
1

Enhanced Just Noticeable Difference Model for
Images with Pattern Complexity

Jinjian Wu, Leida Li, Weisheng Dong, Guangming Shi, Senior Member, IEEE
Weisi Lin, Fellow, IEEE and C.-C. Jay Kuo, Fellow, IEEE

Abstract—The just noticeable difference (JND) in an image,
which reveals the visibility limitation of the human visual
system (HVS), is widely used for visual redundancy estimation
in signal processing. To determine the JND threshold with the
current schemes, the spatial masking effect is estimated as the
contrast masking, and this cannot accurately account for the
complicated interaction among visual contents. Research on cog-
nitive science indicates that the HVS is highly adapted to extract
the repeated patterns for visual content representation. Inspired
by this, we formulate the pattern complexity as another factor to
determine the total masking effect: the interaction is relatively
straightforward with limited masking effect in a regular pattern,
and is complicated with strong masking effect in an irregular pat-
tern. From the orientation selectivity mechanism in the primary
visual cortex, the response of each local receptive field can be
considered as a pattern; therefore, in this work, the orientation
that each pixel presents is regarded as the fundamental element of
a pattern, and the pattern complexity is calculated as the diversity
of the orientation in a local region. Finally, taking both pattern
complexity and luminance contrast into account, a novel spatial
masking estimation function is deduced, and an improved JND
estimation model is built. Experimental results on comparing
with the latest JND models demonstrate the effectiveness of
the proposed model, which performs highly consistent with the
human perception. The source code of the proposed model is
publicly available at http://web.xidian.edu.cn/wjj/en/index.html.

Index Terms—Just Noticeable Difference, Spatial Masking,
Pattern Complexity, Orientation Selectivity Mechanism

I. INTRODUCTION

It is well known that the visual sensitivity of the human
visual system (HVS) is limited. The HVS can only sense
the content change which is larger than a certain threshold,
and such a threshold is termed as just noticeable differ-
ence (JND) [1, 2]. Since the JND describes the visibility of the
HVS on visual contents, its modeling is widely used for visual
redundancy estimation in image/video coding and transmis-
sion [3], information hiding [4], visual quality assessment [5],
and so on.
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A number of JND models have been proposed during the
past decade. According to the domain for the JND threshold
being calculated, the existing models can be divided into two
categories. One category is the subband-domain JND models,
for which an image is firstly transfered into a subband do-
main (e.g., discrete cosine transformation (DCT) domian) [6–
8]. The other category is the pixel-wise JND models, for
which the JND is directly calculated on the original visual
content [1, 9–12]. Since the pixel-wise JND does not need the
transformation to subbands, it is more convenient and cost-
effective to provide a JND profile for many applications, such
as image/video enhancement, quality assessment, and motion
estimation [7, 9, 10].

For pixel-wise JND models, the masking effects from the
background luminance and the edge contrast are usually
considered. In [1], an early JND model (Chou et al.’s) was
built with luminance adaptation and contrast masking. Since
Chou et al.’s model overestimates the JND threshold for the
edge region, a canny edge protector was employed in [9] to
extract the edge region. In order to estimate the JND threshold
of the texture region, an image was decomposed into texture
and non-texture portions for JND estimation, respectively [10].
Moreover, the color information was considered for JND
estimation in [4]. Recently, Wu et al. modeled the fact that
the HVS is insensitive to the irregular visual content [11], and
introduced a structure uncertainty based JND model [13].

In this work, we investigate into more detail on the mecha-
nisms of the human visibility. The work on cognitive science
states that the HVS presents an active internal generative
mechanism [14], with which the HVS is good at summarizing
rules of an input scene and is highly adapted to extract the
repeated visual contents for understanding [15, 16]. As an
invariant feature of images, a visual pattern represents the
repeatable components of visual contents [17, 18]. According
to the input visual contents and the priori knowledge, the
HVS will automatically encode visual patterns for content
prediction [19]. Generally, a regular image patch presents an
intuitional organization rule, which can be encoded with a
simple pattern; while an irregular image patch presents an
obscure organization rule, which requires a complex pattern
for encoding. Moreover, the interaction within a regular pattern
is straightforward, and the visual masking in such a pattern
is weak; while the interaction within an irregular pattern is
complicated, which involves with strong visual masking effect,
as illustrated in [13]. Thus, the complexity of a visual pattern
is an effective measurement for the extent of visual masking.

