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Just Noticeable Difference Estimation For Images
with Free-Energy Principle
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Abstract—In this paper, we introduce a novel just noticeable
difference (JND) estimation model based on the unified brain
theory, namely the free-energy principle. The existing pixel based
JND models mainly consider the orderly factors and always
underestimate the JND threshold of the disorderly region. Recent
research indicates that the human visual system (HVS) actively
predicts the orderly information and avoids the residual disor-
derly uncertainty for image perception and understanding. So
we suggest that there exists disorderly concealment effect which
results in high JND threshold of the disorderly region. Beginning
with the Bayesian inference, we deduce an autoregressive (AR)
model to imitate the active prediction of the HVS. And then
we estimate the disorderly concealment effect for the novel
JND model. Experimental results confirm that the proposed
JND model outperforms the relevant existing ones. Furthermore,
we apply the proposed JND model in image compression, and
around 15% of bit rate can be reduced without jeopardizing the
perceptual quality.

Index Terms—Just Noticeable Difference (JND), Free Energy,
Disorder, Autoregressive (AR) Model, Internal Generative Mech-
anism (IGM)

I. INTRODUCTION

As an important part of the central nervous system, the
human visual system (HVS) helps us to know the outside
world by processing the visual detail. Rather than literally
translating the input scenes, the HVS actively infers the input
scenes with an internal generative mechanism (IGM) [1], [2],
[3]. Recently, a free-energy principle has been introduced,
which tries to formulate the IGM and intends to provide a
unified account for human action, perception, and learning [4],
[5].

The underlying idea of the free-energy principle is that
all adaptive biological agents resist a natural tendency to
disorder [5]. In other words, by optimizing the configuration
of the IGM, e.g., adaptively adjusting the way it samples the
environment and/or the internal encodement of the informa-
tion [4], [6], the HVS tries to extract as much information as
possible to minimize the uncertainty of an input scene. The
principle indicates that the HVS cannot fully process all of the
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sensation information and tries to avoid some surprises (i.e.,
information with uncertainties, which are usually from dis-
orderly regions) [5], [7]. Such disorderly concealment effect
reveals a key limitation of the human perception which should
be properly considered in the just noticeable difference (JND)
estimation models. The JND threshold, which refers to the
minimum visibility threshold of the HVS, is useful in percep-
tual image/video processing systems [8], [9], [10])

The existing pixel based JND estimation models have not
considered the disorderly concealment effect, and they are
usually composed of two components, i.e., luminance adapta-
tion and spatial masking [9], [11], [12], [13]. The luminance
adaptation component is based on Weber’s law and deduced
with an experiment under uniform background [14]. And
the spatial masking component is investigated with regular
luminance edge and is computed as direct proportion to the
edge height [15]. Both of them are deduced from experiments
with orderly scenes, and therefore, the existing pixel based
JND estimation models [9], [11], [12], [13] perform effectively
on places with orderly contents (such as smooth, edge, and
orderly texture regions), but underestimate the JND thresholds
on the disorderly regions (such as disorderly texture regions).
Furthermore, the transform domain JND models (e.g., [16],
[17]) usually classify image blocks into three types (i.e., plain,
edge, and texture), and then three different weights are set for
the three types to highlight the texture region. However, the
IGM is adaptive to orderly texture contents, and therefore,
those orderly texture regions will be overestimated with [16]
and [17].

We suggest to consider the disorderly concealment effect
in JND threshold estimation. According to the free-energy
principle, the orderly stimulus is easy to be precisely predicted,
so that the HVS can understand it in detail. However, the
disorderly information, which is much complex and with
abundant uncertainty, is hard to be precisely predicted; and
therefore, the HVS ignores its detail and merely extracts its
primary structure. For example, since a straight line located
at a uniform background contains little uncertainty, it is
easy to sense any changes on the line. But in the case of
a disorderly lawn, it is impossible to perceive the detailed
structure of each grass and we will naturally ignore this kind
of information. Therefore, the disorderly concealment effect is
another important factor which determines the JND threshold.

