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Pattern Masking Estimation in Image with
Structural Uncertainty

Jinjian Wu, Weisi Lin, Senior Member, IEEE, Guangming Shi, Senior Member, IEEE, Xiaotian Wang and Fu Li

Abstract—A model of visual masking, which reveals the vis-
ibility of stimuli in the human visual system (HVS), is useful
in perceptual based image/video processing. The existing visual
masking function mainly takes luminance contrast into account,
which always overestimates the visibility threshold of the edge
region and underestimates that of the texture region. Recent re-
search on visual perception indicates that the HVS is sensitive to
orderly regions which possess regular structures, and insensitive
to disorderly regions which possess uncertain structures. There-
fore, structural uncertainty is another determining factor on
visual masking. In this paper, we introduce a novel pattern mask-
ing function based on both luminance contrast and structural
uncertainty. By mimicking the internal generative mechanism
of the HVS, a prediction model is firstly employed to separate
out the unpredictable uncertainty from an input image. And
then, an improved local binary pattern is introduced to compute
the structural uncertainty. Finally, combining luminance contrast
with structural uncertainty, the pattern masking function is
deduced. Experimental result demonstrates that the proposed
pattern masking function outperforms the existing visual masking
function. Furthermore, we extend the pattern masking function
to just noticeable difference (JND) estimation and introduce a
novel pixel domain JND model. Subjective viewing test confirms
that the proposed JND model is more consistent with the HVS
than the existing JND models.

Index Terms—Pattern Masking, Internal Generative Mech-
anism, Structural Uncertainty, Local Binary Pattern, Human
Perception, Just Noticeable Difference

I. INTRODUCTION

The last two decades have witnessed the tremendous growth
of digital image/video processing techniques, by which signals
are processed, transmitted, stored, and reconstructed for vari-
ous applications. Since the human eye is the ultimate reviewer
of digital signals, researchers hope to improve the processing
techniques by considering the characters of the human visual
system (HVS). Visual masking [1], which reveals the visi-
bility of stimuli in the HVS, is useful in perceptual based
image/video compression [2], scene enhancement [3], quality
assessment [4], and so on.

Visual masking is caused by interaction or interference
among stimuli [1], [5]. It is a complicated visual perceptual
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mechanism, which describes a broad range of phenomena [6].
Here we mainly focus on pattern masking, which appears at
static images. Pattern masking refers to that one pattern will
mask another one. As shown in Fig. 1, the detection and
identification of the text (target) will be strongly impaired
when it is followed by the hatching background (pattern) [7].
In addition, the pattern masking effect on a uniform back-
ground is very weak, on which a spatial target is most easily
seen; however, when the background becomes much complex
with spatial patterns, the pattern masking effect will be much
stronger [8], which will inhibit the target detection obviously.
Therefore, pattern masking relies on the visual content of an
input scene [9].

As the HVS is highly sensitive to the luminance change of
an input scene, researchers always intend to estimate the pat-
tern masking effect based on luminance contrast [5], [10] for
simplicity. In [11], a psychophysical experiment is designed to
investigate the relationship between luminance edge height and
the visibility threshold. Moreover, according to the recording
data from [11], a well-accepted contrast masking function is
deduced in [12]. However, the contrast masking function only
takes the luminance edge height into account, which always
overestimates the visibility thresholds of edge regions and
underestimates that of texture regions [13]. Some other image
features, such as the spatial frequency [14], orientation [8],
contours [15], and shapes [16], are further investigated, and
experimental results indicate that the visibility threshold is
much higher when the content becomes more complex. There-
fore, we should not only take luminance contrast into account
for visual masking estimation. In [17] and [18], image blocks
are firstly classified into three types (i.e., plain, edge, and
texture), and then three different weights are set for the three
types on visual masking estimation. With the help of a big
weight, the texture region is highlighted on the computation
of visibility threshold. However, the HVS is highly sensitive
to the orderly texture regions [19], and these orderly regions
will be overestimated with [17] and [18].

Since the HVS is highly adapted to extract structural in-

Fig. 1: Example of pattern masking effect.
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formation for image understanding [20], we try to estimate
pattern masking by taking image structures into account.
Empirical studies show that disorderly texture regions con-
tain more uncertain information and present more disorderly
structures than edge regions [21]. Furthermore, recent research
on brain theory [22] indicates that the HVS actively predicts
the orderly contents of the input visual information and tries
to avoid some uncertainties for image perception. As a result,
the HVS is less sensitive to disorderly regions (e.g., some
texture regions) which possess uncertain structures [21], and
the pattern masking effects in these regions are strong [23].
Therefore, pattern masking is related to not only luminance
contrast but also structural uncertainty, and we suggest to take
both factors into account to create a novel pattern masking
function.

