End-to-End Blind Image Quality Prediction with
Cascaded Deep Neural Network

Jinjian Wu, Member, IEEE, Jupo Ma, Fuhu Liang, Weisheng Dong, Member, IEEE, Guangming Shi, Senior
Member, IEEE, and Weisi Lin, Fellow, IEEE

Abstract—The deep convolutional neural network (CNN) has
achieved great success in image recognition. Many image quality
assessment (IQA) methods directly use recognition-oriented CNN
for quality prediction. However, the properties of IQA task is
different from image recognition task. Image recognition should
be sensitive to visual content and robust to distortion, while
IQA should be sensitive to both distortion and visual content.
In this paper, an IQA-oriented CNN method is developed for
blind IQA (BIQA), which can efficiently represent the quality
degradation. CNN is large-data driven, while the sizes of existing
IQA databases are too small for CNN optimization. Thus, a large
IQA dataset is firstly established, which includes more than one
million distorted images (each image is assigned with a quality
score as its substitute of Mean Opinion Score (MOS), abbreviated
as pseudo-MOS). Next, inspired by the hierarchical perception
mechanism (from local structure to global semantics) in human
visual system, a novel IQA-orientated CNN method is designed,
in which the hierarchical degradation is considered. Finally, by
jointly optimizing the multilevel feature extraction, hierarchical
degradation concatenation (HDC) and quality prediction in an
end-to-end framework, the Cascaded CNN with HDC (named
as CaHDC) is introduced. Experiments on the benchmark IQA
databases demonstrate the superiority of CaHDC compared with
existing BIQA methods. Meanwhile, the CaHDC (with about
0.73M parameters) is lightweight comparing to other CNN-based
BIQA models, which can be easily realized in the microprocessing
system. The dataset and source code of the proposed method are
available at https://web.xidian.edu.cn/wjj/paper.html.

Index Terms—Blind Image Quality Assessment (BIQA), Hier-
archical Degradation Concatenation, End-to-End, Deep Convo-
lutional Neural Network

I. INTRODUCTION

Nowadays, objective image quality assessment (IQA) plays
an important role in image/video processing. Over the past
several decades, a variety of IQA methods have been intro-
duced and they can be divided into three categories: full-
reference (FR) IQA (for which the whole reference image
is required), reduced-reference (RR) IQA (which use partial
reference information) and no-reference (NR) IQA (for which
no reference information is required) [1]. In reality, however,
the reference image is usually unavailable. Thus, NRIQA, also
called blind IQA (BIQA), becomes a hot research topic.
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Most early BIQAs, which belong to knowledge-driven
method, need to design feature descriptors manually based
on the properties of Human Visual System (HVS) or Natural
Scene Statistics (NSS) [2]-[11]. However, it is hard to de-
sign handcrafted features which can efficiently represent the
quality degradation for BIQA. Due to the powerful feature
representation ability of convolutional neural network (CNN),
some CNN-based BIQAs have been proposed recently (which
belong to data-driven). These methods are mainly based on
two ideas. One is to adopt existing pre-trained CNN models
as feature or multilevel-feature extractor and SVR for quality
predication [12]-[14], which cannot jointly optimize the whole
framework as a whole. The other follows end-to-end manner
for BIQA [15]-[19], like many CNN models used for image
recognition task, in which only the features from the last
convolutional layer are utilized. All these CNN-based BIQAs
can not make full use of the perceptual properties of HVS.
Although a lot of CNN frameworks have been designed and
achieved great success in image recognition task, the charac-
teristics of IQA is different from that of image recognition.
Image recognition task should be sensitive to visual content
and robust to distortion, while IQA task should be sensitive
to both distortion and visual content. Many existing BIQA
methods use recognition-oriented CNN for quality prediction,
which may not be fully adapted. Thus, we need design an
IQA-oriented CNN method for BIQA.

Moreover, a common problem of these CNN-based BIQAs
is the lack of large quality-annotated IQA database which is
needed to train a network with strong generalization ability.
Thus, we firstly establish a large-scale IQA dataset which
includes more than one million distorted images generated
from ten thousands of high quality pristine images (with
21 distortion types under 5 levels). Since the performance
of existing FRIQAs [20]-[24] is highly consistent with the
HVS, the best FRIQAs for each distortion type are chosen
and merged to set a quality score for each distorted image
as its MOS, abbreviated as pseudo-MOS (the reliability of
our proposed method assigning pseudo-MOS is experimentally
verified in Section III).

In this work, in order to meet another challenge of lack-
ing IQA-oriented CNN-based methods, we consider to make
use of the hierarchical degradation during visual perception
for BIQA framework designing. Research on neuroscience
indicates the hierarchical process for visual perception [25],
[26]. Coincidentally, CNN naturally learns hierarchical fea-
tures (from low-level to high-level) with the depth of layers
from shallow to deep. Low-level features concern more on
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Fig. 1. Tllustration of the effect of hierarchical degradation on image
quality. (a) Reference image as input. (b)-(d) Visualization of features at
different layers for the reference image. (e) Distorted image as input. (f)-(h)
Visualization of features at different layers for the distorted image.

local details, middle-level features mainly focus on regional
patterns, and high-level features are rich in global abstracts.
As shown in Fig.1, through the visualization of convolutional
network! by the method of [27], we can observe that distortion
affects different levels of features and causes hierarchical
quality degradation from the perspective of IQA. For example,
at low level, network focuses on local details as show in
Fig.1(b), and the local details will be destroyed by distortion
as show in Fig.1(f). The hierarchical degradation refers to the
destruction on hierarchical features caused by distortion. It’s
necessary to consider the hierarchical degradation for IQA.
Thus, we design an end-to-end cascaded CNN framework,
in which the procedures of feature extraction, hierarchical
degradation concatenation and quality prediction can be jointly
optimized. Experiment results demonstrate the superiority of
CaHDC compared with existing BIQA methods. It is worth
mentioning that the number of parameters of CaHDC is far
smaller than other CNN-based BIQAs.

The main contributions of this paper can be summarized as
below:

1) A large-scale quality-annotated dataset is established to
address the problem of limited training data, which spans a
great diversity in visual contents and distortions. The pseudo-
MOS assigned by our proposed method is reliable and com-
parable to subjective test.