Since a visual pattern changes with the contents of an
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Fig. 1: Active prediction of the HVS for scene perception,
where (a) is the original image and (b) is the blocked image.

input image, how to calculate the complexity of a visual
pattern is a research problem. It has been shown that the HVS
presents obvious orientation selectivity in the primary visual
cortex, within which the orientation information is extracted
for structure representation [20, 21]. Further studies on visual
patterns indicate that each pattern is composed with several
elements [17]: the more different elements that a pattern
has, the more complex that a pattern presents. In general, a
complex pattern contains more different orientations, and a
simple pattern has limited distribution of orientations. Thus,
we calculate the pattern complexity as the distribution of
orientations.

With the formulated pattern complexity, a novel spatial
masking function is deduced in this work. With the proposed
spatial masking function, the masking effect of different visual
contents is effectively estimated. Finally, an improved JND
model in pixel domain is proposed for more efficient and
effective human visibility threshold estimation.

The rest of this paper is organized as follows. The motiva-
tion of the formulation for pattern complexity on visual sensi-
tivity is firstly illustrated in Section II. Next, the computational
model for the pattern complexity is built in Section III. With
Section IV, an improved pixel-wise JND model is proposed.
The performance of the proposed JND model is demonstrated
in Section V. Finally, the conclusion is drawn in Section VI.

II. MOTIVATION OF RESEARCH

In this section, we firstly give a brief introduction about
the visual perception of the HVS, especially the internal
generative mechanism (IGM) for visual content prediction.
Next, visual patterns for scene perception are analyzed, and the
idea of pattern complexity on visual information perception
is illustrated. Finally, the method to determine the pattern
complexity is demonstrated.

The human brain possesses an IGM for visual content
perception [14]. With the help of the prior knowledge, the HVS
optimizes its processing to minimize the content uncertainty
and actively predicts an input scene [15]. As an example,
when we looking at the DOG image as shown in Fig. 1,
even though parts of the contents are blocked, we can still
fully understand Fig. 1(b): 1) when a part of the stream of
water is blocked with B1, the HVS knows that the stream
of water is always continuous, and according to such a rule
it can predict the blocked information according to the other
parts of the stream of water; 2) when a part of the grassland is

Fig. 2: Active prediction on different patterns with different
complexities.

blocked with B2, with the help of the human common sense
and the correlation with its surrounding content (i.e., a similar
rule), the HVS can imagine the contents under block B2. This
is an illustration that the HVS is adaptive to summarize the
organization rule (regularity) of input visual contents for active
prediction [22, 23].

Visual patterns represent the repeatable visual components,
and each pattern is with a discernible regularity of the input
scene [24]. In other words, each pattern represents a kind of
organization rule that an input scene possesses. The HVS is
good at extracting these patterns for visual content understand-
ing [19].

Furthermore, different patterns have different compositions
and with different complexities for visual perception. As an
example, the orderly pattern in Fig. 2 (the first input pattern)
is composed by oblique bars, namely, such a pattern possesses
only one element. For such an orderly pattern with low
complexity, the HVS is easy to summarize its regularity and
can fully understands its visual contents. When it comes to
a disorderly pattern as shown in Fig. 2 (the second input
pattern), which is composed by uncertain elements (random
noise), the HVS can hardly summarize its regularity and knows
little about the organization rule of such a complex pattern.
Therefore, the more different elements that a pattern possesses,
the higher complexity that it has [17].

