image Quality Assessment”, IEEE Access Vol.6, pp.12493-12504, 2018. (PDF) (CODE) (Visual attention affects the perception of distortion, which, in turn, causes attention shift.)
  9. Jinjian Wu, Leida Li, Weisheng Dong, Guangming Shi, Weisi Lin, C.-C. Jay Kuo, “Enhanced Just Noticeable Difference Model for Images with Pattern Complexity”, IEEE Transactions on Image Processing, Vol.26, No.6, pp.2682-2693, June 2017.(PDF) (CODE(Pattern complexity directly affects the perceptual visibility on visual content)
  10. W. Wan, Jinjian Wu*, et al. A Novel Just Noticeable Difference Model via Orientation Regularity in DCT Domain [J]. IEEE Access, 2017, PP(99):1-1.
  11. Xuemei Xie, Yazhong Zhang, Jinjian Wu*, Guangming Shi, Weisheng Dong, Bag-of-words feature representation for blind image quality assessment with local quantized pattern. Neurocomputing 266: 176-187 (2017).
  12. Jinjian Wu, Weisi Lin, Guangming Shi, Leida Li, “Orientation Selectivity based Visual Pattern for Reduced-Reference Image Quality Assessment”, Information Science, vol.351, pp.18-29, July 2016. (PDF) (CODE(Quality degradation is effectively represented by changes on several visual patterns) 
  13. Jinjian Wu, Weisi Lin, Yuming Fang, Leida Li, Guangming Shi, and Issac Niwas, “Visual Structural Degradation based Reduced-Reference Image Quality Assessment”, Signal Processing: Image Communication, Vol. 47, PP. 16–27, Sep. 2016.(PDF
  14. Jinjian Wu, Weisi Lin, Guangming Shi, Yazhong Zhang, Weisheng Dong, Zhibo Chen “Visual Orientation Selectivity based Structure Description”, IEEE Transactions on Image Processing, Vol.24, No.11, pp.4602-4613, Nov.2015. (PDF) (CODE(The primary visual cortex presents orientation selectivity for visual structure extraction)
  15. Jinjian Wu, Weisi Lin, Guangming Shi, and Jimin Xiao, “Correlation based Universal Image/Video Coding Loss Recovery”, Journal of Visual Communication and Image Representation, Vol.25, No.7, pp.1507-1515, October 2014. (PDF(Using the redundancy among pixels to recover coding loss)
  16. Jinjian Wu, Weisi Lin, and Guangming Shi, “Image Quality Assessment with Degradation on Spatial Structure”, IEEE Signal Processing Letter, Vol.21, No.4, pp.437-440, Apr. 2014. (PDF(Besides degradations on luminance contrast, the HVS is also sensitive to changes on spatial distribution)
  17. Jinjian Wu, Weisi Lin, Guangming Shi, Xiaotian Wang, and Fu Li, “Pattern Masking Estimation in Image with Structural Uncertainty”, IEEE Transactions on Image Processing, Vol.22, No.12, pp.4892-4904, Dec.2013. (PDF) (CODE(Structural uncertainty is another factor that determines the visual masking effect)
  18. Jinjian Wu, Guangming Shi, Weisi Lin, Anmin Liu, and Fei Qi, “Just Noticeable Difference Estimation for Images with Free-Energy Principle”, IEEE Transactions On Multimedia,Vol.15, No.7, pp.1705-1710, Nov.2013. (PDF) (CODE) (A fresh angle to estimate JND threshold with the theory support from the latest neuroscience finding)
  19. Jinjian Wu, Weisi Lin, Guangming Shi, and Anmin Liu, “Reduced-Reference Image Quality Assessment with Visual Information Fidelity”, IEEE Transactions On Multimedia,Vol.15, No. 7, pp.1700-1705, Nov.2013.  (PDF(Effectively measure image quality with only 2 values of the reference data)
  20. Jinjian Wu, Weisi Lin, Guangming Shi, AnminLiu, “Perceptual Quality Metric with Internal Generative Mechanism”, IEEE Transactions on Image Processing, Vol.22, No.1, pp.43-54, Jan.2013. (PDF) (CODE(Our eyes distinguishes orderly and disorderly visual signals, so does our quality metric) (ESI高被引论文)
  21. Jinjian Wu, Fei Qi, and Guangming Shi, “Non-Local Spatial Redundancy Reduction for Bottom-Up Saliency Estimation”, Journal of Visual Communication and Image Representation, Vol.23, No.7, pp.1158-1166, October 2012.(PDF) (CODE(The HVS is adapt to summarize regular visual content, while poor for irregular content)
  22. Jinjian Wu, Fei Qi, and Guangming Shi. “Self-Similarity Based Structural Regularity for Just Noticeable Difference Estimation”, Journal of Visual Communication and Image Representation, Vol.23, No.6, pp.845-852, August 2012. (PDF(Saliency is measured with the quantity of visual information/visual entropy)
  23. Yuming Fang, Jiebin Yan, Leida Li, Jinjian Wu, Weisi Lin, No Reference Quality Assessment for Screen Content Images With Both Local and Global Feature Representation, IEEE Transactions on Image Processing, Vol.27, No.4, pp. 1600-1610, 2018.