2) Inspired by the hierarchical perception mechanism in
HVS, we propose an IQA-oriented CNN method, in which the
hierarchical degradations are concatenated for BIQA and the
whole procedures, i.e., feature extraction, hierarchical degra-
dation concatenation and quality regression can be optimized
by an end-to-end manner. Benefiting from the hierarchical
degradation concatenation and the end-to-end optimization,
CaHDC can better learn the nature of quality degradation.

IThe CNN model used for visualization is the proposed CaHDC.
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Fig. 2. Existing BIQA architectures: (a) End-to-end but not hierarchical
framework. (b) Hierarchical but not end-to-end framework. (c) Our proposed
end-to-end network simultaneously combining hierarchical degradation.

Experimental results indicate that CaHDC achieves the state-
of-the-art.

3) As a lightweight network with only 0.73M parameters,
the proposed IQA model is easily realized in the microprocess-
ing system (e.g., NVIDIA JETSON TX2), which can meet the
requirements of accuracy and real-time.

II. RELATED WORK
A. Traditional Blind Image Quality Assessment

Traditional BIQA aims to design hand-crafted feature de-
scriptors, which try to extract features that can efficiently rep-
resent the quality degradation. Then, the non-linear regression
procedure (e.g., SVR) is adopted to regress the high dimension
features into a quality score. The most classical approach
is natural scene statistic (NSS) based BIQA. This kind of
methods estimate the statistic distribution of natural image,
and then capture parametric bias to evaluate image quality
degradation. For example, DIIVINE [2] first distinguishes the
distortion type, and then employs distortion-specific methods
to acquire quality score by utilizing NSS features. BLIINDS-
I [3] exploits a NSS model of discrete cosine transform (DCT)
coefficients to evaluate image quality. BRISQUE [4] employs
the generalized Gaussian distribution (GGD) to extract features
in the spatial domain, and then SVR is employed to map fea-
ture space to quality score. NIQE [28] constructs quality aware
features and matches them to the multivariate Gaussian (MVG)
model. Besides, there are also other methods to design feature
descriptors, such as RISE [8] imitates multiscale characteristic
of HVS by learning multiscale features in both the spatial and
spectral domains to evaluate the image sharpness.

B. CNN-based Blind Image Quality Assessment

Over the past few years, with the outstanding performance
of CNN in various visual tasks, some CNN-based BIQASs have
been proposed. There are mainly two types of CNN-based
BIQAs, whose architectures are shown in Fig.2 (a) and (b).
The first type is end-to-end but no hierarchical degradation
integrated as show in Fig.2 (a). For example, WaDIQaM [16]
presents an end-to-end method for deep neural network-based



BIQA, in which weighted average patch aggregation is used
to get the global image quality. BIECON [19], following the
FRIQA behavior, uses the local quality maps as intermediate
targets for convolutional neural networks, and then pooled
features are regressed into quality score. RANK [17] trains
a Siamese Network to rank images which are generated by
adding synthetic distortions to reference images. MEON [18]
is composed by two sub-networks: a distortion identification
sub-network and a quality prediction sub-network. Although
these methods employ end-to-end optimized framework, they
only use the output of the last layer to evaluate image quality.
However, different levels of distortion generate different degra-
dations on hierarchical features. These methods described
above cannot efficiently represent the hierarchical degradation.

In order to capture the hierarchical degradation, some re-
searchers extract multilevel features from the existing pre-
trained CNN models (on other tasks, e.g., object classification),
then these features are regressed with SVR to predict image
quality. The structure of such type is represented by Fig.2(b).
For example, BLINDER [12] extracts features at each layer of
VGG16 [29]. Then SVR is utilized to obtain a score at each
layer, and the final quality score is computed by averaging the
layer-wise scores. HFD-BIQA [13] combines low-level local
structure features with high-level semantic features extracted
from the ResNet [30]. Afterwards, the combined features are
fed into SVR to acquire the final quality score. Although these
methods combine different levels of features and measure
the quality degradation from multiple scales, they extract
features and predict quality score separately. Since they are not
within an end-to-end optimized network structure, such kind of
BIQAs cannot jointly optimize the whole procedure. Besides,
the performance and generalization ability of these models are
always constrained by the tasks used for pre-training.

Moreover, there exists a common problem for all of these
CNN-based BIQAs: the lacking of big training data. Existing
databases (their size are too small) cannot provide sufficient
training images to optimize a network with high generalization
ability. Therefore, data augmentation is ineluctably adopted,
and the most widely used method is the patch-based method.
Although this skill is valid on databases with synthetic distor-
tions, there are many drawbacks in dividing image into small
patches such as size of 32 x 32: 1) Assigning MOS of the
original image to its sampled patches, while the quality of
each patch is different due to content and authentic distortions
spatial inhomogeneities. 2) Several researches utilized FRIQA
to generate proxy quality label for each patch. However, such
small patches may not contain enough semantic information
to judge its quality. And one FRIQA method can’t achieve
the best performance in all distortion types. 3) The subjective
perception quality of each patch is not exactly the same as the
whole image.

In this work, we firstly build a large-scale quality-annotated
dataset to solve the problem of lacking training data based on
merging multiple FRIQAs. Indeed, some previous researches
have leveraged FRIQA to generate a quality score for un-
labeled image. In BIQME [31], one high-accuracy FRIQA
method, i.e., colorfulness-based PCQI [32], is proposed to
predict quality score for enhanced image. BLISS [33] uses

TABLE I
COMPARISON OF EXISTING IQA DATABASES AND OUR PROPOSED
DATASET
Dataset Refimgs  Distortions  Distimgs  Quality label
LIVE [35] 29 5 779 Yes
CSIQ [36] 30 6 886 Yes
TID2013 [37] 25 24 3,000 Yes
Waterloot [38] 4,744 4 94,880 No
Proposed 10,000 21 1,050,000 Yes

unsupervised rank aggregation to combine different FRIQAs
to generate a synthetic score. Besides, MMF [34] also proposes
a regression approach to fuse multiple FRIQAs. Specifically,
the new MMF score is set to be the nonlinear combination of
scores from multiple FRIQAs. Different from previous strate-
gies, we propose an intuitive and effective method to merge
multiple FRIQAs which will be introduced in Section III.

