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Quality Assessment for Video with Degradation
Along Salient Trajectories

Jinjian Wu, Yongxu Liu, Weisheng Dong, Guangming Shi, and Weisi Lin, Fellow, IEEE

Abstract—With the rapid growth of digital video through the
Internet, a reliable objective video quality assessment (VQA)
algorithm is greatly demanded for video management. Motion
information plays a dominant role for video perception, and the
human visual system (HVS) is able to track moving objects effec-
tively with eye movement. Moreover, the middle temporal area of
the brain is selective for moving objects with particular velocities.
In other words, visual contents that along the motion trajectories
will automatically attract our attention for dedicated processing.
Inspired by the motion related process in the HVS, we suggest to
analyze the degradation along attended motion trajectories for
VQA. The characteristic of motion velocity along each trajectory
is analyzed for temporal quality measurement. Meanwhile, visual
information along each trajectory is extracted for joint spatial-
temporal quality measurement. Finally, considering the spatial
quality degradation from each frame, a novel Full-reference
Assessor along Salient Trajectories (FAST) for VQA (which
combines the spatial, temporal, and joint spatial-temporal quality
degradations) is introduced. Experimental results on five publicly
available VQA databases demonstrate that the proposed FAST
VQA model performs consistently with the subjective perception.
The source code of the proposed method will be available at
http://web.xidian.edu.cn/wjj/paper.html.

Index Terms—Video Quality Assessment, Motion Trajectory,
Optical Flow, Spatial-Temporal Quality Degradation

I. INTRODUCTION

With the rapid development of digital devices and Internet,
videos have tremendously increased (which takes up more
than 70% Internet traffic). In order to efficiently process
such huge data, a powerful video management is urgently
demanded. Meanwhile, digital videos suffer from distortions
during several processing states (video compression, transmis-
sion, storage, and so on), with which the video quality will
be severely degraded. Therefore, a faithful quality evaluator is
greatly required for video management.

During the past decades, a large amount of video quality
assessment (VQA) models have been introduced. According
to the amount of the reference information, VQA methods can
be classified into three categories: full-reference (FR) with the
whole reference information available, reduced-reference (RR)
with only limited number of features about the reference, and
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no-reference (NR) without any reference information when
predicting the quality of the test video. Since FR-VQA is still
a challenging task due to the obscurity of human subjective
perception, we focus on FR-VQA in this work.

In the early stage, classical image quality assessment (IQA)
models [1, 2] were directly adopted, and the video quality
was measured with a frame-by-frame IQA procedure. As a
natural way to calculate the signal error, the mean square
error (MSE)/peak signal-to-noise ratio (PSNR) was often
adopted for VQA [3]. Though such types of VQA models
perform efficiently, they are correlated poorly with the sub-
jective perception. Hence, some human visual system (HVS)
based IQA models were adopted to measure the quality of
each frame. Moreover, considering the effect of motion, the
temporal information was simply incorporated as a weighting
factor for VQA modeling, e.g., weighted SSIM and weighted
VIF for VQA [4]. However, these models did not directly
use motion information for temporal distortion measurement,
which limited their accuracy for quality prediction.

Motion information plays an extremely important role dur-
ing video perception. Though inundated with visual contents
from the video, the HVS only focuses its attention on a fraction
of the input contents for dedicated processing [5, 6]. Generally,
moving objects will automatically attract our attention [7, 8].
In other words, the HVS is more sensitive to distortions
on moving objects. Therefore, distortions on moving objects
should be highlighted for temporal quality prediction [9].
In [10], the temporal variations in several continue frames
were calculated, and then pooled with visual attention for
motion distortion measurement. In [11], a long-range motion
distortion was measured along horizontal and vertical direc-
tion respectively for VQA. In [12], considering the motion
driven foveation during video perception, a novel contrast
sensitive function was deduced, and then applied to measure
the wavelet-based distortion visibility during VQA. In [13], the
optical flow was calculated to represent motion for temporal
quality assessment. In the recent, a new space-time texture was
employed to capture the temporal distortion in [14]. Moreover,
in [15], the motion information was directly extracted in the
3D local cube by compact representation of energy. Though
these models have greatly improved the performance of VQA,
there is still a large gap between the existing VQAs and the
subjective perception.

It is still a great challenge to effectively describe the
complex motion for VQA modeling. Motion information is
an essential characteristic of video. Researches on cognitive
neuroscience indicate that the brain contains specific areas for
motion processing [16]. When perceiving a video sequence,
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the visual stimuli are firstly processed in the primary vi-
sual cortex (V1), in which the amount of motion energy is
efficiently measured [17]. Next, the middle temporal (V5)
area receives the stimuli about motion from V1 for dedicated
processing. For example, V5 will guide the eye movement on
video sequences, which helps us to focus our attention on the
moving objects for detailed feature extraction [16]. Moreover,
some neurons in V5 are selective for moving objects with
a particular velocity (both speed and direction) [18]. As a
result, the HVS is highly adaptive to track moving objects
with pursuit eye movements.

Inspired by the motion related process in the HVS (es-
pecially in V5), we suggest to directly extract the attended
moving objects (both motion contents and their velocities) for
motion quality prediction. As the paths of moving objects
in a video, trajectories can effectively capture the motion
information [19]. Thus, in this work, degradations along the
motion trajectories are measured for VQA. As a convenient
representation of motion, optical flow is firstly computed for
motion trajectory searching. With the guidance of trajectories,
the motion velocities (both speed and direction) are analyzed
for temporal quality measurement. Meanwhile, visual features
of motion content along the trajectories are extracted for
spatial-temporal quality measurement. Finally, considering the
spatial quality degradation, a novel Full-reference Assessor
along Salient Trajectories (FAST) for VQA modeling is built.

The main contributions of this work are as follows:
1) Inspired by the attention mechanism on moving objects

in HVS, a novel motion trajectory based dynamic degra-
dation measurement is built. Comparing to other existing
trajectory-based VQA methods, the proposed trajectory-
based model concentrates only on moving objects for
dynamic degradation, and covers a longer range, which
conforms to the perception procedure of HVS to some
degree.