In this paper, we introduce a novel JND estimation model
for images based on the free-energy principle. By imitating
the inference procedure of the IGM, we deduce an autore-
gressive (AR) model to predict the orderly contents of an
input image, and the prediction residual is regarded as the
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Fig. 1: Analysis on the orderly and disorderly textures. The
image is formed by four different textures, namely, (A) a
graylevel patch, (B) a zebra patch, (C) a zigzag patch, and
(D) a random patch.

disorderly contents of the original image. Then we compute
the JND threshold of the orderly term with the existing JND
metrics, and propose a new procedure to compute the JND
threshold of the disorderly term. Finally, we combine the two
parts to deduce the overall JND threshold. The experimental
result of the JND guided image noise shaping confirms that the
proposed JND model correlates better with the human visual
perception, with the evidence that it distributes less noise to
sensitive orderly places and more to insensitive disorderly
regions. Furthermore, we adopt the proposed JND model to
improve the performance of perceptual image coding. It saves
about 15% of bit rate while keeping the same perceptual
quality.

The rest of this paper is organized as follows. In Section II,
based on the Bayesian brain theory, we deduce an AR model
to imitate the inference procedure of the brain. And then a
novel JND estimation model is proposed and discussed in
Section III. Experimental results for the JND based noise
shaping and image coding are presented in Section IV. Finally,
conclusions are drawn in Section V.

II. ORDERLY CONTENT PREDICTION WITH THE AR
MODEL

In this section, we try to build a computational prediction
model for the orderly content of the image to imitate the IGM
of the brain. Based on the Bayesian brain theory, we analyze
the minimum probability of prediction error, and deduce an
AR based prediction model.

The HVS can accurately predict and fully understand the
orderly content, while roughly perceives the disorderly content
and avoids the remaining uncertainty [18], [5]. Fig. 1 shows
a synthetic image, which is composed of smooth, zebra,
zigzag and random textures. Intuitively, we can easily get the
information conveyed by the orderly places, such as the three
patches A, B and C shown in Fig. 1. As a result of these
orderly contents have regular patterns, the IGM can accurately
infer their contents according to these patterns. However, it is
difficult for the IGM to infer the disorderly content in the
patch D of Fig. 1, as it has much uncertain information. In

summary, the change of contents in an orderly region is regular
and predictable while that in the disorderly region is abrupt and
unpredictable. Since the Bayesian inference is a powerful tool
for information prediction, in this paper, the Bayesian brain
theory [18] is adopted for orderly information prediction.

The rationale of the Bayesian brain theory is that the brain
has a model of the world which tries to represent the sensor
information probabilistically with minimum error [18]. For
example, with an input image F , the Bayesian brain system
represents a pixel value x by maximizing the conditional
probability p(x/F). Since pixels are highly correlated with
their surrounding X = {x1, x2, · · · , xN} (such as a 11 × 11
surrounding region which includes 120 neighbor pixels and
excludes the central pixel x), p(x/F) can be approximate to
p(x/X ), and

p(x/X ) = p(x)
p(X/x)

p(X )
. (1)

Taking the logarithm on both sides of (1), we will have

log p(x/X ) = log p(x) + log p(X/x)− log p(X ). (2)

Then we find the expectation of (2). According to
the Shannon information theory [19], E(log p(x)) =∑

x p(x) log p(x) = −H(x), and we can express the expecta-
tion of (2) as follows:

E(log p(x/X )) = E(log p(x)) + E(log p(X/x))− E(log p(X ))

= −H(x)−H(X/x) +H(X )

= I(x;X )−H(x).
(3)

where I(x;X ) is the mutual information between x and X ,
and H(x) is the entropy of x. And maximizing E(log p(x/X ))
is a relaxation of maximizing p(x/X ) [20].