Following, an end-to-end cascaded CNN model (called
CaHDC, as shown in Fig.2(c)) is proposed, which considers
hierarchical degradation and simultaneously optimizes the
whole procedure jointly. It’s worthy mentioning that while
CaHDC has a small number of parameters, it still maintains
high performance. It greatly alleviates overfitting and achieves
the superior cross-database performance.

III. LARGE-SCALE DATASET WITH PSEUDO-MOS

Optimizing deep convolutional neural network with high
generalization ability needs a huge amount of data, how-
ever, the most popular IQA databases, such as LIVE [35],
CSIQ [36], TID2013 [37], are usually too small. The largest
existing dataset, i.e., TID2013, only possesses 3000 distorted
images which are derived from 25 pristine images. Limited
data size can easily lead to overfitting of deep neural net-
works. Waterloo Exploration Database [38] contains 94 880
distorted images generated from 4 744 high quality natural
images. However it contains only 4 distortion types and all
the images are short of quality labels. Since it is laborious
to collect MOS for images by subjective experiment, which
usually needs highly controlled conditions, resulting in small
data collections relative to other image analysis databases.
Towards overcoming these problems, we establish a large-scale
quality-annotated dataset with pseudo-MOS based on merging
multiple FRIQAs.

In this work, 10,000 images with high qualities are firstly
chosen from MSCOCO [39] as reference images. Next, each
reference image is degraded by 21 types of distortion under
5 noise levels. As a result, 1,050,000 distorted images are
collected. Then, the best FRIQA for each distortion type is
selected to compute quality scores for images. Five classical
FRIQA metrics are adopted. Ultimately, we normalize the
quality scores of all distorted images by building a nonlinear
mapping function for each distortion type to get the unified
pseudo-MOS. Tab.I lists the comparison between our proposed
dataset and 4 other databases. Our proposed dataset is far
ahead of other databases in terms of image quantity. Con-
sequently we can leverage sufficient labeled data to train a



TABLE II
THE 21 DISTORTION TYPES AND CORRESPONDING BEST FRIQA.

No Distortion Type Best FRIQA | No Distortion Type Best FRIQA
#1 Additive Gaussian noise VSI #12  Non eccentricity pattern noise GMSD
#2  Additive noise in color components PSNR #13  Local block-wise distortions GMSD
#3 Spatially correlated noise VSI #14  Mean shift (intensity shift) GSM
#4 Masked noise PSNR #15  Contrast change GMSD
#5 High frequency noise VSI #16  Change of color saturation FSIMc
#6  Impulse noise PSNR #17  Multiplicative Gaussian noise VSI
#7  Quantization noise GMSD #18  Lossy compression of noisy images GMSD
#8 Gaussian blur GSM #19  Image color quantization with dither PSNR
#9  Image denoising GMSD #20  Chromatic aberrations FSIMc
#10  JPEG compression VSI #21  Sparse sampling and reconstruction GMSD
#11  JPEG2000 compression VSI
TABLE III
SROCC oF FRIQAS FOR EACH DISTORTION TYPE.
FRIQA #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
VSI [23] 0946 0.872 0937 0779 0921 0874 0.875 0961 0948 0.954 0971
FSIMc [21] | 0912 0.854 0.89 0.809 0904 0825 0.881 0955 0933 0936 0.959
PSNR 0929 0.898 092 0.832 0914 0897 0881 0914 0948 0919 0.884
GSM [22] 0914 0.824 0925 0737 0.893 0.803 0.89 0969 0945 0932 0.964
GMSD [24] | 0946 0.868 0935 0.717 0916 0.764 0905 0911 0952 0951 0.966
FRIQA #12 #13 #14 #15 #16 #17 #18 #19 #20 #21
VSI [23] 0.806  0.171 077 0475  0.81 0912 0956 0.884 0.891 0.963
FSIMc [21] | 0.794 0.552  0.749 0473 0836 0857 0.949 0.882 0.893 0.958
PSNR 0.686 0.099 0.767 044 0.101 0.891 0914 0927 0.887 0.904
GSM [22] 0.807 0.631 0779 0479 0355 0.849 0958 0.904 0.881 0.967
GMSD [24] | 0.814 0.663 0.735 0.621 0295 0.889 0963 091 0.853 0.968

stable and robust deep network which can greatly alleviate
the overfitting.

A. Pristine images

The reference images of our proposed dataset come from a
large-scale database MSCOCO [39], which is widely used for
object detection, segmentation and caption. There are numer-
ous images suffering from severe distortion or poor perceptual
quality in MSCOCO. Therefore, a manual process to select
high quality images is essential. Only pristine images with
high quality and clear content are chosen as the reference im-
ages. Specifically, we first removed those low-quality images
undergoing obvious distortion, such as motion blur, defocus
blur, Gauss noise, impulse noise, compression artifacts, under
or over exposure, low contrast, artificial borders, watermarks,
and other distortions. Next, gray images and images with
minor size or low resolution are also removed. Finally, only
10,000 high-quality pristine images are left as the reference
images.

B. Distorted Images

Similar to TID2013 (the largest IQA database, which con-
tains 3,000 distorted images with 24 distortion types under 5
levels), we generate 21 distortion types, which are listed as
Tab. II. Afterwards, each reference image is degraded by the
21 distortion types under 5 noise levels. As a consequence, a
total of 1,050,000 distorted images are collected.

C. Generation of pseudo-MOS

For purpose of generating credible pseudo-MOS for
each distorted image, five classical FRIQAs, i.e., PSNR,
FSIMc [21], GSM [22], VSI [23], GMSD [24] are adopted.
Tab.IIl lists the SROCC of these five FRIQAs on each
distortion type of TID2013. Pseudo-MOS can be assigned
through two methods. The simplest approach to generate
pseudo-MOS is to adopt a single FRIQA for all distorted
images. Nevertheless one FRIQA responds to distinct distor-
tion types discrepantly. Although some FRIQAs can achieve
good performance on most distortion types, their performance
is unsatisfactory on some specific distortion types. For in-
stance, on TID2013, VSI achieves the best SROCC (0.971)
on #11 (JPEG2000 Compression distortion), but the SROCC
dramatically decreases to 0.171 on #13 (local block-wise
distortions). Accordingly we leverage the other comprehensive
means which takes FRIQA’s discrepancies on distinct distor-
tion types into account. We pick out a best FRIQA for each
distortion type according to the performance. Tab.II lists the
best FRIQA for each distortion type.