2) Motivated by the motion-related perceptual processing
mechanism in the human brain, the changes on both
velocities and contents along motion trajectories are
suggested to be thoroughly analyzed, which is also
distinct from other existing VQA methods. As a result,
motion degradation along trajectories are measured.

3) By incorporating the spatial, temporal, and joint spatial-
temporal degradations, a novel FR-VQA method is in-
troduced. The proposed FAST presents high correlation
with the subjective perception. Additionally, experimen-
tal results also demonstrate the computational efficiency.

The rest of this paper is organized as follows. In Section II,
trajectory extraction method for VQA is introduced. In Section
III, the proposed trajectory-based VQA model is established.
Experimental demonstrations are conducted In Section IV.
Finally, Section V gives a conclusion of this work.

II. TRAJECTORY EXTRACTION

Motion plays a critical role in video viewing, and the paths
of moving objects in successive video frames form motion
trajectories. In a video sequence, each trajectory tracks a cor-
responding moving point over frames (along time). Therefore,

trajectories represent the local motion information in a video,
and the HVS is extremely sensitive to visual contents along
trajectories. In this section, motion trajectories are estimated
through points sampling and position prediction. To this end,
the keypoints in the initial frame are firstly extracted. Next,
the optical flow is computed with adjacent frames. And then,
the position of each keypoint in the next frame is predicted.
After predicting the position in each frame, the trajectory is
expressed as a set of positions along time-axis.

A. Keypoints Selection

As a basic problem, keypoints selection is critical for
subsequent procedure. A good point should be located in
the major attended region, and can be tracked stably. To
this end, a classic and widely-used method was proposed in
[20], for which only points with large autocorrelation matrix
eigenvalues are reserved. Since [20] is only dedicated on the
stability of points in the tracking process, which makes the
probability of points on the boundary of the frame equal
to the one in the center. However, the HVS is more likely
to focus attention on the center of the screen (comparing
to the boundary). Thus, center bias mechanism should be
incorporated to increase the probability of points located at
the center of the scene, and also decrease the ones on the
boundary.

Specifically, points on the initial frame of the distorted
videos are densely sampled with a step size of 5 pixels, with
the criterion suggested in [20]. Given a certain point, a 2D
structure tensor (a 2×2 symmetric matrix) Z is computed
firstly. And two eigenvalues λ1 and λ2 of Z are then cal-
culated. The point is picked only when

min(λ1, λ2) > T, (1)

where T is a threshold, which is adaptive to the maximum
value Em among all the minimum eigenvalues of points in
the frame. Here, T is set to 0.05×Em.

Before Eq. (1), a weighting factor w for eigenvalues is firstly
computed using a simple but effective center bias mechanism.
Concretely, an distance map ŵ is calculated as

ŵ(x, y) =
(x− Wf

2 )2 + (y − Hf

2 )2

(
Wf

2 )2 + (
Hf

2 )2
, (2)

and normalized to [0, 1]. Here, Wf and Hf represent the width
and height of the frame, respectively. And w can be simply
calculated as

w = 1− ŵ. (3)

A higher value in the factor map w means the location is
more nearby the center of the frame, and more likely to be
attended by our eyes (on account of center bias mechanism).
Eigenvalues in Eq. (1) are tuned by w to help keypoints
selection as interpreted above.

B. Optical Flow Computation

Optical flow is the motion distribution of two adjacent
frames, which contains the velocity information of moving
objects. Thus, optical flow is usually used to measure the
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Fig. 1: Trajectory extraction in a video sequence

displacement of points during trajectory extraction. In this
work, a dense optical flow algorithm [21] is adopted, which
computes the displacement through a polynomial expansion to
approximate each pixel neighborhood.

For a given point (x, y) in the first frame, its neighborhood,
expressed as x in a local coordinate system, can be approxi-
mated by a polynomial as

f1(x) = xTA1x+ bT
1 x+ c1, (4)

where A1 is a symmetric matrix, b1 is a vector, and c is a
scalar. Considering that d is the offset for the neighborhood
from the first frame to the second frame, x in the second frame
can be approximated as

f2(x) = f1(x− d)

= xTA1x+ (b1 − 2A1d)
Tx+ dTA1d− bT

1 d+ c1

= xTA2x+ bT
2 x+ c2.

(5)
By equating the coefficients, the offset can obtained as

d =

[
u

v

]
= −1

2
A−1

1 (b2 − b1), (6)

where u and v are the horizontal and vertical components of
displacement at point (x, y). Through solving a weighted least
square problem in the neighborhood iteratively with multiple
scales, the displacement at point (x, y) can be estimated, and
more details are described in [21].

C. Trajectory Generation

Once a point is sampled from the first initial frame (i.e.,
t = t0), denoted as pt0 = (xt0 , yt0) through Eq. (1), its
corresponding position in the second frame (i.e., t = t1) can
be estimated as

pt1 = (xt1 , yt1) = (xt0 + u, yt0 + v), (7)

where u and v are the horizontal and vertical components at
position (xt0 , yt0) of the optical flow computed using Eq. (6)
from the first frame to the second frame, and (xt1 , yt1) denotes
the estimated position in the second frame.

By repeating the procedure above from t0-th frame to tL-
th frame, the point is tracked in a consecutive time, and a
trajectory is created based on the combination of these points,
which can be denoted as

T = {pt0 , pt1 , ..., ptL}. (8)

An example of trajectories is shown in Fig. 1. These
sampled points are marked with green cross at t0. In the
subsequent frames, these points are estimated with position
prediction using optical flow. In order to give a vivid example
for trajectory extraction, some points are labeled as red circles,
and their corresponding trajectories are labeled as purple dash.