However, the computation of structural uncertainty is still
an open problem. Images represent various structures due to
variations in orientation, scale, frequency, and other visual
appearance [24]. By considering these features, a famous
local binary pattern (LBP) algorithm is introduced in [25] to
analyze the structural information. But, structural information
is unequal to structural uncertainty, because the HVS can
understand most of the orderly structural information and only
the residual represents structural uncertainty [19]. Meanwhile,
the Bayesian brain theory [26] further indicates that the HVS
possesses an internal generative mechanism (IGM), within
which the content of the input scene is actively predicted and
some unpredictable information (i.e., residual of the predic-
tion) is avoided for understanding. Therefore, we suggest to
consider the unpredictable information as the uncertainty. By
mimicking the active prediction in the IGM, an autoregressive
model [19] is employed to separate the disorderly uncertainty
from an input scene. And then, an improved LBP algorithm
is introduced to compute the structural uncertainty on the
disorderly uncertainty.

Finally, combining structural uncertainty with luminance
contrast, a computational function for pattern masking is
deduced. Furthermore, to demonstrate the effectiveness of the
proposed pattern masking, we extend the proposed pattern
masking to estimate the just noticeable difference (JND, which
accounts for such a visibility threshold and below which the
change cannot be detected by the majority (e.g., 75%) of
viewers [12]). Since most of the existing JND models estimate
the spatial masking effect based on contrast masking, they
always underestimate the JND thresholds for these places
with uncertain structures (e.g., the texture regions) [13], [21].
Therefore, we replace contrast masking with pattern masking
and introduce a novel JND model. With the help of the
proposed pattern masking function, the JND thresholds for the
sensitive and insensitive regions can be accurately computed.
Experimental results from subjective viewing tests confirm that
the proposed JND model correlates better with the HVS than
the existing JND models 1.

The organization of this paper is as follows: the structural
uncertainty of an image is analyzed and estimated in Sec-
tion II. And then, in Section III, by taking both luminance

1The source code is avaliable at http://web.xidian.edu.cn/wjj/en/index.html

contrast and structural uncertainty into account, a novel pattern
masking function is deduced. Experimental results of the
proposed pattern masking function is presented in Section IV.
Finally, conclusions are drawn in Section V.

II. STRUCTURAL UNCERTAINTY

In this section, visual character is firstly considered for
image structure analysis, and an improved LBP algorithm is
introduced for structural information computation. Then, by
mimicking the active prediction of the HVS, the uncertain
information is separated from an input image. Finally, the
structural character of the uncertain information is analyzed
with the improved LBP algorithm to acquire structural uncer-
tainty.

A. Structural Information Analysis

Image structures convey the primary visual information of a
scene, and the HVS is highly adapted to extract them for image
perception and understanding [19], [20]. Therefore, structural
information is usually measured for quality assessment [20],
texture classification [25], image denoising [27] and deblur-
ing [28]. For simplicity, image structures are analyzed with
some statistical values [20], such as variance and covariance,
which are effective to represent the luminance change but not
good enough to represent the spatial distribution of structural
information [29]. To this end, Ojala et al. [25] analyzed the
spatial relationship among pixels, and introduced a classic
LBP algorithm, within which a joint difference distribution
is adopted to represent the structural characteristic. For a
given pixel xc, the structural characteristic (T ) is always
analyzed with its circularly symmetric neighborhood xi (i =
1, 2, ..., p) [25], [29],

T(gc) = t(g1−gc, g2−gc, · · · , gp−gc), (1)

where t(·) represents the joint difference distribution, gc corre-
sponds to the gray value of the central pixel xc, gi corresponds
to the gray value of pixel xi in the local neighborhood, and
the neighborhood size p is always set as 8 (by considering the
accuracy and the computational complexity) [25], [29].

In order to be invariant against gray-scale shift, the signs of
differences are adopted to replace the exact difference values
in T [24], [25],

T(gc) ≈ t (s(g1−gc), s(g2−gc), · · · , s(gp−gc)) , (2)

where the sign is defined as

s(gi−gc) =

{
1, gi−gc ≥ 0

0, gi−gc < 0.
(3)

However, (3) is too sensitive to the gray value change.
According to the subjective experiment on luminance adap-
tation [30], the HVS cannot sense some small change on gray
value. For example, as shown in Fig. 2 (a), if some background
regions are almost uniform to our eye, their structural measures
should be to zero. However, with (3), any tiny change (which
is too small to be sensed by the HVS) on gray value will be
counted for structural information computation. As a result,
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(a) (b) (c)

Fig. 2: LBP based structural information. (a) The original image. (b) Structural information based on the original LBP (which
is acquired from (7) with the original sign equation (3)). (c) Structural information based on the improved LBP (which is
acquired from (7) with the improved sign equation (5)).

the computed values of structural information of the uniform
background regions based on LBP are overestimated, as shown
in Fig. 2 (b), and this is not consistent with human perception.