Another problem emerges when combining multiple
FRIQAs. Different FRIQAs produce disparate quality value
scales for diverse distortion types, so we need to normalize
them into a unified range. In this work, a nonlinear mapping
function is adopted to map predicted quality values from
different FRIQAs into a unified scale as that in TID2013. The
nonlinear mapping function is formulated as [35], [40]

1
1+ exp(B2(Qs — B3))

2= (3 )
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Fig. 3. Comparison between our proposed dataset and TID2013. (a)-(e) Different perceptual quality images with pseudo-MOS in our proposed dataset. (f)-(j)

Different perceptual quality images with subjective MOS in TID2013.

where @ is the normalized score, and ) is the predicted score
from FRIQA. {51, B2, B3, P4, 85} are parameters to be fitted.
Intuitively, there are two ways to build mapping models to
merge predicted quality values.

1) Merge by FRIQA From Tab.II we can see that one
FRIQA may achieve the best performance on more than one
distortion types. Thus one way to merge predicted quality
values is to build mapping model by FRIQA,

Q= r"Q9)

where N is the number of FRIQAs we used in multi-FRIQAs,
Q7 is the predicted scores of images belonging to the dis-
tortion types on which the n-th FRIQA achieves the best
performance, and f™ (-) is the mapping model built for the
n-th FRIQA. In this way, there are 5 mapping models built to
merge predicted quality values for our proposed dataset.

2) Merge by distortion Another way to merge predicted
quality value is to build mapping model by distortion type,

Q=f"Qy)

where M is the number of distortion types in our dataset.
Q7 is the predicted scores of images belonging to the m-
th distortion type, and f™ (-) is the mapping model built for

n € [1,N] 2)

m € [1,M] €))

TABLE IV
PERFORMANCES OF SINGLE FRIQA AND MULTI-FRIQAS OoN TID2013.

FRIQA SROCC  PLCC

single-VSI [23] 0.897 0.899
single-FSIMc [21] 0.851 0.877
single-PSNR 0.703 0.702
single-GSM [22] 0.797 0.833
single-GMSD [24] 0.804 0.859
multi-FRIQAs (merge by FRIQA) 0.895 0.908
multi-FRIQAs (merge by distortion) 0.947 0.954

the m-th distortion type. There are 21 mapping models built
by distortion for our proposed dataset.

We compare the performance of these methods mentioned
above on TID2013. Tab.IV lists the SROCC and PLCC
achieved by different single FRIQAs and multi-FRIQAs. As
can be seen, because of considering properties of distinct dis-
tortion types, the SROCC and PLCC of multi-FRIQAs (merge
by distortion) achieve the best performance (0.947 and 0.954),
which is much higher than other methods. This indicates that
the multi-FRIQAs (merge by distortion) approach is effective
and reliable for quality prediction. And thus we apply it on
our proposed large dataset to assign pseudo-MOS value for
each distorted image.

Fig.3 presents some specimens of distorted images with
pseudo-MOS in our dataset and several distorted images with
subjective MOS in TID2013. The perceptual qualities of the
presented images are in the range: {bad, poor, fair, good,
excellent}. It’s observed that when the degree of contam-
ination is approximate, the pseudo-MOS in our proposed
dataset and the subjective MOS in TID2013 is approximate
too (which verifies the dependability of our proposed large
quality-annotated dataset).

IV. THE QUALITY PREDICTION FRAMEWORK

An end-to-end BIQA framework (i.e., CaHDC) considering
hierarchical quality degradation is proposed in this section.
The proposed CaHDC can not only integrate hierarchical
degradation to predict image quality (in which features are
hierarchical analyzed and refined for concatenation), but also
optimize the feature extraction, hierarchical degradation con-
catenation and quality prediction jointly in an end-to-end
framework. Detailed information will be given in the follow-
ing.
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Fig. 5. The parameterization of Hierarchical Net. The presentation formats
are Conv(heights, widths, output channels, strides), Maxpool(heights, widths,
strides)

A. Architecture

We denote the input image with size 300 x 300 x 3 by X and
the pseudo-MOS/MOS of the input image by Q. As depicted in
Fig.4, our proposed model consists of three parts: the Hierar-
chical Net for feature extraction, the Side Pooling Nets (SiP-
Nets) for hierarchical degradation fusion/concatenation, and
the Regression Net for quality prediction. Their parameters are
denoted as W<, W8, and W, respectively. ReLU is selected
as activation function and used after all convolutional layers
and fully connected layers expect for special statement.

Hierarchical Net: The Hierarchical Net is composed of a
series of convolutional layers including 6 levels, convl-x, ...,
conv6-x, to extract hierarchical features (shallow-to-deep/low-
to-high level). The parameterization details of the Hierarchical
Net are shown in Fig.5, in which all convolutional layers apply
3 x 3 kernels, 1 x 1 stride and zero padding in order to obtain
the output as the same size as the input. Meanwhile, 2 x 2
max pooling with stride 2 and zero padding are used on the
output of each level for downsampling.

SiPNets: The branches of the SiPNets come from different
levels of the Hierarchical Net except for the first and second
levels. The reason why we omit the two levels is that the
receptive field size is too small and too many parameters will
increase the complexity of our network. As shown in Fig.6,
the SiPNet first adopts a convolutional layer with 1 x 1 kernel
and 1 x 1 stride. After that, a series of repeated convolutional
layers with 3 x 3 kernel, zero padding and 2 X 2 stride are
adopted for downsampling (until to the same size 10 x 10
as conv6-1). The last SiPNet separated from conv6-1 only has
one convolutional layer with 1 x 1 kernel and 1 x 1 stride. The
number of repeated convolutional layers for downsampling
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Fig. 6. Tllustration of Side Pooling Net. R denotes the number of repeated
convolutional layers.

from SiPNet-1 to SiPNet-3 are {3,2, 1} respectively.