Pattern complexity is directly related to the visual masking
effect. For a pattern with low complexity, the interactions
among elements in such a pattern are straightforward. As the
regular pattern shown in Fig. 2, the HVS can easily extract
the oblique bars, and the masking effect on such kind of
patter is weak. While for a pattern with high complexity,
the interactions among elements are complicated. As for an
irregular pattern (as shown in Fig. 2), even for a case where
the contents of the pattern is reorganized, the HVS can hardly
sense the change. That is because with extremely high com-
plexity, the HVS knows nothing about its organization rule.
Therefore, higher pattern complexity corresponds to stronger
visual masking.

During the past decades, many models have been designed
to encode the visual patterns [25, 26]; however there exists
no rigorous definition for elements in different patterns. As
an example, when we looking at the pattern P1 in Fig. 3, it
is easy to find out the element that P1 contains, namely, P1

is composed by three triangles. When we change P1 with a
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Fig. 3: Challenge on describing the elements for different
patterns (i.e., P1, P2, and P3).

rotation on the bottom line, a new pattern P2 is created. For
P2, a triangle is no longer be its composed element, and the
sawtooth and the oblique line become the new elements. When
we continue change P2 into P3, the elements for P2 are also
no longer be the elements for P3. Therefore, it is a challenge
to describe the elements for different patterns.

Neuroscience research on visual cognition indicates that the
primary visual cortex possesses a substantial orientation se-
lectivity mechanism [27, 28]. When receiving different visual
stimuli from the thalamic inputs, cortical cells present different
orientations according to the stimuli that they received [29].
Cortical cells with different orientations present different in-
teractions, and there are two distinguishing interactions among
cortical cells in a local receptive field: cells with similar
orientations are more likely to response as excitation, while
cells with dissimilar orientations are more likely to response
as inhibition [30]. The arrangement of these excitatory and
inhibitory cells in a local receptive filed causes the orientation
selectivity [31]. Moreover, the orientation selectivity mecha-
nism is highly related to the visual pattern extraction for scene
perception [32], with which the HVS is extremely sensitive to
edge/boundary regions.

Inspired by the orientation selectivity mechanism, we con-
sider the visual stimuli in a local receptive field as a pattern.
Generally, if cortical cells in a local receptive field receive
similar stimuli, these cells will represent similar orientations
and the interactions among them are unitary (with excitatory
interaction). From the perspective of visual contents, patterns
with homogenous contents cause similar responses (i.e., simi-
lar orientations) in the cortical cells, and such kinds of patterns
are simple and regular, and the masking effect for such a
pattern is weak. While for cortical cells receiving dissimilar
stimuli, cells in the local receptive field will represent different
orientations. For such a condition, the interactions among
cells are much complex and there exist extensive inhibitions.
From the perspective of visual contents, patterns with irregular

Fig. 4: Pattern complexity with orientation consideration

contents induce different responses (i.e., different orientations)
in the cortical cells, and such kinds of patterns are irregular
and possess strong masking effect.

Therefore, we can take the orientations that the cells re-
sponse in a local receptive field as the fundamental element
that a pattern possesses, and the dissimilarity among orienta-
tions that a pattern possess is highly related to the pattern
complexity. As an example, the pattern of the oblique bar
shows in the first row of Fig. 4 is regular and easy to be
perceived. By analyzing its orientation composition, we can
see that there are only two kinds of orientations, i.e., 0◦

(a homogenous region) and 135◦ (the bar) for each region
indicated by the dashed lines. While for the irregular pattern
shown in the bottom row of Fig. 4, it possesses many different
orientations.