In order to perform consistently with the human perception,
the luminance adaptation effect should be taken into account
when computing the structural characteristic. To this end,
we adopt the luminance adaptation threshold to improve (3).
Subjective perception experiments demonstrate that the HVS
is insensitive to dark/bright background, and is highly sensitive
to moderate luminance (e.g., for digital images with 256 gray
level, the HVS is insensitive to the background around 0 or
255, and sensitive to that around 127). According to the data
from a subjective viewing test [12], the luminance adaptation
threshold (LA) is computed as follows [13], [21],

LA(xc) =

{
17× (1−

√
B(xc)
127 ), If B(xc) ≤ 127

3
128 × (B(xc)− 127) + 3, else,

(4)
where B(xc) is the background luminance of pixel xc, i.e.,
the mean luminance of an image region (e.g., a 3×3 neigh-
borhood).

According to the definition of luminance adaptation, if
|gi−gc| < LA(xc), the HVS cannot sense the difference
between the two pixels; therefore, the corresponding spatial
structure to the HVS is uniform, and we suggest the sign
of gi − gc to be consistent with the sign of the prior one.
In this paper, we calculate the sign of the first neighboring
point with (3) (i.e., s′(g1−gc)=s(g1−gc)), and calculate the
rest (i.e., i = 2, ..., p) as follows,

s′(gi−gc) =


1, gi−gc ≥ LA(xc)

s′(gi−1−gc), |gi−gc| < LA(xc)

0, gi−gc ≤ −LA(xc).

(5)

And then, by assigning a binomial factor 2p for each sign s′

from (5), the local binary pattern (LBP), which characterizes
the spatial structure for pixel xc, is deduced [24], [25],

LBP(xc) =

p∑
i=1

s′(gi−gc)2
i−1. (6)

Finally, the structural information is calculated based on the
LBP values. For a pixel xc, a 2p bins histogram is acquired

by mapping the LBP values of its neighboring local region
X [31] (e.g., a 21×21 surrounding region). And the structural
information of xc is represented by the Shannon entropy of
X [31], which is calculated as follows,

H(xc) =

2p∑
b=1

−pb(xc) log pb(xc), (7)

where pb(xc) is the probability at bin b of X . With the
help of luminance adaptation, the structural information of the
uniform background region is approximate to zero, as shown
in Fig. 2 (c), which is much more consistent with the HVS
than that in Fig. 2 (b).

B. Human Perception and Structural Uncertainty

However, structural information is unequal to structural
uncertainty for human perception. The HVS is an efficient and
effective visual signal processing system, which helps us to un-
derstand the colorful outside world [32]. Rather than literally
translates the input scene, the HVS actively predicts the visual
content for perception [22]. Fig. 3 shows four concept images
with different structures. We can fully understand Fig. 3 (a)
and (b), since their structures are orderly and can be easily
predicted. However, Fig. 3 (c) and (d) possess much more
uncertain information, which represent disorderly structures.
And therefore, it is difficult to understand their visual contents.
In order to effectively estimate the uncertain information, we
should further analyze the characteristic of the HVS on image
processing.

Recent research on human perception indicates that the HVS
possesses an internal generative mechanism (IGM) for visual
signal processing [26], [22]. Furthermore, the IGM theory sug-
gests that the brain will adjust its configuration, e.g., it changes
the way of sampling or the way of encoding, to actively
predict the visual information for input scene perception and
understanding [33]. Therefore, the IGM performs as an active
prediction system, and a Bayesian brain theory is introduced
to mimic the performance of the IGM [26].

The key of the Bayesian brain theory is a Bayesian proba-
bilistic model that optimizes an input scene by minimizing the
prediction error. For example, in image domain, by considering
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(a) (b) (c) (d)

Fig. 3: Concept images for structural uncertainty illustration. (a) and (b) Images with orderly structures. (c) and (d) Images
with disorderly structures. The structural uncertainty values of (a)-(d) are 0, 0, 1.69, and 3.19, respectively.

(a) (b)

Fig. 4: Structural uncertainty analysis. (a) Original image. (b)
Uncertainty mask (HU ), in which we have mapped the values
into [0, 255] for a better view, and light regions represent high
uncertainty.

the relationships among pixels, a pixel x is predicted with
its surrounding X by maximizing the conditional probability
p(x/X ) for error minimization. With further analysis on the
relationships between the central pixel x and surrounding
pixels xi in X , the mutual information I(x;xi) is adopted
as the autoregressive coefficient, and an autoregressive model
is created to mimic the IGM for active prediction [19],

g′ =
∑
gi∈X

Ci gi + ε, (8)

where g′ is the predicted value of pixel x, Ci = I(x;xi)∑
k I(x;xk)

being the normalized coefficient, and ε is white noise.
With (8), the visual contents of an input scene are actively

predicted. And the residual information (i.e., prediction error)
between the original image (M) and its corresponding pre-
dicted image M′ is regarded as the uncertainty U , namely,
U = M−M′. Then, we analyze the structural information of
the uncertainty portion U with (6), and acquire the structural
uncertainty HU of M according to (7). An example of
structural uncertainty is shown in Fig. 4, where the disorderly
regions (such as the trees) are with larger structural uncertainty
values than that of the orderly regions (such as the sky).