Regression Net: The Regression Net includes K + 1 fully
connected layers, FC-1-x, ..., FC-5-x, to map features extracted
from SiPNets into quality scores, where K = 4 is the number
of levels to be integrated. As shown in Fig.4, max pooling
with the same size 10 x 10 as the feature map is applied to
each output of SiPNet to extract the most apparent features,
which are denoted as:

Si =@, (X; W, W) i=1,.., K 4)
where S; € RY* represents the feature vector after max
pooling on the output of SiPNet, W is the parameters of
the Hierarchical Net, WZ-B is the parameters of the i-th SiPNet
, and ®;(-) denotes the process to get the feature vector S;.
Predicted scores by each single level can be described as:

Qi = Fi(Si; W)

i=1,.. K (5)

where F;(-) denotes fully connected layers FC-i, and W,
represents the parameters of FC-i. The final predicted score
of the input image can be described as:

Q= Fr1(S;Wiy) (6)

S=85, PSSP S, @)

where @ means the concatenation operation, S indicates the
fused feature vector from distinct single levels. Fixy1(-) de-
notes the model of FC-5, and Wf; 1 represents the parameters
of FC-5.

B. Loss Function and Optimization

In view of the pseudo-MOS values of our proposed dataset
are generated by FRIQAs, it’s possible to produce some
abnormal samples (inaccurate quality labels). Hence, Huber
loss is adopted to improve robustness of the network. To ensure
derivatives are continuous for all degrees, the Pseudo-Huber



loss (as one of the smooth approximations of the Huber loss)
is adopted,

_\ 2

Lo(q) = 0% | {/1+ (qéq) ~1 (8)
where § is a super parameter, ¢ is the predicted quality score,
and q is the ground truth (i.e., MOS or pseudo-MOS). This loss
function approximates quadratic for small residuals between ¢
and ¢, and linear for large residuals to reduce the penalty to
outliers. The gradient of Ls(q) with respect to ¢ is formulated

as
J0Ls (q) _
Jq

9—q
—\ 2
L+ (%)
We train our model by end-to-end and hierarchical-joint
optimization. The error between predicted score by each single
level and MOS/pseudo-MOS is adopted as auxiliary loss to
train our proposed model for hierarchical degradation mea-

surement. Therefore, the overall loss function can be expressed
as

©))

Ly (X;W*, WP W?) =L+ Ly

K 10
— Z a;Ls (Q;) + Ls (Q) o
=1

where L, stands for the sum of losses under each single level,
Ly stand for the loss under multilevel features integration, a;
is a weight to impose relative emphasis on one over the other
levels, and it can be defined as,

a; = (S(Qi) - ;)2

where S(-) is sigmoid function,

S(Qi)

(1)

1
e (—(Qi - Q)

The smaller the difference between @; and Q, the smaller the
weight a; should be. The gradient of a; with respect to @; is

a(li
90, ~ 5(Q:) (25(Q:) —1) (1 = 5(Qx))-

During the back propagating, the gradient of the overall loss
L; with respect to @; and @ is

8Lt 8ai

12)

13)

OLs (Qi)

20, ~ 90, Ls (Qi) + o0, a; (14)
0Ly 0Ls(Q)
6= 0 (15)

Finally, we can obtain the optimal parameters by minimizing
the overall loss function,

(We, Wwh we)"

= argmin (Lt (X; we,Wwh, WW))
The proposed CaHDC has the following characteristics:
1) Multiple branches separated from different layers of the

trunk net allow our network to evaluate the hierarchical quality
degradation.

(16)

2) The first fully connected layer with only 100 dimensions
tremendously reduces the number of network parameters,
which can vastly speed up the optimization of the network,
and simultaneously alleviates overfitting.

3) We do not pull the features at different layers into column
vectors and then integrate them, but downsample them with
convolutional operations to the same scale for integrating. As
a result, the number of features is reduced and the spatial
information of the features is reserved.

4) The proposed CaHDC is a lightweight network with
high performance and generalization ability. The network
parameters of WaDIQaM [16] and BIECON [19] are 5M and
7M, whereas the total number of CaHDC is only 0.73M.

C. Strategy for Training and Testing

According to RANK [17], the size of input sub-images
ought to no less than 1/3 of the original images in order to
capture context information. When training in our experiments,
the pseudo-MOS/MOS of the original image is assigned
as ground truth to its random sampled patches with size
300 % 300 x 3 (such an input size is large enough to capture the
context information). For testing, the image is cropped into 4
patches evenly with size of 300 x 300 x 3, and the final quality
score is acquired by averaging these predicted scores.

In the training process, a mini-batch of random sampled
image patches are fed into CaHDC and Adam optimization
algorithm is adopted for training. Parameters of Adam are set
as 1 = 0.9, B2 = 0.999, ¢ = 1078, The learning rate is set

as
. { Q * ds/so

U

a > Qy

a<an, a7

where «y is the initial learning rate, d is the decay factor, s
is the decay rate, s is the number of trained steps, and a.,, is
the minimum learning rate. When a < qy,, it is equivalent
to exponential decay function. This function applies a big
learning rate to train the model at the begin and lower the
learning rate as the training progresses until to the minimum
learning rate. For pre-training, g = 1074, a,, = 1075, s
is the number of steps required for training one epoch. For
fine tuning, the global learning rates is fixed to 10>, and the
learning rate of the Hierarchical Net is multiplied by 0.01.

V. EXPERIMENTAL RESULTS
A. Databases and Protocols

Five public IQA databases are chosen for experiment, i.e.,
LIVE [35], CSIQ [36], TID2013 [37], LIVE-MD [41], and
LIVE-CH [42]. The information of LIVE, CSIQ, and TID2013
can be found in Tab.I. The LIVE-MD contains 450 multiply
distorted images under two multiple distortion scenarios: 1)
first blurred and then compressed by JPEG encoder to simu-
lated the scenario of image storage; 2) first blurred and then
corrupted by white Gaussian noise to simulated camera image
acquisition process. The LIVE-CH contains 1162 images
captured under highly diverse conditions by a large amount
of camera devices. It involves a variety of authentic and real-
world distortion.



To measure the performance of the proposed CaHDC and
other BIQAs , two widely used correlation criterion are
adopted.

1) Pearson Linear Correlation (PLCC)

> (pi — Pm )

)(Di — Pm
¢z (pi — Pm)?, [> (Bi — Pm)?

PLCC = (18)

where p; and p; are the MOS and the framework prediction,
respectively. PLCC measures the correlation between predicted
scores and MOS values.