Trajectories generated from Eq. (7) are rough, and generally
not all of them should be considered for further modeling on
account of subjective and objective reasons. As for objective
aspects, displacement from optical flow algorithms can be
erroneous and the trajectories extracted may be invalid. Thus,
trajectories with random steps or out of frame boundary
are removed, so as those containing unusual large displace-
ment between two adjacent frames. For the subjective aspect,
trajectories are used for dynamic degradation modeling. So
these trajectories which are totally static should be excluded.
Meanwhile, if the Euclidean distance of two trajectories are
small enough, they may share much common information
along trajectories. Such kind of trajectories are recommended
to reserve only a representative one (removing the another).

In our implementation, the standard deviation of point
positions along a trajectory is computed, and if the standard
deviation is larger than maxStd = 10 × min(Wf ,Hf )

256 or
any displacement between two adjacent frames is beyond
maxDis = 10× min(Wf ,Hf )

256 , the trajectory is discarded as an
abnormal one. The thresholds are adaptive to the size of the
frame due to varied resolutions in reality. Similarly, the sum
of displacements along the trajectory is calculated, and it is
believed to be a static one if the sum is less than minDis = 1.
Meanwhile, the threshold for the decision on two repeated
trajectories is to guarantee the diversity of each trajectory, and
set to threRep = 0.8 × L × W

2 , where W is related to the
step of feature extraction, which will be illustrated in III-A.

Besides, the length of trajectories is important to some
extent. For a short trajectory, it contains limited motion
information; while a long one has a higher risk of drifting
from its original position. In this work, the length L is set as
18 to obtain a good trade-off (detailed experimental analysis
and will be given in Section IV-E). Noted that from t0-th to tL-
th frame, not a single trajectory is generated since many points
are sampled at t0-th frame. Moreover the trajectory generation
procedure indicates latently that the video is divided into many
subsequences (each subsequence contains L+1 frames). And
considering the possible removal of trajectories and variation
of video content, points are sampled every L

2 frames without
overlapping previous points. This step ensures a reasonable
overlapping for video sequences in time domain, but non-
overlapping for video content in spatial domain.

Further, in this paper, points are sampled on the distorted
video, and trajectories are also generated using the distorted
optical flow. It is believed to be more reasonable since different
distorted videos corresponding to the same reference may
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Fig. 2: Overview of the proposed VQA model

result in different attended motion informations. And in real
life, subjects are directly faced with distorted videos for
quality perception, rather than the reference video (a further
experimental analysis is given in Section IV-E).

III. VQA MODELING

In this section, a novel trajectory degradation based VQA
model is built. Since distortions on the moving objects will
generate obvious quality degradation, motion information
along trajectories, including motion velocity and motion con-
tent, is extracted to measure the degradation. Firstly, motion
velocity is mapped into histograms to measure the temporal
quality. Then, motion content is extracted to calculate the
joint spatial-temporal quality. Moreover, considering the static
degradation on each frame, the spatial quality is also estimated.
Finally, Combing the spatial, temporal, and spatial-temporal
components, the quality of a video is predicted. An overview
of the proposed model is shown in Fig. 2.

A. Temporal Quality Measurement

Velocity is one of the most important factor of motion,
which includes both speed and direction, and temporal distor-
tions in videos always change the velocity. Thus, degradations
on motion speed and direction are calculated for temporal
quality measurement. In this paper, the motion speed and
direction are obtained with the optical flow algorithm men-
tioned above. Optical flow can depict the motion information
well [9, 13], as well as degradations on motion velocity. An
intuitive illustration is given in Fig. 3. The original frame is
shown in Fig. 3 (a), and Fig. 3 (b) is the corresponding optical
flow map between the previous frame to the current one.
Fig. 3 (c) is distorted by H.264 compression, which contains

(a) Original frame (b) Original optical flow

(c) Distorted frame (d) Distorted optical flow

Fig. 3: An illustration for the degradation on optical flow

texture floating due to camera motion. If we only compare the
two individual frames, there are only tiny difference (a little
blur in Fig. 3 (c)). However, the optical flow can effectively
capture the texture floating, as shown in Fig. 3 (d), which
is extremely annoying during perception. Since the optical
flow can effectively capture distortions on motion velocity, the
temporal quality is suggested to be measured by degradations
on motion speed and direction along trajectories. A flow chart
of the temporal degradation estimation is shown in Fig. 4.

Specifically, for each point pj in trajectory Ti, the local
region centered at pj with a size of W×W is extracted on
its corresponding optical flow map. Then, an optical flow tube
CTi

along the trajectory is acquired, whose size is W×W×L.
Though there are L+1 points, we can only use the preceding L
points. That is because L+1 frames video sequence can only
produce L frames optical flow. The tube CTi contains motion
velocity (magnitude and orientation) of the local regions along
Ti, and any motion change in these regions between the
reference and distorted video can be captured.

Let d = (u, v) denotes the value of the optical flow at pj ,
the motion speed S and direction θ can be calculated as

S =
√
u2 + v2

θ = arctan
v

u
.

(9)

Then, according to its spatial location, the tube is divided
into four portions with a size of W

2 ×W
2 ×L (each is marked

with different colors as shown in Fig. 4). This division can
be considered as a finer representation, since the procedure
would result in four locational cuboids (the upper left, upper
right, lower left and lower right) along the trajectory, rather
than the whole massive tube. By mapping the motion speed
of each element in every cuboid to a K bins histogram based
on the motion direction, a 2× 2× K histogram is developed
for the motion velocity representation.

Noted that this representation is based on the original
histogram of optical flow (HOF), two aspects should be
pointed out: 1) The whole cuboid of the optical flow with
multiple frames along the trajectory is considered as a good
representation of motion flow in a consecutive time. However,
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Fig. 4: Flow-chart of the temporal degradation measurement along trajectories

the original HOF is based on a single frame of optical flow, in
which the motion is isolated for every single frame. 2) Spatial
locational division makes the histogram more representative
for the tube along the trajectory since more location-related
details can be reserved.