III. PATTERN COMPLEXITY

As introduced in the previous section, visual patterns, which
present the discernible regularity of visual contents, play an
important role in visual content prediction; the orientation that
a cortical cell presents is directly related to the stimulus that
it receives from the thalamic input. For any image F , we can
take a local region R ∈ F with radius r as a local receptive
field, and the orientation for each pixel x ∈ R relates to the
gradient. Thus, in this work, the gradient direction of x is
taken as its orientation θ,

θ(x) = arctan
Gv(x)

Gh(x)
, (1)

where Gv means the gradient change along the vertical direc-
tion, and Gh means that along the horizontal direction. The
changes along the two directions can be calculated with the
edge filters,

Gv = F ∗Kv, (2)
Gh = F ∗Kh, (3)

where Kv and Kh are the edge kernels along vertical and
horizontal directions, and in this work we choose the Prewitt
kernels as shown in Fig. 5.
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Fig. 5: The Prewitt edge kernels along vertical and horizontal
directions

The complexity of each pattern R is directly related to the
interactions among these θ(x). Moreover, if a pattern R pos-
sesses more dissimilar θ(x), it is more likely to be an irregular
pattern. For such kind of patterns, there exist complicated
interactions and presents strongly masking effects. When a
pattern R possesses more similar θ(x), it should be a regular
pattern and its masking effect is weak. Thus, the complexity
of a pattern can be regarded as the diversity of all θ(x) ∈ R.

As an effective representation of the distribution, the his-
togram of θ(x) is employed to describe the diversity of a
pattern. In order to build a histogram, all θ(x) require to be
quantified into a limited bin number N . Subjective masking
experiments indicate that the interaction between two oriented
gratings is quite strong when their orientation difference is
smaller than 12◦, and the interaction is rapidly decreasing
when the difference is larger than that [28]. Thus, we quantify
θ(x) with the interval T=12◦ and acquire the quantified θ̂(x)
for the histogram H generation,

Hk(x) =
∑

x∈R(x)

δ(θ̂(x), k), (4)

where δ(·) is a pulse function, for which

δ(θ̂(x), k) =

{
1 if θ̂(x) = k

0 if θ̂(x) ̸= k
(5)

Since a regular pattern possesses elements with similar θ(x),
the diversity of its corresponding histogram is small. While for
an irregular pattern which possesses elements with dissimilar
θ(x), the diversity of its corresponding histogram is large. In
other words, the histogram for a regular pattern is sparse, while
that for an irregular pattern is dense. Therefore, the pattern
complexity Cp is calculated as the sparsity of its corresponding
histogram,

Cp(x) =
N∑

k=1

||Hk(x)||0, (6)

where || · ||0 denotes the L0 norm. An example of pattern
complexity calculation is shown in Fig. 6. For a regular
image (Fig. 6 (a)), its corresponding complexity is low (shown
as Fig. 6 (c) with low intensity values). And for an irregular
image (Fig. 6 (b)), its complexity (as shown in Fig. 6 (d)) is
much larger than that of the regular one.

(a) (b)

(c) (d)

Fig. 6: Pattern complexity demonstration: (a) is a regular
image and (c) is its corresponding complexity map; (b) is an
irregular image and (d) is its corresponding complexity map.

IV. JND MODELING

The pattern masking effect is determined by both luminance
contrast and pattern complexity. For example, a bar region
possesses high luminance contrast (as shown in Fig. 6 (a)),
whose spatial masking effect is much stronger than that of
a uniform region. But when comparing with an irregular
region (as shown in Fig. 6 (b)) with both high luminance
contrast and large pattern complexity, the spatial masking
effect of the bar region is much weaker than that of the
irregular region. Therefore, we take both luminance contrast Cl
and pattern complexity Cp into account for the pattern masking
estimation.

The pattern complexity CP has been acquired with Eq. (6),
and the luminance contrast Cl can be calculated as the gradient
magnitude,

Cl(x) =
√
G2

v +G2
h, (7)

where Gv and Gh are the gradient magnitudes along the
vertical and horizontal directions, as used in the previous
section.