2) Spearman Rank Order Correlation Coefficient (SROCC)

L 2
6 Z (mi - ni)
i=1

L(L?-1)
where L is the number of distorted images, m; is the rank of
p; in the MOS values, n; is the rank of p; in the predicted
scores. SROCC assesses the monotony between MOS values
and predicted scores. In this paper, media SROCC and PLCC
are reported across 100 sessions.

SROCC =1 — (19)

B. Comparison with Traditional CNN Models

We firstly compare the proposed CaHDC against traditional
CNN models used for image recognition task to demonstrate
the efficiency of the proposed model. Image recognition task
mainly focuses on high-level global abstracts, and features
from the last layer are sufficient at most cases for classifica-
tion. However, degradation from low-level to high-level will
degrade the perceptual quality, and degradations on multilevels
should be considered for quality predictation. We compare the
performance of CaHDC with traditional CNN models (i.e.,
AlexNet [43], VGGNet-16 [29], DenseNet? [44]) by cross-
database evaluation. All the models are first pre-trained on our
proposed dataset for better initialization. After that, they are
trained on TID2013 and tested on LIVE-MD. Median SROCC
and PLCC results of different models across 100 sessions
are reported in Tab.V. Thanks to hierarchical degradation
integration, the proposed IQA-orientated CaHDC achieves a
remarkable improvement.

C. Analysis of Hierarchical Degradation

In this subsection, we will comprehensively analyze the ef-
fect of hierarchical degradation. CaHDC is an IQA-orientated
CNN method designed by integrating hierarchical degradation,
which is inspired by the hierarchical process mechanism of
HVS. We firstly conduct the ablation experiment to compare
the performance under the conditions of hierarchical integra-
tion or not. Tab.VI lists the performance when removing the
SiPNets step-wisely. CaHDC w/o SiPNet-i&j means that the
SiPNet-i and SiPNet-j in Fig.4 are removed. All the models
in Tab.VI are firstly pre-trained on our proposed dataset, then
trained on TID2013 and tested on LIVE-MD. We can see
that if there is no hierarchical integration, the performance of

2In our experiments, the DenseNet is set to be the same depth as CaHDC
for fair comparison.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT CNN MODELS (TRAINING
ON TID2013 AND TESTING ON LIVE-MD).

SROCC PLCC

AlexNet [43] 0.644 0.667

VGGNet [29] 0.599 0.623

DenseNet [44] 0.714 0.741

CaHDC 0.773 0.826
TABLE VI

PERFORMANCE COMPARISON OF ABLATION EXPERIMENTS (TRAINING ON
TID2013 AND TESTING ON LIVE-MD).

SROCC PLCC
CaHDC w/o SiPNet-1&2&3 0.509 0.558
CaHDC w/o SiPNet-1&2 0.698 0.762
CaHDC w/o SiPNet-1 0.745 0.801
No Single Level Loss L 0.753 0.817
CaHDC 0.773 0.826

CaHDC w/o SipNet-1&2&3 is really poor. Considering more
hierarchical degradation step-wisely can improve the perfor-
mance of quality prediction gradually. Our proposed complete
model CaHDC considers all the hierarchical degradation and
obtains the best results, about 51.9% improvement on SROCC
and 48% improvement on PLCC compared to CaHDC w/o
SipNet-1&2&3. Besides, our proposed loss function L; is
also conducive to better learning hierarchical degradation for
BIQA. By embedding the (); into the overall loss function L,
CaHDC can better measure the quality degradation at different
levels, which will be beneficial to the final quality prediction.
From Tab.VI, we can see that under No Single Level Loss
Lg,ie., Ly = Ly, the SROCC and PLCC are 0.753 and 0.817,
which are lower than our proposed CaHDC.

Next, the impact of distortion on hierarchical features
are deeply analyzed. A pristine image and its distorted im-
ages (with JPEG compression under different degradation
level) are shown in Fig.7. Intuitively, with the increase of
distortion level from Fig.7 (b) to (d), their quality is gradually
degraded. As shown in Fig.7 (b), weakly distortion mainly
degrades the low-level edge, and has slightly affect on the high
level semantics (we can still clearly understand the window,
the flower and the leaf of this image). However, severely
distortion will directly destroy the high level semantics, as
shown in Fig.7 (d).

In order to further clearly demonstrate the hierarchical
degradation on multilevel features quantitatively, we define a
metric which is called Error Ratio (ER) to analyze the impact
of distortion on multilevel features. ER is formulated as

RMSE;
ER =4

> RMSE;

i=1
where K = 4 is the number of levels to be integrated, RM S E;
is Root Mean Square Error of features (i.e., the output of
SiPNet-i) between the reference image and distorted image.
Before computing RMSE, Min-Max Normalization is applied
to the output of SiPNet-i. Tab.VII and Tab.VIII respectively

(20)



Fig. 7. An example from TID2013 to analysis the impact of distortion on
hierarchical features. (a) Reference image. (b)-(d) Distorted images by JPEG
compression under different levels, their subjective MOS values in TID2013
are 5.9, 5.0, 2.2 respectively. The higher the MOS value, the better the image
quality.

TABLE VII
RMSE VALUES OF DIFFERENT FEATURE LEVELS

Fig.7 | SiPNet-1  SiPNet-2  SiPNet-3  SiPNet-4
(b) 7.833 5.338 4.996 3.255
(c) 9.514 7.342 7.024 4.560
(d) 16.239 13.810 15.282 11.242

list the RMSE and ER of different levels of features between
distorted image and reference image. It can be seen that with
the aggravation of distortion, the degradation of features (i.e.,
RMSE) becomes larger and larger. When the distortion is
weak, low level features are mainly degraded while high
level semantics are slightly affected, e.g., the ER of SiPNet-
1 between Fig.7(b) and Fig.7(a) is largest among all the
four hierarchical levels. When distortion is severe, high level
semantics are destroyed apparently, so the ER of SiPNet-4
between Fig.7(d) and Fig.7(a) is larger than the other distortion
levels. As the distortion increases, ER in higher levels become
larger.

In conclusion, distortion causes hierarchical quality degra-
dation, and it is essential to integrate hierarchical features
for image quality assessment. The proposed CaHDC is IQA
oriented, which can efficiently extract hierarchical features and
integrate hierarchical degradation for BIQA.