Along the same trajectory Ti, the histogram is computed
for the reference and the distorted video as Hr

i and Hd
i .

The dissimilarity between Hr
i and Hd

i reflects the difference
between the reference and the distorted video in motion
velocity, which is calculated as

DVi = 1− 1

M

M∑
m=1

2 · Hr
i,m · Hd

i,m + C1

(Hr
i,m)2 + (Hd

i,m)2 + C1
, (10)

where M = 2 × 2 × K is the length of the histogram, and
C1 is set to 0.00001 (a small constant to avoid instability).
DVi characterizes the dissimilarity of motion velocity along
the i-th trajectory Ti, and ranges from 0 (two histograms are
wholly identical) to 1.

For each trajectory in the k-th video subsequence, the
dissimilarity of motion velocity can be calculated. The whole
temporal quality of the subsequence can be estimated using
two simple statistical indicators, i.e., the mean value and the
standard deviation. Even with the same mean value of frame-
by-frame spatial quality, the final quality of a whole video can
be quite different due to the diverse standard deviations [22].
Thus, besides the mean value, the standard deviation value
can also benefit the quality prediction. In this work, the sum
of both the mean value and deviation value is suggested
for a simple and effective pooling method. Let DV denotes
{DV1,DV2, ...,DVN}, where N is the number of trajectories
in the video subsequence, the temporal quality is computed as

Qk
T = Mean(DV) + Stdev(DV)

=
1

N

N∑
i=1

DVi +

√∑N
i=1(DVi − 1

N

∑N
i=1 DVi)2

N − 1
.

(11)

B. Spatial-Temporal Quality Measurement

Besides the motion velocity, the visual information of
moving objects (i.e., the motion content) also plays a dominant
role in visual perception. Thus, the degradation on the motion
content is measured for the joint spatial-temporal quality esti-
mation. A flow chart of the joint spatial-temporal degradation
estimation is shown in Fig. 5.

Firstly, the motion content is extracted along the motion
trajectories. Similar to the procedure of extracting motion
velocity above, a tube of motion content is extracted from
the subsequence (rather than the optical flow). Since the HVS

is highly sensitive to changes on the visual content, the motion
content changes along x, y, and t directions are calculated for
visual content representation.

In this work, the content changes in the tube is calculated
with 3-D filters. Fig. 6 shows a 3-D filter along the x-axis,
which is denoted as dx. Meanwhile, the filters for y-axis (dy)
and t-axis (dt) can be obtained by simply rotating dx with
90◦ along t-axis and y-axis, respectively.

For a given tube with motion content V along the motion
trajectory Ti, its visual content is represented as

MST =
√
Comp2x + Comp2y + Comp2t , (12)

where the component Compk = V ∗ dk, dk is the filter along
k direction (e.g., x, y, and t), and ∗ is convolution operation.

The visual content is computed for the reference as well as
the distorted video, noted as Mr

ST and Md
ST , respectively.

And the dissimilarity between them can be expressed by
the standard deviation of the similarity for each element.
Specifically, we denote DCi as the dissimilarity of the motion
content along the trajectory Ti between the reference and the
distorted, and

DCi = Stdev(Sim), (13)

where Sim is of the same size of Mr
ST and Md

ST , and defined
as

Sim(x, y, t) =
2 · Mr

ST (x, y, t) · Md
ST (x, y, t) + C2

(Mr
ST (x, y, t))

2 + (Md
ST (x, y, t))

2 + C2
.

(14)
As illustrated in [23], C2 can work as a gradient masking
parameter together with avoiding the instability of Eq. (14),
which is set to 255 corresponding to the maximum of the 8-bit
luminance.

Once the dissimilarity of motion content along all the trajec-
tories in the k-th subsequence is calculated, the joint spatial-
temporal quality in the subsequence, similar to Eq. (11), can
defined as

Qk
ST = Mean(DC) + Stdev(DC)

=
1

N

N∑
i=1

DCi +

√∑N
i=1(DCi − 1

N

∑N
i=1 DCi)2

N − 1
,

(15)
where DC = {DCi, i = 1, 2, . . . , N}, and N is the number of
trajectories in the k-th video subsequence.

C. Spatial Quality Measurement

Similar to many other VQA works, the frame-by-frame
quality degradation is also measured with existing IQA algo-
rithms [24–27], and the mean value of all frames is seen as the
spatial quality degradation. Since the temporal degradation and
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Fig. 5: Flow-chart of the spatial-temporal degradation measurement along trajectories

Fig. 6: 3-D operator for x direction – dx

the joint spatial-temporal degradation are computed in each
video subsequence, the spatial quality is also generated in
each subsequence. Considering a trade-off of computational
cost and performance effectiveness, GMSD [28] is adopted
here to compute the spatial quality of each frame, and the
spatial quality in the k-th subsequence is computed as

Qk
S =

1

L

L∑
j=1

GMSDj (16)

D. Combination
A good combination among these spatial, temporal, and

joint spatial-temporal components would definitely improves
the accuracy of quality estimation. However, it’s hard to guess
how to combine these into a total quality in human brain. As
a widely-used method, the total quality in k-th subsequence
can be simply expressed by the multiplication of the three
components:

Qk = Qk
S · Qk

T · Qk
ST . (17)

And we do believe that a good temporal pooling strategy
would benefit a lot, but for simplicity, in this work the final
quality of the test video is obtained by a mean value of all
subsequences:

Qfinal =
1

K

K∑
k=1

Qk, (18)

where K is the total number of subsequences.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, a brief description of databases and protocol
is firstly given. Then, the efficiency of each component (i.e., S:
spatial degradation, T: temporal degradation, and S-T: spatial-
temporal degradation) in our FAST VQA model is thoroughly
analyzed. Next, a comprehensive comparison between the
proposed FAST model and the existing VQA methods is
demonstrated. Moreover, the comparison of computational
complexity for VQA methods is conducted. Finally, some
parameter settings in our method are analyzed experimentally.