III. PATTERN MASKING

In this section, we firstly deduce the pattern masking
function by considering both luminance contrast and structural
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Fig. 5: Edge filters for four directions.

uncertainty. And then, in order to determine the parameters
in the pattern masking function, a subjective viewing test is
designed.

A. The Pattern Masking Function

The HVS is highly sensitive to both luminance change and
structural information. Therefore, pattern masking is deter-
mined by both luminance contrast and structural uncertainty.
For a uniform region with no luminance change, the pattern
masking effect is weak and its corresponding visibility thresh-
old is low. When it comes to an edge region with orderly
luminance change (such as Fig. 3 (a) and (b)), its visibility
threshold will become higher with the increase of the lumi-
nance edge height [5]. Furthermore, for an image region with
fixed luminance edge height, the more structural uncertainty it
possesses, the higher visibility threshold it has [23]. Therefore,
we suggest to take both luminance contrast and structural
uncertainty into account for pattern masking estimation,

PM(xc) = f(E(xc),HU (xc)), (9)

where PM(xc) is the visibility threshold of pixel xc caused
by pattern masking, HU (xc) is the structural uncertainty of
xc. E(xc) is the luminance edge height, which is usually
computed as follows [12], [13], [21],

E(xc) = max
k=1,...,4

Gradk(xc), (10)

Gradk = |φM∗∇k|, (11)

where ∇k are four directional filters, as shown in Fig. 5,
φ=1/16, and symbol ∗ denotes the convolution operation.

Since research about luminance contrast has been done and
the contrast masking effect is investigated throughly, we firstly
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Fig. 6: Fitting the nonlinear transducer of luminance contrast
f1(xc) with subjective visibility thresholds. The dash line
represents the fixed increasing ratio, and the solidline curve
represents the fitting results of (13).

analyze the effect from luminance contrast E in (9), namely,
the contrast masking effect (f1(E)). And then, by considering
the interaction of luminance contrast and structural uncertainty
on pattern masking (f2(E,HU )), (9) can be divided as follows,

PM(xc) = f1 (E(xc)) f2(E(xc),HU (xc)). (12)

The existing contrast masking function always calculates the
visibility threshold with a fixed increasing ratio to luminance
contrast [12], as shown of the dash line in Fig. 6. As a
result, the computed threshold for large luminance contrast
region is too high. In other words, the visibility threshold for
regions with high luminance contrast are overestimated [13].
Perceptual research indicates that the human eye’s response to
changes in light intensity is nonlinear (e.g., logarithmic [34]),
and the increasing ratio should be decreased with the increase
of luminance contrast [5]. To this end, a nonlinear transducer
for luminance contrast is introduced [5], [14], [8], and the
contrast masking is computed as follows,

f1(xc) = 0.115× αE(xc)
2.4

E(xc)2 + β2
, (13)

where α is a constant of proportion and β determines the posi-
tively accelerating and compressive regions of the nonlinearity.
By fitting (13) with subjective visibility thresholds (which
are acquired from a subjective experiment [30]), as shown in
Fig. 6, we set α = 16 and β = 26.

Meanwhile, we found that the human eye’s response to
structural uncertainty is also nonlinear, and there exists a
nonlinear transducer (N ) for structural uncertainty when mea-
suring the pattern masking effect.

N (HU (xc)) =
k1 HU (xc)

k2

HU (xc)2 + k23
, (14)

where k1, k2, and k3 are fixed parameters which determine
the shape of the nonlinear transducer N .

Furthermore, there exists interaction between luminance
contrast and structural uncertainty (I). From subjective view-
ing tests, we have found that under low luminance contrast

Fig. 7: Images with different structures [35] for parameter
determination in the pattern masking function.

and high structural uncertainty, the sensitivity of the human
eye is low and the visible threshold is high. In this condition,
a large value of f2(E,HU ) is needed to highlight the visual
masking effect. While under low structural uncertainty, even
though the luminance contrast is high, the sensitivity of the
human eye is high and the visible threshold is low. In this
condition, a small value of f2(E,HU ) is needed to restrain
the visual masking effect. To this end, we suggest to compute
the interaction term f2(E,HU ) as follows,

I(E(xc),HU (xc)) = (1 + k4 exp(−
f1(xc)

k5
))N (HU (xc)),

(15)
f2(xc) = 1 + I(E(xc),HU (xc)), (16)

where k4 is a constant of proportion and k5 is a decay factor
for the interaction between luminance contrast and structural
uncertainty. All of the five parameter (i.e., ki) will be set in
the next subsection through a subjective viewing test.