Intuitively, if the pixel x is located at an orderly place
X with little uncertainty, x can be exactly inferred with X .
From the perspective of information theory, if x is strongly
correlated to X , the mutual information I(x;X ) will be
approximate to H(x) [19]. When x possesses uncertainty,
it is weakly or even not correlated with X , and therefore,
the mutual information I(x;X ) is approximate to zero. In
summary, the mutual information I(x;X ) is an effective mea-
surement of the extent of order of image content, the bigger
I(x;X ) is the smaller disorderly x will be. Furthermore,
H(x) only determines by the original information. According
to (1), (2), and (3), we can conclude that maximizing p(x/X )
is equivalent to maximize I(x;X ). Since the free-energy
principle aims at minimizing the disorder, the Bayesian brain
theory and the free-energy principle can be united under a
uniform cognitive frame of the brain [5].

By defining X1,k = (x1, · · · , xk), we can decompose the
mutual information I(x;X ) as follows [20]:

I(x;X ) =
∑
k

I(x;xk)+
∑
k

[I(xk;X1,k−1/x)−I(xk;X1,k−1)],

(4)
where xk is the kth neighboring pixel in X , I(x;xk) is
the mutual information of pixel x with xk, and the term
I(xk;X1,k−1/x)− I(xk;X1,k−1) quantifies the mutual infor-
mation which relates to the dependencies of these neighboring
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(a) (b) (c)

Fig. 2: Image prediction with AR model. (a) The original image, (b) the predicted image, and (c) the residual of the original
image and the predicted image (light/dark regions represent low/high residual values, respectively).

pixels [21]. Since the second term in the right side of (4) is
much smaller than the first term [21], [20], we suppose that
the mutual information I(x;X ) is mainly determined by the
first term.

The IGM of the brain involves complicated psychological
inference, which can effectively use the integral correlations
among pixels to predict the sensor information and reduce
the disorder. From the perspective of the Bayesian theory, the
IGM tries to maximize the mutual information I(x;X ) in (4).
So, the maximization of the mutual information is a similar
procedure with the active inference mechanism of the sensor
information.

By imitating the inference mechanism of the IGM, we try
to create a computational prediction model, which predicts
a pixel based on its surrounding pixels and their mutual
information. From (4) we can see that the bigger the value
I(x;xk) is, the more important it plays for mutual information
I(x;X ) maximization. In other words, if a surrounding pixel
xk has a big value I(x;xk), it plays a much important role in
the prediction of x within the IGM. In this paper, we take the
mutual information between the central pixel and each pixel
in its surrounding (I(x;xk)) as the autoregressive coefficient,
and we build a brain inference based AR model to predict an
input image,

F ′(x) =
∑
xk∈X

CkF(xk) + ε, (5)

where F ′ is the predicted image, Ck = I(x;xk)∑
i I(x;xi)

is the
normalized coefficient, and ε is white noise. With (5), the
orderly information of the input image (Fig. 2 (a)) can be
accurately predicted, as shown in Fig. 2 (b).

III. THE JND ESTIMATION MODEL

In this section, we take three factors, which are luminance
adaptation, spatial masking, and disorderly concealment ef-
fect, into account to create a novel JND model. The ar-
chitecture of the proposed model is shown in Fig. 3. An
input image is firstly preprocessed by an internal generative
mechanism (IGM), which is decomposed into orderly and
disorderly parts. Then the non-linear additivity model for
masking (NAMM) [9] procedure and the disorderly conceal-
ment effect (DCE) procedure are adopted to estimate the JND

IGM

NAMM

DCE

Image

Order

Disorder

+ JND

Fig. 3: The architecture of the proposed JND model.

thresholds of the two parts, respectively. Finally, the thresholds
for the two parts are combined to achieve the overall JND
value.

Since the content of the predicted image is orderly, the ex-
isting formulations for luminance adaptation (LA) and spatial
masking (SM) are chosen to estimate the JND threshold of the
orderly component (F ′). And therefore, the NAMM [9] model
is adopted to compute the JND threshold of the predicted part,

LA(x) =

{
17× (1−

√
B(x)
127 ) If B(x) ≤ 127

3
128 × (B(x)− 127) + 3 else

(6)

SM(x) = [0.01B(x) + 11.5][0.01G(x)− 1]− 12 (7)
JNDp(x) =LA(x) + SM(x)

− Cgr × min{LA(x), SM(x)},
(8)

where B(x) is the background luminance of pixel x, i.e., the
mean luminance of an image region; G(x) is the maximum
edge height of its 5 × 5 neighborhood [9]; JNDp is the JND
threshold of the predicted part F ′; Cgr is the gain reduction
parameter due to the overlapping between LA and SM, and is
set as Cgr = 0.3 (the same as in [9]).