  24. Yongbo Li, Weisheng Dong, Xuemei Xie, Guangming Shi, Jinjian Wu, Xin Li, “Image Super-Resolution With Parametric Sparse Model Learning”, IEEE Transactions on Image Processing 27(9): 4638-4650 (2018).
  25. Guangming Shi, Tao Huang, Weisheng Dong, Jinjian Wu, Xuemei Xie, “Robust Foreground Estimation via Structured Gaussian Scale Mixture Modeling”, IEEE Transactions on Image Processing 27(10): 4810-4824 (2018)
  26. Yu Zhou, Leida Li, Jinjian Wu, Ke Gu, Weisheng Dong, Guangming Shi, “Blind Quality Index for Multiply Distorted Images Using Biorder Structure Degradation and Nonlocal Statistics”, IEEE Transactions on Multimedia 20(11): 3019-3032 (2018).
  27. Weisheng Dong, Guangming Shi, Xin Li, Kefan Peng, Jinjian Wu, Zhenhua Guo, “Color-Guided Depth Recovery via Joint Local Structural and Nonlocal Low-Rank Regularization”, IEEE Transactions on Multimedia, Vol.19, No.2, pp.293-301, February 2017.
  28. Weisheng Dong, Fazuo Fu, Guangming Shi, Xun Cao, Jinjian Wu, Guangyu Li, and Xin Li, “HyperspectralImage Super-Resolution via Non-Negative Structured Sparse Representation”, IEEE Transactions on Image Processing, Vol.25, No.5, pp.2337-2352, May 2016.
  29. Leida Li, Ya Yan, Zhaolin Lu, Jinjian Wu, Ke Gu, Shiqi Wang, “No-Reference Quality Assessment of Deblurred Images Based on Natural Scene Statistics”, IEEE Access, Vol.5, pp.2163-2171, 2017.
  30. Yuming Fang, Yuan Yuan, Leida Li, Jinjian Wu, Weisi Lin, Zhiqiang Li, “Performance Evaluation of Visual Tracking Algorithms on Video Sequences With Quality Degradation”, IEEE Access, Vol.5, pp.2430-2441, 2017.
  31. Leida Li, Dong Wu, Jinjian Wu, Haoliang Li, Weisi Lin, Alex C. Kot, “Image Sharpness Assessment by Sparse Representation”, IEEE Transactions on Multimedia, Vol.18, No.6, pp.1085-1097, June 2016.
  32. Leida Li, Yu Zhou, Weisi Lin, Jinjian Wu, Xinfeng Zhang, Beijing Chen, “No-reference quality assessment of deblocked images”, Neurocomputing, Vol.177, pp.572-584, February 2016.

 

会议:

  1. Jinjian Wu, Jupo Ma, Fuhu Liang, Weisheng Dong, and Guangming Shi, “End-to-End Blind Image Quality Assessment with Cascaded Deep Features”, IEEE ICME 2019.
  2. Jinjian Wu, Yongxu Liu, and Guangming Shi, “Motion Trajectory based Spatial-Temporal Degradation Measurement for Video Quality Assessment”, IEEE VCIP 2018.