With (12), (13), and (16), the pattern masking effect can
be calculated. As can be seen, when the structural uncer-
tainty HU (xc) = 0 (for orderly region with no uncertainty),
f2(xc) = 1 and PM(xc) = f1(xc). Therefore, the contrast
masking function is a special case of the proposed pattern
masking function when structural uncertainty is equal to zero.

B. Determination of Parameters

There are several parameters that need to be determined for
the pattern masking function. In this paper, we tune the param-
eters with a subjective experiment on 9 texture images (with
size 512 × 512) from USC-SIPI database [35]. As shown in
Fig. 7, the 9 images possess different kinds of structures, and
from the upper left to lower right we name them as M1 to M9.
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TABLE I: The subjective visibility thresholds (the mean values
and the standard deviations) of the 9 texture images.

Image M1 M2 M3

HU 3.06 2.97 3.16
V 31.5± 3.5 28.6± 2.0 33.6± 4.4

Image M4 M5 M6

HU 3.12 3.14 3.18
V 30.0± 3.3 31.0± 3.1 31.3± 2.6

Image M7 M8 M9

HU 2.70 2.61 3.02
V 28.0± 4.3 25.0± 1.2 28.2± 4.0

With these images, a subjective viewing test experiment is
firstly designed to acquire the subjective visibility thresholds.
And then, by fitting the pattern masking equation with these
subjective visibility thresholds, the parameters are determined.

In the subjective viewing test experiment, testing images
are juxtaposed on a 17-in monitor for visibility threshold
measurement. And we set the viewing condition (e.g., the
viewing distance, the light condition of the environment, and
so on) based on the ITU-R BT.500-11 standard [36]. Twenty
viewers (their eye sight is either normal or has been corrected,
and ten of them are experts in image processing and the others
are naive) are invited in this test, and the viewing distance
is four times of the image height. For each image M, the
Gaussian white noise is injected with the guidance of the
following equation [13], [21],

Mn(xc) = M(xc) + V rand(xc), (17)

where Mn is the white noised contaminated image, V regulars
the energy of the noise, and rand(xc) randomly takes +1
or −1. Viewers are asked to adjust the value of V (which
begins from 1, and Viewers can increase or decrease it)
until they can sense the noise, and this value is recorded as
the subjective visibility threshold of the current image. The
visibility thresholds determined by the subjective tests of the
9 images (as shown in Fig. 7) are listed in Table I, and the
structural uncertainty of these images are also listed.

Then, we fit the pattern masking equation (9) with these
subjective visibility thresholds based on the lease squares to
determine the parameters,

arg min
k1,··· ,k5

9∑
i=1

[PMi − Vi]
2, (18)

where PMi is the average value of computed visibility thresh-
olds on the ith image with (9), and Vi is the visibility threshold
determined by the subjective tests of the ith image, as shown
in Table I. As a result, the parameters in the pattern masking
equation are set as: k1 = 2.67, k2 = 3.22, k3 = 1.19,
k4 = 2.03, and k5 = 0.19. As shown in Fig. 8, the visibility
threshold (pattern masking) increases with luminance contrast
and structural uncertainty.

IV. EXPERIMENTAL RESULT AND DISCUSSION

In this section, we firstly make a comparison between the
proposed pattern masking function and the existing contrast
masking function [12] to demonstrate the effectiveness of

Fig. 8: Pattern masking by considering luminance contrast and
structural uncertainty (the output of equation (12)).

structural uncertainty on visibility threshold estimation. And
then, we extend the pattern masking function to JND estima-
tion and introduce a novel pixel domain JND model to further
demonstrate the effectiveness of the proposed pattern masking
function. Finally, a subjective viewing test is designed to make
a comprehensive comparison between the novel JND model
and three latest pixel domain JND models (i.e., Yang et al.’s
model [13], Liu et al.’s model [37], and Wu et al.s model [21])
on a set of images from two public databases [35], [38]. For
color images, the proposed model is performed on all color
channels.

A. Pattern Masking VS. Contrast Masking

An effective visual masking function should be able to
accurately indicate the sensitivity of the HVS to different
image regions. In order to demonstrate the effectiveness of
a visual masking function, the sensitive testing experiment is
always adopted [13], [37]. For a test image, the white noise is
injected with the guidance of the visual masking model (F ),
which is shaped as follows [12], [21],

M̂(xc) = M(xc) + E rand(xc)F (xc), (19)

where M̂ is the white noise contaminated image, E regulates
the energy of the white noise, which makes the same noise
energy for different visual masking models (F ), and rand(xc)
randomly takes +1 or −1.