A. Database and Protocol

In order to verify the performance of the proposed VQA
model, five databases with different frame sizes ranging from
VGA to HD are adopted, i.e., the IVC-IC video database [29]
with a resolution of 640× 480, the LIVE video database [30]
with a resolution of 768× 432, the CSIQ video database [11]
with a resolution of 832×480, the MCL-V database [31] with
a resolution of 1920× 1080, and the IVP video database [32]
with a resolution of 1920× 1088.

A brief list of databases is shown as Tab. I. The IVC-
IC video database contains 60 reference videos, and each
is degraded with four randomly selected distortions from
twenty different degradations, resulting 240 distorted videos.
The LIVE video database contains 150 distorted videos and
10 reference videos, with four distortion types: MPEG-2
compression distortion, H.264 compression distortion, and
transmission distortions over IP networks and wireless net-
works based on H.264 compression. The CSIQ video database
contains 216 distorted videos corresponding to 12 reference
videos with six distortion types, including: H.264 compres-
sion, HEVC/H.265 compression, Motion JPEG compression,
Wavelet-based compressing using the Snow codec, simulated
wireless transmission loss based on H.264 compression, and
additive white noise. The IVP video database contains 10
reference videos and 128 distorted videos with four distor-
tion types: H.264 compression, MPEG-2 compression, Dirac-
wavelet compression, and transmission error over IP network
based on H.264 compression. The MCL-V database contains
12 reference videos with two distortion types: H.264/AVC
compression and compression followed by scaling (or simply
called scaling), and four distortion levels, thus creating 96
distorted videos.

Three widely-used metrics are adopted in this work for
performance comparison, which are the Pearson linear corre-
lation coefficient (PLCC), the Spearman rank order correlation
coefficient (SRCC), and the root mean squared error (RMSE).
PLCC and SRCC measure the correlation between the pre-
dicted quality and the ground truth, which ranges from 0 to 1;
and RMSE denotes the relative error. A better VQA method
will result in higher PLCC and SRCC values, and a lower
RMSE value.

B. Efficiency Analysis

To give an intuitive efficiency analysis for each compo-
nent (i.e., S, T, and S-T) in our model, four videos (named
rh 10, rh 5, rh 6, and rh 12) on LIVE video database
are shown in Fig. 7, where rh 5 is distorted by wireless
distortion, rh 6 is distorted by IP network distortion, and the
other two are distorted by H.264 compression distortion. Since
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TABLE I: Information About the Five VQA Databases

Database Resulotion Ref. No. Dist. No. Distortion Type

IVC-IC 640× 480 60 240 Four random distortions

LIVE 768× 432 10 150 MPEG-2, H.264, IP, Wireless

CSIQ 832× 480 12 216 H.264, Packet Loss, MJPEG, Wavelet, White Noise, HEVC

IVP 1920× 1088 10 128 H.264, MPEG-2, Dirac-wavelet, IP

MCL-V 1920× 1080 12 96 H.264, Scaling

(a) rh 10 (b) rh 5

(c) rh 6 (d) rh 12

Fig. 7: An intuitive example on efficiency analysis

Fig. 8: Predicted quality and DMOS for Fig. 7

rh 5 and rh 6 are distorted through network, the artifacts are
easier to be observed (red rectangles in Fig. 7), while rh 12
always represents transient temporal distortion due to motion
compensation mismatch, which is harder to be recognized
in static status. The DMOS for (a) ∼ (d) are 45.4363,
51.4980, 55.2291, and 62.9934, respectively. Moreover, a
lower DMOS value means a higher perceptual quality. Thus,
rh 10 possesses the best perceptual quality, and rh 12 looks
worst.

We test our algorithm on the four videos, and the qualities
of components are shown in Fig. 8 (as well as the final
combing quality). Meanwhile, the final quality values are

TABLE II: Efficiency Analysis of Each Component on LIVE
Video Database

Crit S T S-T Final

PLCC 0.7441 0.6350 0.7975 0.8892
SRCC 0.7297 0.6158 0.7853 0.8800
RMSE 7.3337 8.4801 6.6232 5.0221

rescaled for a better visualization by multiplying a proper
constant, which would not disturb the tendency of the curve.
As can be seen in Fig. 8, single component can hardly
keep the consistency with human perception, but they are
complementary to some extent. For example, for rh 5, the
component T (the purple line) performs poorly (returns a high
quality value, which conflicts with the ground truth), and the
components S and S-T perform accurately. As a result, the
components S and S-T can amend the limitation of T on rh 5,
and their combination result returns a right quality score. Such
situation also happens for the other three video sequence, and
finally accurate quality scores are obtained for them (shown
as the blue line, which is highly consistent with DMOS, the
brown dash line). Therefore, the three components (i.e., S,
T, and S-T) are very complementary, and their combination
can return a better quality prediction result than any single
component.

Besides the special case given above, a statistical analysis of
these components on LIVE video database is conducted. The
performances of these components are listed on Tab. II. As
can be seen from Tab. II, arbitrary single component can not
perform well on the database (with lower PLCC and SRCC
values, and higher RMSE values), but their combination can
greatly improve the prediction accuracy (returns the highest
PLCC and SRCC, and the lowest RMSE). Therefore, the
degradation from the spatial (S component), temporal (T
component), and spatial-temporal (S-T component) should be
jointly considered for VQA.