According to the theory of the IGM [18], [5], the brain
works as an active inference system, which accurately predicts
orderly content and avoids disorderly information. We regard
the residue between the original image and its prediction (com-
puted with (5)) as the disorderly image D, which is computed
as follow (as shown in Fig. 2 (c)),

D = |F − F ′|. (9)

Under the IGM, the HVS ignores the detail of the disorderly
region and only extracts a survey. So we can inject more
noise into the disorderly region. Since the disorderly image
represents the uncertainty of the original image, a pixel in
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the disorderly image with large value means its corresponding
original information is highly uncertain, and more noise can
be concealed into it. Therefore, the JND threshold due to the
disorderly concealment effect (JNDd) can be computed as

JNDd(x) = α · D(x), (10)

where α is a disorderly adjustable parameter. In the current
work we regard it as a fixed value for simplicity, and according
to subjective viewing results on four different images we set
α = 1.125.

We have computed the JND thresholds of the orderly
part and disorderly part with (8) and (10), respectively. But
overlapping exists between the two parts which needs to be
removed when combining them. And therefore, the nonlinear
combination procedure of the NAMM model [9] is adopt again
and the overall JND threshold is acquired

JND(x) =JNDp(x) + JNDd(x)

− Cgr × min{JNDp(x), JNDd(x)}.
(11)

IV. EXPERIMENTAL RESULTS

In this section, we firstly inject JND noise into images and
make a comparison between the proposed model and three
existing JND models [9], [13], [16]. Then we apply the JND
model to image compression to save bit rate under the same
perceptual quality.

A. JND Models Comparison

An effective JND model should be able to guide shaping
more noise into the insensitive places and less into the sensitive
regions. Under the same injected noise energy, a more accurate
JND model would result in better perceptual quality. In this
subsection, we try to compare the proposed model with three
latest relevant models, which are Yang et al.’s model [9],
Liu et al.’s model [13], and Zhang et al.’s model [16]. To
a testing image, the noise is injected with the guidance of its
corresponding JND, which is shaped as follow,

F̂(x) = F(x) + βrand(x)JND(x), (12)

where F̂ is the JND noise contaminated image, β regulates
the energy of JND noise, which makes the same energy for
different JND models, and rand(x) randomly takes +1 or −1.

To make a clear comparison among these JND models, a
representative synthetic image, as Fig. 4 shows, is chosen [22].
It is composed of smoothness, edge, orderly texture, and
disorderly texture, i.e., the background of the rings, the black
and white rings, the zebra crossing patches, and the disorderly
blocks. The JND threshold of the image is computed with
all of these JND models, and the JND noise is injected
into the original image according to (12) with a same noise
energy (MSE = 160).

From the JND mask maps (as shown in the first row of
Fig. 4) we can see that, in Yang et al.’s model [9], most of noise
is distributed into regions with dark background and secondary
edge (such as the zebra crossing regions). Liu et al.’s [13]
try to distinguish texture from edge. As a result, the grid
regions, the zebra crossing regions, and the disorderly patches

TABLE I: Scores for Subjective Viewing Test

Score 0 1 2 3

Description Same quality Slightly better Better Much better

are considered as textural regions, and much more noise is
injected into these regions. Zhang et al.s model [16] only
injects noise into places with luminance changes, especially
the edge/texture regions with high edge heights (i.e., the black
ring and zebra crossing regions).

From the perspective of the computational formulations of
the three existing JND models, they mainly adopt some orderly
factors for JND estimation, and none has taken the disorderly
concealment effect into account. As a result, too much noise is
injected into the orderly texture regions. And therefore, as the
contaminated images shown in the second row of Fig. 4, the
zebra crossing blocks (locate at the left bottom) in the three
images (Fig. 4 (e)-(g)) are obviously distorted.