The pattern masking effect increases with the increase of
the luminance contrast Cl and the pattern complexity Cp. With
Cl from eq. (9) and Cp from eq. (6), the pattern masking effect
is modeled as,

MP = f(Cl) · f(Cp). (8)

With the subjective viewing tests on pattern masking, we
have found that the increasing rate of MP decreases with the
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increase of Cl (Cp). Moreover, the increasing effect of Cl on
eq. (8) follows logarithmic form,

f(Cl) = log2(1 + Cl). (9)

And the increasing effect of Cp on eq. (8) follows the
nonlinear transducer as that of the gain control in [33]. Thus,
f(Cp) can be modeled as,

f(Cp) = a1 ·
Ca2
p

C2
p + a23

, (10)

where a1 is a constant of proportion, a2 is an exponential
parameter which determines the shape of the nonlinear trans-
ducer (a larger a2 corresponds to a faster gain), and a3 is a
small constant which is used to avoid the denominator as zero.
With subjective test, we set a1=0.8, a2=2.7, and a3=0.1 in
this work.

The contrast masking function MC is fitted with the data of
visibility thresholds from masking experiment on luminance
contrast [1, 13], which is calculated as,

MC = 0.115× α · C2.4
l

C2
l + β2

, (11)

where the two parameters are set as α=16 and β=26 in [13]
(by fitting Eq. (11) with the subjective visibility thresholds
from contrast masking experiment).

We take both the contrast masking and pattern masking
into account for spatial masking. In general, the two types
of masking effects are concurrent, while one of them may
play a dominant role in some situations. As an example, for
a regular edge region, the contrast masking is the dominating
effect; while for irregular region, the pattern masking becomes
the dominating one. In other words, the stronger one plays
the dominating role, and therefore we take the stronger one
to represent the final spatial masking effect. With the contrast
masking from Eq. (11) and the pattern masking from Eq. (8),
the total spatial masking effect is calculated as,

MS(x) = max{MP (x),MC(x)}. (12)

Furthermore, the HVS presents different sensitivity to dif-
ferent background luminance, and thus luminance adaptation
needs to be considered as well. It is well known that the
sensitivity of the human eyes is low in the dark environment,
and increases with a suitable light condition. Therefore, the
visibility thresholds for different luminance backgrounds are
different. The visibility threshold of the luminance adaptation
LA is modeled as [1]

LA(x) =

{
17× (1−

√
B(x)
127 ) If B(x) < 127

3×(B(x)−127)
128 + 3 if B(x) ≥ 127

, (13)

where B(x) is the background luminance, which is calculated
as the mean luminance value of a surrounding region that x
located.

Finally, taking both the spatial masking effect and the
luminance adaptation into account, the JND threshold for each
pixel is calculated using the nonlinear additivity model for
masking (NAMM) [9] as

TJND(x) = LA(x)+MS(x)−C ·min{LA(x),MS(x)}, (14)

where C is the gain reduction parameter determined by the
overlapping between LA and MS , and here we set C=0.3 (the
same as in [9]).

V. EXPERIMENTAL RESULT

In this section, the efficiency of the novel pattern complexity
based spatial masking model (using Eq. (12)) is firstly illus-
trated by the comparison with the case of evaluation of contrast
masking alone (using Eq. (11)). Next, the proposed JND model
is compared with the latest JND models to demonstrate the
accuracy and efficiency of these estimated visibility thresholds.
Then, a subjective viewing test has been conducted to further
verify the effectiveness of the proposed model. Finally, the
proposed model is applied to image compression for percep-
tual redundancy reduction.

A. Pattern Complexity based Spatial Masking Evaluation

Since the spatial masking effect is a complicated psycho-
logical and physiological phenomenon, existing JND models
usually take the contrast masking as a simple representation of
spatial masking. In this work, we suggest to take both pattern
masking and contrast masking into account for spatial masking
estimation.

In order to illustrate the effectiveness of the novel pat-
tern complexity based spatial masking model, a comparison
example against the contrast masking on a concept image
(composed by both regular and irregular patches) is given in
Fig. 7. The visibility threshold Tv is firstly calculated with the
contrast masking function and the spatial masking function
(using Eqs. (11) and (12) respectively). Then, random noise
is injected into the image with the guidance of Tv,

F̂(x) = F(x) + E ·R(x) · Tv(x) (15)

where F̂ is the contaminated image, R(x) is the random noise
controler which takes −1 or +1 randomly, and E is the noise
level adjuster which keeps the injected noise from different
models at a same level. For the pattern complexity based
model, we set the pattern size as 3× 3 for the local receptive
field R during all of the experiments.