C. Performance Comparison

To comprehensively illustrate the efficiency of the pro-
posed FAST method, nine state-of-art FR VQA models (i.e.,
MOVIE [9], VQM VFD [33], stRRED [34], Vis3 [11],
FePVQ [35], FLOSIM [13], VMAF [36], SpEED [37] and
Peng [14]), as well as two FR IQA models (GMSD [28] and
MS-SSIM [38]) are compared with our model on five VQA
databases (i.e., LIVE, CSIQ, IVP, MCL-V, and IVC-IC). As
for MOVIE, to reduce the computation cost, videos on IVP
and MCL-V are usually downsampled from 1920 × 1088 to
960×544, or from 1920×1080 to 960×540 with ffmpeg using
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TABLE III: VQA Performance Comparison on Five VQA Databases

Database Crit.
VQA IQA

Proposed Peng SpEED VMAF FLOSIM fb FePVQ Vis3 stRRED VQM VFD MOVIE GMSD MS-SSIM

LIVE
(150)

PLCC 0.8892 0.8235 0.7816 0.7615 0.8421 0.8326 0.8336 0.8111 0.7853 0.8113 0.7371 0.7431
SRCC 0.8800 0.8216 0.7744 0.7545 0.8389 0.8279 0.8168 0.8007 0.7736 0.7884 0.7262 0.7364
RMSE 5.0221 6.2269 6.8468 7.1157 5.9200 - 6.0635 6.4221 6.7966 6.4183 7.4184 7.3463

CSIQ
(216)

PLCC 0.8850 0.7741 0.7368 0.6243 0.7264 0.8210 0.8223 0.7933 0.8388 0.7924 0.8214 0.7571
SRCC 0.9076 0.7868 0.7423 0.6151 0.7318 0.8100 0.8326 0.8129 0.8480 0.8083 0.8409 0.7565
RMSE 7.7417 10.526 11.243 12.990 11.428 - 9.4617 10.123 9.0530 10.144 9.4844 10.863

IVP
(128)

PLCC 0.8953 0.6593 0.7820 0.5919 0.5443 0.9110 0.7959 0.7287 0.8466 0.8816 0.6838 0.5953
SRCC 0.9090 0.6573 0.7934 0.5799 0.5450 0.8840 0.7948 0.7374 0.8494 0.8844 0.6860 0.5799
RMSE 0.4709 0.7948 0.6592 0.8493 0.8204 - 0.6400 0.7237 0.5626 0.4991 0.7714 0.8495

MCL-V
(96)

PLCC 0.7816 0.7469 0.7440 0.7792 0.5734 - 0.6470 0.7548 0.8096 0.7763 0.6501 0.6462
SRCC 0.7863 0.7319 0.7851 0.7766 0.5919 - 0.6353 0.7433 0.8033 0.7772 0.6449 0.6306
RMSE 1.3845 1.4757 1.4893 1.3910 1.8181 - 1.6921 1.4558 1.3027 1.4002 1.6862 1.6936

IVC-IC
(240)

PLCC 0.9346 0.9315 0.8788 0.9435 0.8810 - 0.9265 0.8134 0.9335 0.9076 0.9264 0.9122
SRCC 0.9365 0.9258 0.9002 0.9333 0.8762 - 0.9177 0.8972 0.9226 0.9005 0.9196 0.9065
RMSE 0.3886 0.3953 0.5290 0.3604 0.5143 - 0.4091 0.6365 0.3897 0.4565 0.4093 0.4455

Average
PLCC 0.8771 0.7871 0.7846 0.7401 0.7134 - 0.8051 0.7803 0.8428 0.8338 0.7638 0.7308
SRCC 0.8839 0.7847 0.7991 0.7319 0.7168 - 0.7994 0.7983 0.8394 0.8318 0.7635 0.7220

Weighted
Average

PLCC 0.8897 0.8077 0.7938 0.7543 0.7462 - 0.8301 0.7879 0.8543 0.8410 0.7955 0.7616
SRCC 0.8972 0.8070 0.8066 0.7456 0.7479 - 0.8257 0.8154 0.8512 0.8395 0.7964 0.7544

its default setting. Also, considering the huge computational
cost of Black and Anandan (BA) optical flow algorithm,
Farneback optical flow algorithm is adopted for FLOSIM (de-
noted as FLOSIM fb) and it has been demonstrated in [13]
that using Farneback optical flow algorithm can still achieve a
comparable performance. The parameters are followed as the
author suggested, and we will give an intuitive comparison
about computational cost in Sec. IV-D to demonstrate this
substitution is reasonable and necessary. Meanwhile, the latest
0.6.1 version of VMAF is used here.

The performance comparison is listed in Tab. III, and the
best two performances of PLCC and SRCC are highlighted.
As is shown in Tab. III, comparing to these existing VQA
methods, the proposed trajectory-based VQA model can reach
a remarkable improvement. The performances (SRCC) on
CSIQ, IVP and IVC-IC are pretty well (over 0.9), which
demonstrates the high consistency with the subjective percep-
tion. Meanwhile, the results on LIVE and CSIQ obtain an
improvement of 0.04 in terms of PLCC and SRCC beyond
the second best algorithm, showing a large gap among other
FR VQA algorithms. Moreover, from Tab. III, the proposed
FAST shows a more stable performance for different video
databases (ranging from VGA to HD), while other methods
may exhibit some certain bias. For example, FePVQ performs
well on IVP, but poorly on the other databases. A similar
situation can be seen on MCL-V and IVC-IC video databases.
Although VQM VFD achieves the best performance on MCL-
V (so does VMAF on IVC-IC), the proposed FAST method
still possesses a competitive performance (ranking the second
place and outperforming the others a lot). From this point of
view, it is obvious that our proposed model exhibits a more
reliable performance and presents a better performance of
generalization. Meanwhile, the average and weighted average
performances (listed at the bottom of Tab. III) also confirm the
efficiency and stability of our proposed model (possessing the

highest PLCC and SRCC values, and giving a great advantage
over other VQA methods).

Furthermore, to give a detailed illustration for the efficiency,
the performance (SRCC) on each individual distortion type of
four video database is given in Tab. IV. Noted that distortion
types on IVC-IC database are not considered in this procedure
since they are randomly selected from twenty distortions.
As it can be seen in Tab. IV, on each distortion type, the
proposed VQA model still possesses an apparent advantage
over other methods. As for several distortion types, like
packet loss through network, as well as MPEG-2 compres-
sion distortion, the proposed FAST method is preferable to
predict the perceptual effects of distortions. Moreover, FAST
still performs a relatively favorable results among the other
distortions. For example, as for H.264 compression distortion,
there are four separate VQA models ranking the best on the
four databases (i.e., FLOSIM fb on LIVE, Peng on CSIQ,
SpEED on IVP, and VQM VFD on MCL-V). However, our
method can always achieve competitive performances, and
outperform the other methods on this distortion type, which,
similarly, proves the good stability and generalization of the
proposed model.