Fig. 4 (d) and (h) show the JND mask map and the
contaminated image of the proposed model, respectively. By
considering the disorderly concealment effect, most of the
noise is injected into the disorderly regions, especially the dis-
orderly texture blocks locate at the top right corner. And little
noise is injected into the orderly zebra crossing. Therefore, the
contaminated image of the proposed model has a much better
perceptual quality than those of the other three models.

In order to make a comprehensive comparison between the
proposed model and the three existing models, a subjective
viewing test is conducted on 10 frequently-used images (with
size of 512×512). The setting (e.g., the viewing distance and
environment) of the viewing test follows the ITU-R BT.500-
11 standard [23]. In each test, two contaminated images of the
same scene, where one image contaminates by the proposed
JND model and the other one contaminates by another JND
model (one of the three comparison models), are juxtaposed
on a 17-in monitor (randomly at left or right) for comparison.
Sixteen subjects are asked to evaluate which one is better
and how much better it is. Seven of them are experts in
image processing and the others are naive, and their eyesight
is either normal or has been corrected. The evaluation rule
and its quantitative score are shown in Table I. Meanwhile,
if the left image is better (worse) than the right image, then
a positive (negative) score is given. Furthermore, we set the
viewing distance as four times of the image height.

The comparison result of the subjective viewing test is
shown in Table II, the standard deviation (std) values of the
subjective scores are around 1, which means the subjective
evaluation results from the sixteen people are steady and
believable. In addition, as shown in the left of Table II, a
positive (negative) mean score indicates that the proposed
model has a better (worse) perceptual quality than the cor-
responding compared model. From the table we can see that
the proposed model outperforms (the mean scores are positive)
the other three models on most of the images, especially on
the Tank and Port images. That is because the disorderly
regions, such as the lawn in the Tank and the sea surface
in the Port, are less sensitive to the HVS and can conceal
much noise. And the proposed model considers the disorderly
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 4: JND models comparison on a representative image(with size 256× 256). (a)-(d) The JND mask maps, and (e)-(h) The
contaminated images with a same level of JND noise (MSE = 160). From left to right, they are the JND threshold of Yang
et al.’s model [9], Liu et al.’s model [13], Zhang et al.’s model [16], and the propose model.

concealment effect, so much more noise is injected into these
disorderly regions. However, there exist several cases that the
proposed model is less effective than other models (i.e., on
the Barbara, Indian, and Lena). With further analysis we have
found that the three original images are with salient faces,
and are slightly contaminated by noise. The proposed model
computes the noise as uncertainty. In addition, in our current
implementation, α is simply set as a fixed value, which is
a little bigger for face regions since face regions are very
sensitive to the HVS and little noise are allowed in these
regions. Therefore, the proposed method performs less well
for images with faces, and our further work is to optimize the
value of α (e.g., make the value of α adaptive to the content
of the image). On the whole, most of the subjective viewing
scores and the overall average scores against the three models
are positive, which further confirms that the proposed JND
model outperforms these existing models.

B. Application in Image Compression
As the JND threshold reveals the minimum sensory sig-

nal strength to the HVS, an appropriate JND model can
effectively remove perceptual redundancy and improve the
performance of perceptual coding algorithms [11], [24]. To
further demonstrate the proposed JND model, we apply it to
image compressing for perceptual redundancy reduction.

With the guidance of JND threshold, we preprocess an input
image by removing its perceptual redundancy according to
the coding scheme of [24], which tries to smooth the original
image within the constraint of JND threshold. Then we com-
press both the original image and the JND-processed image

TABLE II: Subjective viewing test results (the proposed model
vs. three existing JND models, respectively) on contaminated
images with JND noise.
XXXXXXXXImage

Our vs. Mean Std
Yang Liu Zhang Yang Liu Zhang

Barbara 0 -0.250 0.188 0.866 0.750 1.073
Tank 0.688 0.625 0.563 0.916 0.696 1.171
Huts 0.438 0.063 0 0.788 0.658 0.791
Boat 0.188 0.125 0 0.882 0.781 1.275
Port 1 0.625 1 0.935 0.696 1.225