  3. Wenfei Wan, Jinjian Wu*, Guangming Shi, Yongbo Li, and Weisheng Dong, “Super-Resolution Quality Assessment: Subjective Evaluation Database and Quality Index Based on Perceptual Structure Measurement”, IEEE ICME 2018.
  4. Jinjian Wu, Man Zhang, Guangming Shi, Xuemei Xie, and Zuoming Sun, “Joint Entropy Degradation Based Blind Image Quality Assessment”, IEEE BigMM 2018.
  5. Jinjian Wu, Jichen Zeng, Yongxu Liu, Guangming Shi, and Weisi Lin, “Hierarchical Feature Degradation based Blind Image Quality Assessment”, IEEE ICCV Workshops 2017: 510-517.
  6. Jinjian Wu, Yongxu Liu, Guangming Shi, and Weisi Lin, “Saliency Change Based Reduced Reference Image Quality Assessment, IEEE VCIP2017.
  7. Jinjian Wu, Man Zhang, Guangming Shi, Xuemei Xie, and Weisi Lin, “No-Reference Image Quality Assessment with Orientation Selectivity Mechanism, IEEE ICIP 2017: 3150-3154.
  8. Jinjian Wu, Guangming Shi, Man Zhang, and Guanmi Chen, “Visual Information Measurement with Quality Assessment”, IEEE VCIP2016, Chengdu, China.(Oral) (Invited Paper)
  9. Jinjian Wu, Wenfei Wan, and Guangming Shi, “Content Complexity based Just Noticeable Difference Estimation in DCT Domain”, APSIPA ASC 2016, Jeju, Korea.(Oral) (Invited Paper)
  10. Jinjian Wu, Guangming Shi, Weisi Lin, and C.-C. Jay Kuo, “Enhanced Just Noticeable Difference Model with Visual Regularity Consideration”, IEEE ICASSP 2016, Shanghai, China. (PDF) 
  11. Jinjian Wu, Guangming Shi, Weisi Lin, and Xiaotian Wang, “Reduced-Reference Image Quality Assessment with Orientation Selectivity based Visual Pattern”, IEEE ChinaSIP 2015, Chengdu, Sichuan. (Oral) (PDF) (Invited Paper)
  12. Jinjian Wu, Leida Li, Guangming Shi, Weisi Lin, and Wenfei Wan, “Visual Pattern Degradation based Image Quality Assessment”, The 2015 International Conference on Optical Instrument and Technology (OIT’2015), Beijing, China.(Oral) (PDF) (Invited Paper)
  13. Jinjian Wu, Weisi Lin, Guangming Shi, Yazhong Zhang, and Lu Liu, “Orientation Selectivity based Structure for Texture Classification”, SPIE /COS Photonics Asia Conference, 2014, Beijing, China.
  14. Jinjian Wu, Weisi Lin, and Guangming Shi, “Structural uncertainty based just noticeable difference estimation”, IEEE DSP 2014, Hongkong, China. (Oral) (PDF) (Invited Paper)
  15. Jinjian Wu, Weisi Lin, and Guangming Shi, “Reduced-reference image quality assessment with local binary structural pattern”, IEEE ISCAS 2014, Melbourne, Australia.(Oral) (PDF)
  16. Jinjian Wu, Weisi Lin, and Guangming Shi, “Visual Masking Estimation Based on Structural Uncertainty”, IEEE ISCAS 2013, Beijing China. (Oral) (PDF) (获最佳学生论文奖)
  17. Jinjian Wu, Fei Qi, and Guangming Shi, “Image Quality Assessment Based on Improved Structural Similarity”, PCM 2012, Singapore. (Oral) (PDF)
  18. Jinjian Wu, Fei Qi, and Guangming Shi, “Unified Spatial Masking for Just-Noticeable Difference Estimation”, IEEE APSIPA ASC, Oct. 2011, Xi’an, China. (PDF)
  19. JinjianWu, Fei Qi, and Guangming Shi, “An improved model of pixel adaptive just-noticeable difference estimation”, IEEE ICASSP, Mar. 2010, Dallas, Texas, USA. (PDF)