The average performance (SRCC) of each VQA models
on 16 distortion types among the four databases is given at
the bottom of Tab. IV, as well as the hit-count of the best
performance on each individual distortion. Both of the average
performance and the hit-count on individual distortion, give
strong evidences to illustrate the preferable efficiency and great
superiority of our method.

Additionally, the robustness of the proposed FAST method
with Different IQA metrics for the spatial component is
thoroughly investigated. In this paper, eight existing IQA met-
rics (i.e., MS-SSIM [38], VIF [39], IW-SSIM [40], FSIM [32],
VSI [41], GMSD [28], MDSI [42], and PSIM [43]), spanning
from the year of 2003 to 2017, are adopted for the frame-



9

TABLE IV: Performance (SRCC) Comparison on Each Individual Distortion Type

Distortion Type Proposed Peng SpEED VMAF FLOSIM fb FePVQ Vis3 stRRED VQM VFD MOVIE

LIVE

Wireless 0.9026 0.7767 0.8045 0.7996 0.8113 0.8073 0.8394 0.7857 0.6919 0.8109
IP 0.8042 0.6859 0.7664 0.6903 0.7798 0.7417 0.7918 0.7722 0.7271 0.7157

H.264 0.8814 0.8570 0.7895 0.7462 0.8917 0.8725 0.7685 0.8195 0.7304 0.7644
MPEG-2 0.8315 0.7521 0.6553 0.7099 0.8016 0.7513 0.7362 0.7193 0.8223 0.7613

CSIQ

H.264 0.9560 0.9828 0.9640 0.9284 0.9382 0.9120 0.9194 0.9768 0.9344 0.8960
H.264 PL 0.9359 0.8468 0.8525 0.7701 0.9060 0.8730 0.8533 0.8546 0.8232 0.8677
MJPEG 0.9382 0.8932 0.0713 0.8871 0.7591 0.8870 0.7349 0.7290 0.8896 0.8855
Wavelet 0.9362 0.9318 0.9403 0.8965 0.7333 0.8750 0.8999 0.9459 0.8644 0.9012

White Noise 0.9287 0.9230 0.9091 0.8831 0.8481 0.8480 0.9179 0.9305 0.8888 0.8245
HEVC 0.9485 0.9555 0.8754 0.9287 0.9017 0.9410 0.9174 0.9099 0.9516 0.9349

IVP

Dirac 0.9159 0.7976 0.8594 0.9017 0.8309 0.8670 0.9155 0.8527 0.9172 0.8879
H.264 0.8822 0.8246 0.8841 0.8653 0.6129 0.8560 0.8426 0.8655 0.8672 0.8482

MPEG-2 0.9462 0.6685 0.7059 0.7922 0.7646 0.8560 0.7940 0.6912 0.8647 0.8162
IP 0.8046 0.4745 0.7750 0.3103 0.5643 0.8190 0.7438 0.6672 0.7510 0.8582

MCL-V
H.264 0.7858 0.7415 0.8054 0.7939 0.6247 - 0.5868 0.7716 0.8108 0.7596

Scaling 0.7747 0.7123 0.7418 0.7524 0.5548 - 0.6857 0.7040 0.7955 0.7783

Average 0.8858 0.8015 0.7750 0.7910 0.7702 - 0.8092 0.8122 0.8331 0.8319

Hit Count 6 2 1 0 1 0 0 2 3 1

TABLE V: Performance of VQA Modeling from Different
Spatial Metrics

IQAs
LIVE CSIQ IVP

PLCC SRCC PLCC SRCC PLCC SRCC

MS-SSIM 0.8914 0.8808 0.8814 0.8943 0.8410 0.8912
VIF 0.8633 0.8540 0.8616 0.8651 0.8574 0.8893

IW-SSIM 0.8894 0.8789 0.8815 0.8951 0.8389 0.8923
FSIM 0.8889 0.8804 0.8815 0.8943 0.8874 0.8916
VSI 0.8917 0.8805 0.8801 0.8926 0.8869 0.8917

GMSD 0.8892 0.8800 0.8850 0.9076 0.8953 0.9090
MDSI 0.8965 0.8830 0.8807 0.9019 0.8879 0.8949
PSIM 0.8860 0.8799 0.8796 0.8915 0.8870 0.8915

by-frame spatial quality assessment, and their performances
on three VQA databases (i.e., LIVE, CSIQ, and IVP) are
listed in Tab. V. As can be seen, the selection of IQA metrics
for the spatial component is not critical for the proposed
FAST method. Even though with different IQA metrics, the
performances are quite similar. For example, the performance
differences from FSIM, VSI, GMSD, MDSI and PSIM are no
more than 0.01 (SRCC or PLCC value). This result suggests
implicitly that the video quality is mainly related to motion
degradation in most cases, rather than the statistic portion.
Even though GMSD is not an ideal spatial quality estimator for
optimization, considering the computational simplicity, GMSD
is employed for the spatial quality in this work, which can
be substituted flexibly with other preferable one based on the
practical situation.

D. Effectiveness Comparison

Besides performance comparison, considering the limitation
of computational cost in practical application, an experiment
about running time is also conducted. Algorithms are running
on an operation system of Windows 10 Enterprise (x64), with a

Fig. 9: Running time among VQA models

3.60 GHz Inter Core i7-4790 CPU and 16GB RAM. MOVIE is
tested in a released model of Visual Studio 2013 Community,
as well as VMAF, and the other VQA models are running with
MATLAB R2016a. Our proposed method is implemented in
C++ with OpenCV, and tested in MATLAB through hybrid
programming.