D. Performance Comparison with Existing BIQAs

We compare the proposed CaHDC with 15 classical
BIQAs (8 traditional and 7 CNN-based) on the five benchmark
databases. We randomly split each database into 80% images
for training and 20% images for testing by reference images
for no overlapping in context. We tried our best to collect the

TABLE VIII
ER VALUES OF DIFFERENT FEATURES LEVELS

Fig.7 | SiPNet-1  SiPNet-2  SiPNet-3  SiPNet-4
(b) 36.6% 24.9% 23.3% 15.2%
(c) 33.5% 25.8% 24.7% 16.0%
(d) 28.7% 24.4% 27.0% 19.9%

results of these existing BIQAs, which are listed at Tab.IX.
For the 8 traditional BIQAs, all the results are calculated by
the source code released by authors. For the 7 CNN-based
BIQA:s, all the results come from existing papers.

As can be seen, the proposed CaHDC performs better than
all of these traditional BIQAs on LIVE, CSIQ, TID2013,
LIVE-MD and LIVE-CH (especially for CSIQ and TID2013).
When comparing with these CNN-based BIQAs, the proposed
CaHDC also achieves the state-of-the-art performance on the
five benchmark databases. On LIVE, most of the CNN-based
BIQAs achieve high performance. Although the performance
is slightly lower than some other algorithms, our proposed
CaHDC achieves 0.965 SROCC and 0.964 PLCC, which is
acceptable in most cases. On CSIQ, CaHDC gets the best
SROCC, which is about 2.1% improvement compared to
DIQA [45]. On TID2013, CaHDC achieves the best results
among all the compared BIQAs except for BPSQM [46],
which is about 0.8% higher than our proposed on PLCC.
Different from LIVE, CSIQ and TID2013, LIVE-MD focus on
multiply distorted images, and CaHDC still achieves the best
PLCC result and the second SROCC result, which verifies that
CaHDC can also measure the quality degradation caused by
multiple distortions well. LIVE-CH is the most challenging
because it is composed of authentic distorted images. Our
proposed CaHDC still achieves the best performance among
the compared BIQAs, nevertheless there is still a lot of room
for improvement. In summary, by considering the hierarchical
degradation for BIQA and the end-to-end manner for opti-
mization, the proposed CaHDC performs highly consistently
with the subjective perception.

E. Cross Database Evaluations

In order to verify that the proposed CaHDC is not limited
by the database that it has been trained, the cross-database
evaluations are given. For the five benchmark databases, LIVE,
CSIQ and TID2013 are legacy databases which distorted
by synthetic distortion; LIVE-MD is distorted by synthetic
multiple distortions; LIVE-CH is distorted by a wide variety
of authentic distortions. Therefore, it is a big challenge for
cross database evaluation.

Firstly, we compare the generalization ability of CaHDC
with other BIQAs when training on the TID2013 (the largest
legacy database) and testing on the other four databases. For
the 5 traditional BIQAs, all the results are calculated by the
source code released by authors. For the two CNN-based
BIQAs (i.e., WaDIQaM [16] and RANK [17]), the results are
computed by the model released by the authors. As shown in
Tab. X, the proposed CaHDC performs the best on three legacy
databases (i.e., LIVE, CSIQ, and LIVD-MD). Especially for



TABLE IX
PERFORMANCE COMPARISON ON FIVE BENCHMARK IQA DATABASES

LIVE [35] CSIQ [36] TID2013 [37] LIVE-MD [41] LIVE-CH [42]
SROCC PLCC | SROCC PLCC | SROCC PLCC | SROCC PLCC | SROCC PLCC
BLIINDS-II [3] 0.919 0.920 0.570 0.534 0.536 0.628 0.827 0.845 0.405 0.450
DIIVINE [2] 0.925 0.923 0.784 0.836 0.654 0.549 0.874 0.894 0.546 0.568
BRISQUE [4] 0.939 0.942 0.750 0.829 0.573 0.651 0.897 0.921 0.607 0.585
NIQE [28] 0.915 0.919 0.630 0.718 0.299 0.415 0.745 0.815 0.430 0.480
CORNIA [47] 0.942 0.943 0.714 0.781 0.549 0.613 0.900 0.915 0.618 0.662
HOSA [48] 0.948 0.949 0.781 0.842 0.688 0.764 0.902 0.926 0.660 0.680
ILNIQE [49] 0.902 0.865 0.807 0.808 0.519 0.640 0.878 0.892 0.430 0.510
FRIQUEE [50] 0.948 0.962 0.839 0.863 0.669 0.704 0.925 0.940 0.720 0.720
MEON [18] - - - - 0.808 - - - - -
WaDIQaM [16] 0.954 0.963 - - 0.761 0.787 - - 0.671 0.680
RANK [17] 0.981 0.982 - - 0.780 0.799 0.921 0.936 - -
VIDGIQA [51] 0.969 0.973 - - - - - - - -
DIQA [45] 0.975 0.977 0.884 0.915 0.825 0.850 0.939 0.942 0.703 0.704
BIECON [19] 0.958 0.960 0.815 0.823 0.717 0.762 0.909 0.933 0.595 0.613
BPSQM [46] 0.973 0.963 0.874 0.915 0.862 0.885 - - - -
CaHDC 0.965 0.964 0.903 0.914 0.862 0.878 0.927 0.950 0.738 0.744
TABLE X
CROSS DATABASE EVALUATIONS WHEN TRAINING ON TID2013
Train TID2013 [37]
Test LIVE [35] CSIQ [36] LIVE-MD [41] LIVE-CH [42]
SROCC PLCC | SROCC PLCC | SROCC PLCC | SROCC PLCC
BLIINDS-II [3] 0.836 0.840 0.568 0.661 0.509 0.513 0.142 0.207
DIIVINE [2] 0.687 0.688 0.590 0.661 0.479 0.499 0.419 0.445
BRISQUE [4] 0.681 0.687 0.491 0.494 0.314 0.356 0.110 0.166
HOSA [48] 0.842 0.836 0.622 0.698 0.469 0.509 0.279 0.319
FRIQUEE [50] 0.847 0.849 0.637 0.722 0.421 0.550 0.241 0.294
WaDIQaM [16] 0.817 0.807 0.690 0.750 0.318 0.334 0.107 0.162
RANK [17] 0.641 0.594 0.475 0.399 0.376 0.415 0.146 0.141
CaHDC 0.930 0.921 0.736 0.808 0.773 0.826 0.396 0.438
TABLE XI
CROSS DATABASE EVALUATIONS WHEN TRAINING ON LIVE-CH
Train LIVE-CH [42]
Test LIVE [35] CSIQ [36] TID2013 [37] LIVE-MD [41]
SROCC PLCC | SROCC PLCC | SROCC PLCC | SROCC PLCC
BLIINDS-II [3] 0.516 0.465 0.409 0.575 0.282 0.441 0.693 0.700
DIIVINE [2] 0.461 0.414 0.436 0.462 0.346 0.468 0.342 0.405
BRISQUE [4] 0.455 0.452 0.181 0.311 0.296 0.465 0.270 0.362
HOSA [48] 0.450 0.469 0.337 0.475 0.317 0.482 0.339 0.331
FRIQUEE [50] 0.553 0.530 0.550 0.598 0.368 0.508 0.494 0.657
CaHDC 0.922 0.911 0.756 0.822 0.706 0.727 0.723 0.773