By taking F as contrast masking [12], [13] (or pattern mask-
ing) in (19), we inject white noise into the Cemetry image with
the guidance of the contrast masking function (or the pattern
masking function), as shown in Fig. 9. With the parameter E ,
the energies of the two noise-contaminated images (i.e., Fig. 9
(b) and (c)) are adjusted to be the same (with MSE = 100).
Therefore, we can make a fair comparison between existing
contrast masking function and the proposed pattern masking
function.

The contrast masking function [12], [13] is mainly based on
luminance contrast for visibility threshold computation. As a
result, an edge region leads to high visibility threshold under
the contrast masking function. As shown in Fig. 9 (d), the
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(a)

(b) (c)

(d) (e)

Fig. 9: Pattern masking VS. contrast masking on Cemetry image (only a part of the image is cut due to the resolution
limitation of the scene). (a) The original image. (b) and (c) Contaminated images with contrast masking and pattern masking
guide noise (under the guidance of (19) with a same noise level MSE = 100), respectively. (d) and (e) The noise mask of (b)
and (c) (i.e., the value of E·F (xc) in (19)), respectively. And light regions of (d) and (e) represent high masking effect.
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white words on the black board, the steel bars, and the edge of
the brick wall are highlighted. However, the HVS is sensitive
to the edge region [13], and therefore, the contrast masking
function overestimates the visibility threshold of the edge
region. As shown in Fig. 9 (b), the noise in these edge regions
is easily perceived and generates obvious quality degradation.
Meanwhile, the disorderly regions, such as the trees, the grass,
and the surface of the brick in Fig. 9 (b), which do not have
high luminance contrast but are insensitive to the HVS, are
underestimated with the contrast masking function.

The proposed pattern masking function, which takes both
luminance contrast and structural uncertainty into account,
returns more accurate visibility thresholds for images than the
contrast masking function. Though these edge regions (i.e.,
the white words on the black board, the steel bars, and the
edge of the brick wall) possess large luminance edge heights,
they represent much orderly structures (with little structural
uncertainty). Therefore, the HVS is sensitive to them and
their visibility thresholds are not so high, as shown in Fig. 9
(e). Furthermore, the disorderly regions (i.e., the trees, the
grass, and the surface of the brick) possess much structural
uncertainty, the HVS cannot fully understand their detail and
is insensitive to them. As a result, these disorderly regions
have high visibility thresholds. As shown in Fig. 9 (e), the
output of the proposed pattern masking function highlights
these disorderly regions and suppresses orderly edge regions.
With the guidance of the proposed pattern masking function,
much more noise can be injected into the insensitive regions
and less into the sensitive regions. Therefore, the noise in
Fig. 9 (c) generates less perceptual quality degradation than
that in Fig. 9 (b), though the two images have the same level
of noise energy. In summary, the proposed pattern masking
function is more consistent with the HVS than that of the
contrast masking function.

B. Pattern Masking based JND Model

In order to further demonstrate the effectiveness of the pro-
posed pattern masking function, we adopt pattern masking to
improve the JND estimation. In general, luminance adaptation
and contrast masking are taken into account for pixel domain
JND estimation [12], [13], [37]. In this paper, by replacing
contrast masking with pattern masking, we introduce a novel
JND estimation model,

JND(xc) = LA(xc)+PM(xc)−Cgr×min{LA(xc), PM(xc)},
(20)

where Cgr is the gain reduction parameter due to the overlap-
ping between luminance adaptation LA and pattern masking
PM, and is set as Cgr = 0.3 (the same as in [13]).

And then, we compare the proposed JND model with three
latest JND models, namely, Yang et al.’s model [13], Liu et al.’s
model [37], and Wu et al.’s model [21] (we have not compare
with the classic Chou and Li’s model [12], because [13], [37]
are two improved models of [12]). By setting F in (19) as
a JND model, white noise is injected into an image with the
guidance of the corresponding JND model. Fig. 10 shows the
visibility threshold maps of the four different JND models on

Cemetry image, and Fig. 11 shows their corresponding noise-
contaminated images.

Considering that the HVS is sensitive to the edge region
and the contrast masking function always overestimates the
visibility threshold of the edge regions, Yang et al.’s suggested
to protect the edge region for JND estimation [13]. And
therefore, the canny edge detection is adopted to protect the
primary edge regions. As shown in Fig. 10 (a), the visibility
thresholds of the primary edge regions (such as the white
words on the black board and the steel bars) are suppressed.
However, the visibility thresholds of the other edge regions
are pop-out (such as the trunk of the trees, the edge of
the brick wall, and the other words regions). In summary,
with the protection of the canny edge detection in [13], the
secondly edge regions (which always with not so high edge
heights) are highlighted and these disorderly regions are still
underestimated. As a result, we can still easily perceive the
noise in Fig. 11 (a) (such as some word regions and the edge
of the brick wall).