Ten different distorted videos corresponding to the same
reference video named pa1 25fps.yuv on the LIVE video
database are selected. All test videos are with a resolution of
768× 432 and possess 250 frames. And the average running
time on these test videos is given as Fig. 9. As it can be
seen, the proposed model is much effective than most of VQA
methods. Existing models with a preciser predicted perfor-
mance always need more computation cost (such as MOVIE,
Vis3, and VQA VFD), while a much faster algorithm (like
SpEED, or VMAF) always could not perform well on all
evaluating databases. As a balance of both, our trajectory-
based method can make a more conspicuous performance, as
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well as relatively less computation cost, which demonstrates
the effectiveness and efficiency of our method, and shows a
great advantage over other VQA models.

Furthermore, as it also can be seen in Fig. 9 that,
FLOSIM implemented with BA optical flow algorithm (named
FLOSIM ba) needs more than six hours for a standard test
video, while FLOSIM fb onlys takes about eleven minutes. It
is a hard work for FLOSIM ba to accomplish the validation on
the five databases on account of the huge computational cost,
but much easier for FLOSIM fb. From another point of view,
since our VQA method is implemented with Farneback optical
flow algorithm, using FLOSIM fb rather than FLOSIM ba
seems more fair for comparison to some extent. Anyway,
putting aside this view, and considering the major computa-
tional complexity, FLOSIM fb is a better choice, reasonably
and necessarily.

E. Analysis on Parameter Settings

In this step, some options and parameter settings are exper-
imentally analyzed, which contain options about points selec-
tion and trajectory generation, determination of the trajectory
length L, choice of the local region size W in motion velocity
and motion content extraction, and selection of the bins
K for motion velocity representation. On each experimental
procedure, only single variable is controlled, while the others
are fixed.

Firstly, in Section II, points are sampled from the distorted
video frame, and trajectories are generated with the distorted
optical flow by default. Actually, there are four types for
this trajectory generation procedure: points sampled from the
distorted frame and tracking points with the distorted optical
flow (PDTD), points sampled from the distorted frame and
tracking points with the reference optical flow (PDTR), points
sampled from the reference frame and tracking points with
the distorted optical flow (PRTD), as well as points sampled
from the reference frame and tracking points with the reference
optical flow (PRTR). These different process types are tested
on the LIVE video database and the IVP database, and the
experimental results are given in Fig. 10. As can be seen, the
performance (SRCC) of each method does not vary much, and
the fluctuation of SRCC is within 0.005 on the two databases,
which suggests that, actually, which video frame points should
be sampled from and which optical flow should be used to
track points are not critical things, since the experimental
results are almost the same. Even PRTD seems to perform
a little better, as interpreted in Section II, in this work, the
type of PDTD is used since it is believed to be more natural.

Then, a set of experiments are performed to determine the
proper trajectory length L. L is set from 12 to 27, and the
results are shown in Fig. 11. Both the SRCC on the LIVE
and the IVP reach the highest value when L is set to 18, and
clearly, the two curves represents an apparent trend, increasing
in the first stage, and then decreasing. Noted that when L is
set to 27, SRCC on the IVP database increases a little bit, but
drops more on the LIVE database. Besides, the fluctuation
of SRCC on the IVP database is still very small (ranging
from 0.9057 to 0.9090), and the one on the LIVE database

Fig. 10: Performance (SRCC) comparison with different
method for points selection and trajectory generation on LIVE
and IVP databases

Fig. 11: Performance (SRCC) comparison of different length
of trajectory on LIVE and IVP databases

appears (ranging from 0.8688 when L = 27, to 0.8800 when
L = 18), which might indicate that the tracking length plays
a more influential role on the LIVE database. Hence, the little
bit increased on the IVP database when L = 27 can be seen
as a disturbance, but the dropping on the LIVE database is
real, which further pushes us to believed that 18 frames is the
proper trajectory length.

Next, efforts are also made to choose the local region size
W . Similar to L, different possible values are tested on the
LIVE database and the IVP database, and the experimental
results can be seen in Fig. 12. SRCC on the LIVE database
increases at the beginning, reaches the highest value at W =
48, and decreases afterwards, while performance on the IVP
database is always decreasing. It seems a little weird that these
two databases present different trends, but in another point of
view, it is duet to the difference that many VQA methods
can not perform well on both of the two databases. And as a
compromise, W is set to 48 in this work, which guarantees
the best SRCC on the LIVE database, and a relatively good
one on the IVP database.

Finally, different values are tried for K, the histogram bins
of temporal representation in Section III-A. Possible values are
ranging from 4 to 16, and experimental results are shown in
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Fig. 12: Performance (SRCC) comparison of different size of
local region on LIVE and IVP databases

Fig. 13: Performance (SRCC) comparison of different bins for
optical flow histogram on LIVE and IVP databases

Fig. 13. Since SRCC on the LIVE database achieve the best
when K = 8, while increases slowly on the IVP database,
K is set to 8 in this work for a good trade-off between
databases. Analogous to Fig. 12, the two databases present
different preferences for parameters, which further shows the
variation of VQA databases, and brings more challenges for
a generalized VQA modeling.

V. CONCLUSION

In this paper, we have proposed a novel FR VQA model
by measuring degradation along motion trajectory. Trajec-
tories have been firstly generated based on point selection
and position prediction. Then, motion velocity (magnitude
and orientation) and motion content along trajectories have
been extracted, and quality degradations on motion velocity
and motion content have been measured (pooling into the
temporal quality as well as the joint spatial-temporal quality).
Finally, incorporating the spatial quality degradation, a novel
trajectory-based model for FR VQA has been generated. Ex-
perimental results on five public VQA databases have demon-
strated that our model achieves a remarkable improvement
over existing VQA models, obtains a good generalization
within different databases, possesses a nice robustness with
distinct IQA metrics, and performs consistently with human
perception. Moreover, the computational cost of our proposed
model is also much lower than most existing relevant models.
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