the LIVE-MD, the proposed CaHDC achieves a remarkable
improvement against the other BIQAs, about 51.9% improve-
ment on SROCC and 61% improvement on PLCC compared
to BLIINDS-II [3]. It verifies that our proposed CaHDC
can better learn the nature of quality degradation caused by
distortion, and has good generalization ability from single
distortion to multiple distortion. However, probably because
the distortion in LIVE-CH is quite different from that in the
other synthetic databases, all of these BIQAs performs poorly
on the wild LIVE-CH (the best one with SROCC 0.419), and
the proposed CaHDC performs the second place (a slightly
worse than the best one). Meanwhile ,the two CNN-based

BIQAs (WaDIQaM [16] and RANK [17]) perform extremely
poorly.

Tab.XI lists the SROCC and PLCC for models when trained
on the wild LIVE-CH and tested on the other four legacy
databases. LIVE-CH is composed of authentic distorted im-
ages and the other four databases are composed of synthetic
distorted images. It’s a big challenge to achieve good results
when training on LIVE-CH and testing on the other four
databases. Fortunately, benefiting from our proposed large-
scale quality-annotated dataset and the hierarchical degra-
dation concatenation in CaHDC, our method can still get
perfect results. Specifically, benefiting from pre-training on the



TABLE XII
IMPROVEMENTS OF OUR PROPOSED DATASET FOR EXISTING BIQA
MODELS (TRAINING ON LIVE AND TESTING ON TID2013).

SROCC PLCC
WaDIQaM [16] 0.462 -
VIDGIQA [51] 0.415 0.477
WaDIQaM+Our dataset 0.622 0.667
VIDGIQA+Our dataset 0.562 0.646

proposed dataset, CaHDC can effectively alleviate overfitting.
Benefiting from hierarchical degradation concatenation and
end-to-end optimization, CaHDC can better learn the nature of
quality degradation. As shown in Tab.XI, the proposed CaHDC
performs much better than the other existing BIQAs on all of
these databases, which demonstrates that the proposed CaHDC
has a very strong generalization ability and performs state-of-
the-art.

FE. Efficiency of The Proposed Dataset

The proposed dataset can also benefit the existing CNN-
based IQA models. Two existing CNN-based IQA models (i.e.,
WaDIQaM and VIDGIQA) are adopted to verify the improve-
ments of pre-training on the proposed dataset. We implement
these two models as setups in their original papers. Both
WaDIQaM and VIDGIQA are first pre-trained on our proposed
dataset, then trained on LIVE and tested on TID2013. Tab.XII
lists the cross-database evaluation results. The SROCC and
PLCC results of WaDIQaM [16] and VIDGIQA [51] come
from their original papers. As can be seen, the generalization
performances of both models are greatly improved. WaDIQaM
achieves up to about 34.6% improvement on SROCC. And
VIDGIQA achieves up to 35.4% improvement both on SROCC
and PLCC.

G. Analysis on the number of parameters

Finally, the number of parameters for different CNN-based
BIQAs are analyzed. In real applications, limited by the
memory space of microprocessing system, it is critical to
design a lightweight model with small number of parame-
ters while ensuring higher performance. Fig.8 illustrates the
parameters-performance curve for representative CNN-based
BIQAs. Among the compared methods, CaHDC achieves the
state-of-the-art SROCC with only 0.73M parameters, which
is at least one order of magnitude smaller than other models
expect for DIQA [45]. Although DIQA has fewer parameters,
its performance is poorer than CaHDC. In summary, CaHDC is
lightweight while maintaining high performance. It can be eas-
ily applied to microprocessing systems. We have implemented
the proposed CaHDC on NVIDIA JETSON TX2 (GPU:
Nvidia Pascal”™; CPU: HPM Dual Denver 2/2MB L2 + Quad
ARM A57/2MB L2). It costs 110 seconds to run the entire
TID2013 database (about 27 images per second, satisfying the
real-time requirement).

VI. CONCLUSION

In this work, inspired by the hierarchical perception mech-
anism of HVS, we have introduced a novel IQA-orientated
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Fig. 8. Number of parameters vs. Performance. The cross-validation results
(SROCC) on TID2013 are adopted to illustrate the performance of CNN-
based BIQAs. For better visual effect, the scale of the X-axis is not linearly
distributed.

CNN-based method for BIQA. To meet the demand of big
data for CNN optimization, a large quality-annotated IQA
dataset has been primarily established, which contains 10,000
reference images and 1,050,000 distorted images. Benefiting
from the pre-training on the proposed dataset, our model
can effectively alleviate overfitting. Afterwards, a cascaded
hierarchical net with hierarchical degradation concatenation
is proposed, which can effectively measure the effect of
hierarchical degradation on the overall image quality. Eventu-
ally, by jointly optimizing the feature extraction, hierarchical
degradation concatenation, and quality prediction in an end-
to-end manner, CaHDC can better learn the nature of quality
degradation. Experimental results on five benchmark IQA
databases have demonstrated the efficiency of the proposed
CaHDC. Moreover, experiments of cross-database verification
have further proved the high generalization ability of the
proposed CaHDC.
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