Since the contrast masking function overestimates edge
regions and underestimates texture regions, Liu et al.’s [37]
suggested to separately estimate the contrast masking of the
two kinds of regions (i.e., edge regions and texture regions).
Therefore, a texture classification algorithm is firstly employed
to separate the two kinds of regions. And then, a bigger weight
is multiplied to the contrast masking function of the texture
regions and a smaller one for the edge regions. The JND
threshold map of Liu et al.’s model is shown in Fig. 10 (b). As
can be seen, the steel bars regions are correctly separated into
the edge regions and are effectively protected. However, some
sensitive regions, such as the white words on the black board,
are separated into the texture regions and are highlighted.
Meanwhile, some disorderly regions, such as the grass and
the surface of the brick, are still underestimated. In summary,
Liu et al.’s model tries to improve the JND estimation by
protecting edge regions and highlighting texture regions. But
the texture regions cannot always hide much noise (such as the
white words on the black board in Fig. 10 (b)), and actually,
only these texture regions with uncertain structures can hide
much noise. As a result, too much noise is injected into the
words regions, where the HVS is highly sensitive, as shown
in Fig. 11 (b).

In [21], the spatial structural character is considered for
JND estimation. By computing the structural regularity based
on the self-similarity of image structure, an ad hoc spatial
masking function is introduced for JND estimation. This JND
model effectively protects the orderly regions (e.g., the edge
regions), while overestimates the disorderly texture regions.
As shown in Fig. 10 (c), the visibility thresholds are quite low
in the orderly regions (such as the steel bars and the words
regions), and are very high in the disorderly regions (such as
the surface of the brick and the grass). However, the edge
region, which can hide more noise than the smooth region, is
overprotected. In addition, too much noise is injected into the
disorderly regions. As shown in Fig. 11 (c), we can obviously
sense the spots in these disorderly regions, which degrade the
perceptual quality of the image.

In the proposed JND model, the sensitive regions acquire
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(a) (b)

(c) (d)

Fig. 10: The visibility threshold maps (i.e., the value of E·F (xc) in (19)) of the four different JND models on Cemetry
image [38]. Form (a) to (d), they are the outputs of Yang et al.’s [13] model, Liu et al.’s model, Wu et al.’s model, and the
proposed JND model, respectively. And light regions represent high masking effect.

low visibility thresholds and the insensitive regions has high
visibility thresholds. As shown in Fig. 10 (d), by considering
the effect of luminance adaptation (caused by the background
luminance) and the effect of pattern masking (caused by
luminance contrast and structural uncertainty), the noise is
appropriately deployed into image regions with different con-
tents: very little noise is injected into the uniform regions,
much into the orderly edge regions, and most into these regions
with both luminance change and structural uncertainty. Though
the level of noise energy in the four contaminated images (i.e.,
Fig. 11 (a)-(d)) is the same, Fig. 11 (d) represents a better
perceptual quality than the other three images. Therefore, the
proposed JND model outperforms the latest three pixel domain
JND models (i.e., [13], [37], [21]).

C. Subjective Viewing Test

For a more comprehensive comparison between the pro-
posed pattern masking function (the proposed JND model)

and the existing contrast masking function (the three latest
JND models), a subjective viewing test experiment is designed.
The setting of the viewing condition is the same as mentioned
in Subsection III-B, which follows the ITU-R BT.500-11 stan-
dard [36]. By considering the availability and efficiency, eight
images from [35] (which are oft-used in JND comparison
experiments) and eight representative images from [38] (which
are oft-used in quality assessment experiments, and four of
them are mainly composed with orderly texture and the
other four are composed with disorderly texture) are chosen,
as shown in Fig. 12. In each test, two noise-contaminated
images about a same scene are juxtaposed on the screen (two
noise-injected images with the guidance of our model and
other comparison model, respectively. And they are randomly
juxtaposed on the left or right). Then 38 subjects (their eye
sight is either normal or has been corrected, and fifteen of them
are experts in image processing and the other twenty three are
naive) were invited to evaluate which one is better and how



10

(a) (b)

(c) (d)

Fig. 11: Comparison among four different JND models on Cemetry image [38]. Form (a) to (d), they are noise-contaminated
images with the guidance of Yang et al.’s [13] model, Liu et al.’s model, Wu et al.’s model, and the proposed JND model,
respectively. Under the guidance of (19), the level of the noise energy of the four images are the same (MSE = 150).

TABLE II: Scores for Subjective Viewing Test

Score 0 1 2 3
Description Same quality Slightly better Better Much better

much better it is (following the evaluation rule as shown in
Tab II; and if the left one is better than the right one, then
give a positive score; otherwise, give a negative score).

Table III shows the subjective scores of comparison results
between the proposed pattern masking function and the exist-
ing contrast masking function, in which the positive (negative)
score means the proposed pattern masking function performs
better (worse) than the existing contrast masking function.
Since the proposed pattern masking function takes structural
uncertainty into account, it performs better (has positive score)
on most of images than the existing contrast masking function,
especially on these images with much disorderly regions (e.g.,
the Tank image with a large region of grass and the Ocean
image with a big unsmooth sea surface). Meanwhile, there are

TABLE III: Subjective viewing test result (pattern masking vs.
contrast masking).