Indian -0.250 0.188 0.125 1.031 1.014 1.053
Mandrill 0.250 0.188 0.250 1.031 0.634 0.750

Lena -0.250 -0.313 0.563 1.031 0.845 0.998
Airplane -0.063 0.188 0.313 1.088 1.014 1.210
Couple 0.563 0.063 0.875 0.864 0.658 0.857

Average 0.263 0.194 0.388 0.926 0.788 1.040

for comparison. The same 10 images as used in Section IV-A
are compressed (under the same QP) with the JPEG and the
proposed (i.e., preprocessing + JPEG) algorithms, respectively.
Meanwhile, two different levels of QP, namely, QP=1 where
the compression result has high perceptual quality and QP=2
where the compression is slightly perceptually loss, are cho-
sen. A subjective viewing test (following the ITU-R BT.500-11
standard [23] which is introduced in the previous subsection)
is performed on these images. Sixteen subjects are invited
in the test, and the results are shown in Table III. With the
help of the JND threshold, less bit rates are needed for all
of these images, especially for these images with abundant of
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TABLE III: Compression result comparison between JPEG
algorithm and the proposed model.

Image
(QP=1)

JPEG
(bpp)

Proposed
(bpp)

Bit Rate
Saving

Quality
Mean Std

Barbara 0.936 0.861 9.4% 0.500 1.118
Tank 0.773 0.565 26.8% -0.125 1.317
Huts 0.894 0.746 16.5% -0.188 1.285
Boat 0.894 0.773 13.6% 0 1.118
Port 0.941 0.861 8.6% 0.313 1.210

Indian 0.960 0.833 13.2% 0.563 1.368
Mandrill 1.395 1.303 6.6% 0.125 0.992

Lena 0.644 0.544 15.5% 0.813 1.184
Airplane 0.687 0.600 12.8% 0 1.248
Couple 0.826 0.725 12.2% 0.125 1.218
Average 0.891 0.781 13.4% 0.213 1.206

Image
(QP=2)

JPEG
(bpp)

Proposed
(bpp)

Bit Rate
Saving

Quality
Mean Std

Barbara 0.620 0.562 9.4% 0.688 1.285
Tank 0.447 0.299 33.1% 0.063 1.177
Huts 0.558 0.430 22.9% -0.313 0.992
Boat 0.457 0.399 12.7% 0.313 1.368
Port 0.592 0.504 14.9% 0.125 0.857

Indian 0.621 0.521 16.1% 0.438 1.177
Mandrill 0.884 0.749 15.3% 0.250 1.273

Lena 0.420 0.362 13.8% 1.250 0.759
Airplane 0.459 0.400 12.8% 0.063 1.138
Couple 0.538 0.454 15.6% -0.125 1.118
Average 0.560 0.468 16.4% 0.275 1.114

disorderly places (e.g., Tank and Huts). At the meantime, their
subjective quality is similar.

In summary, under the same perceptual quality (in fact, the
proposed method is slightly better than the JPEG algorithm
with positive average subjective viewing scores of 0.213 and
0.275), the proposed method saves on average 13.4% and
16.4% of bit rates against the JPEG algorithm on the two
different QP levels, respectively. Therefore, with the help of
the proposed JND model, an effective image compression
algorithm to represent the input image with high perceptual
quality and low bit rate is achieved.

V. CONCLUSION

In this paper, a novel JND model has been proposed based
on the latest unified brain theory 1. The free-energy principle
indicates that the brain works with an internal generative
mechanism for image perception and understanding, which
avoids uncertainty with a disorderly concealment effect. We
suggest that such disorderly concealment effect is important
for JND estimation, and propose a procedure to handle it.
With the proposed procedure, we can accurately estimate the
JND threshold of the texture region which is underestimated
by the existing models. The subjective experiment confirms
that the proposed JND model outperforms the existing JND
models. Furthermore, we have used the proposed JND model
to improve the performance of image compression. With the
aid of the proposed JND model, it has been demonstrated
that we save about 15% of bit rate under the same perceptual
quality (confirmed by the subjective viewing test).

1The source code is released at http://web.xidian.edu.cn/wjj/en/index.html
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