Image Mean Std Image Mean Std
Indian 1.389 1.554 Ocean 2.194 0.710
Lena 0.056 1.241 Caps 0.028 1.362

Barbara 1.750 1.204 Plane 1.861 0.867
Peppers -0.028 0.609 Paint 1.222 0.959

Tank 2.000 0.926 Rapids 0.083 1.402
Airplane 0.722 1.162 House 0.250 0.874

Huts 0.861 1.073 Beacon 1.583 1.156
Boats 0.778 1.245 Stream 0.278 1.059

Average 0.939 – – – –

several scores which are approximate to zeros, which means
that the proposed pattern masking function performs equally to
the existing contrast masking function on their corresponding
images (i.e., Lena, Pepper, and Caps). With further analysis,
we found a common feature among these images, namely,
most regions in the three images are uniform/orderly and there
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Fig. 12: Images for subjective viewing test. The first and second rows of images are from [35] which are oft-used in JND
comparison experiments, and the other two rows of images are from [38] which are oft-used for quality assessment

are little uncertain structures. Under this special condition,
the structural uncertainty is approximated to zero, and the
pattern masking function is similar with the contrast masking
function (as analyzed in Subsection III-A). Moreover, the
average score (0.939) in Table III further confirms that the
proposed pattern masking function performs better than the
existing contrast masking function.

Table IV shows the comparison results between the pro-
posed JND model and three latest JND models (i.e., [13],
[37] and [21]). By comparing with Yang et al.’s [13] and Liu et
al.’s [37] models (both of them are based on contrast masking),
the proposed JND model performs better on almost all of these
images, and performs equally on one image (i.e., the Caps,
which mainly represents orderly structures; and the reason is
much similar to the description in the above paragraph). Wu
et al.’s model [19] also considers the structural character for
spatial masking estimation. However, this ad hoc JND model
cannot accurately measure the effect caused by the structural
uncertainty, and overestimates the visibility threshold of the

TABLE IV: Subjective viewing test results (the proposed JND
model vs. three latest JND models, respectively).

Image Our vs. Yang Our vs. Liu Our vs. Wu
Mean Std Mean Std Mean Std

Ocean 0.806 0.786 1.139 1.046 0.389 0.836
Caps 0.028 1.383 -0.056 1.264 0.486 1.513
Plane 0.778 1.017 1.306 1.037 0.042 1.040
Paint 0.694 0.822 0.250 1.131 0.514 0.950

Rapids 0.778 1.290 0.583 1.402 0.528 1.137
House 0.694 1.009 0.083 0.967 0.486 1.086
Beacon 0.278 0.944 0.028 0.910 0.875 0.971
Stream 0.444 1.054 0.083 0.841 0.764 0.997
Average 0.563 – 0.427 – 0.510 –

region with uncertainty. When compared with Wu et al.’s
model, the proposed JND model performs better on most of
these images except the Plane image. That is because the plane
image is mainly composed with a large disorderly grass region
and a very orderly object region, and both of the two JND
models inject almost all of the noise into the grass region
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which is highly insensitive to the HVS. In addition, the average
scores (Our vs. Yang is 0.563, Our vs. Liu is 0.427, and Our
vs. Wu is 0.510) on all of the images are all positive, which
indicate that the proposed JND model outperforms the three
latest JND models.

V. CONCLUSION

In this paper, we have introduced a pattern masking func-
tion by considering both luminance contrast and structural
uncertainty. Visual masking, which effectively represents the
visual redundancy, is useful in image/video compression,
scene enhancement, quality assessment, watermarking, etc.
The existing contrast masking function only takes luminance
contrast into account for visual masking estimation, which
overestimates the edge region and underestimates the texture
region. According to the recent research on visual perception,
we suggested that the edge region is much orderly and
the HVS can easily predict its structural character, while
the texture region possesses uncertainty which impedes the
prediction of structural information by the HVS. In other
words, structural uncertainty effects the sensitivity of the HVS
for visual perception. Therefore, we advocated that structural
uncertainty is another determining factor on visual masking.

By mimicking the internal generative mechanism (IGM) on
scene understanding, we employed an autoregressive based
prediction model to separate the uncertain information from an
input scene. And then an improved local binary pattern (LBP)
scheme has been introduced for structural uncertainty estima-
tion. Finally, a pattern masking function has been deduced
based on luminance contrast and structural uncertainty. Experi-
mental results demonstrated that the proposed pattern masking
function outperforms the contrast masking function. Further-
more, we extended the proposed pattern masking function
and introduced a novel pixel domain JND estimation model.
Subjective viewing test further confirmed that the proposed
JND model is more consistent with the HVS than the existing
JND models.
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