With the help of Eq. (15), the same level of noise (with
PSNR=26.65 dB) is injected into the concept images under
the guidance of contrast masking and the proposed spatial
masking, as shown in Fig. 7 (a) and (b). Though with a same
level of noise, the perceptual qualities of the two contaminated
images are obviously different: Fig. 7 (b) has a better quality
than Fig. 7 (a). With further analysis, we have found that
the model with contrast masking alone mainly responses to
the edge region, and its response amplitude is determined by
the edge height. The response map of the contrast masking
function is shown in Fig. 7 (c), for which all of the edge
regions are highlighted. Moreover, the edge height for all of
the edge regions in the concept image are the same, and thus
the response amplitudes for them are the same (with a same
intensity values for the response map as shown in Fig. 7
(c)). In the proposed spatial masking model, both luminance
contrast and pattern complexity are considered. As a result,
the irregular textural region (as the left part shown in Fig. 7
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(a) Contaminated image from contrast masking (b) Contaminated image for spatial masking

(c) Response map of contrast masking (d) Response map of spatial masking

Fig. 7: Comparison between the contrast masking and the proposed spatial masking on a concept image (the size of the image
is 256×256, and the injected noise in the two contaminated images are the same: with PSNR=26.65dB)

.

(b), which possesses both large edge height and high pattern
complexity) has much larger response than the edge region(as
the right part shown in Fig. 7 (b)), as shown in Fig. 7 (d). With
the analysis above, we can see that though with the same level
of noise, the proposed spatial masking model guides less noise
into the edge region, where the HVS is highly sensitive to and
can easily find out the noise, while it guides more noise into
the irregular texture region, where the HVS is insensitive due
to the strong masking effect.

To further demonstrate the effectiveness of the pattern com-
plexity on visual masking, a natural horse image is adopted.
With the guidance of the contrast masking and the proposed
spatial masking, respectively, a same level of noise (with
PSNR=26.65dB) is injected into the images. As shown in

Fig. 8 (c), the contrast masking model mainly guides the noise
into the boundary of the horse (which possesses large edge
heights), and guides limited noise into the grassland (which
possesses small edge height but high pattern complexity). As
a result, the boundary of the horse is obviously distorted, as
shown in Fig. 8 (a). The proposed spatial masking model
guides more noise into the grassland due to the effect of
pattern masking, and less noise into the boundary of the horse,
as shown in Fig. 8 (d). By comparing the two contaminated
images, though they have a same level of noise, we can see
that Fig. 8 (b) has a better quality than Fig. 8 (a).

The analysis on both the concept and the natural images
above demonstrates that pattern complexity is important in
determining the visibility threshold, and the proposed spatial
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(a) Contaminated by the model with contrast masking alone (b) Contaminated by the proposed model of spatial masking

(c) Response map resulting from the model with contrast
masking alone

(d) Response map resulting from the proposed spatial masking

Fig. 8: Comparison between the contrast masking and the proposed spatial masking on a natural horse image (the size of the
image is 200×150, and the injected noise in the two contaminated images are the same: with PSNR=26.65dB)).

masking model performs more consistently with the HVS than
the case with contrast masking alone.

B. JND model comparison

The proposed JND model is compared with four relevant
JND models, i.e., Zhang et al.’s model (Zhang2008) [7], Wei
et al.’s model (Wei2009) [8], Liu et al.’s model (Liu2010) [10],
and Wu et al.’s model (Wu2013) [13], with the noise for
different JND models being adjusted into a same level with
the help of Eq. (15).

An example of comparison is shown in Fig. 9, where
Fig. 9 (a) is the original image, and Fig. 9 (b)-(f) are the
contaminated images by different JND models, with the noise
level for all of the contaminated images at PSNR = 26.65dB.
Though with a same level of noise, the perceptual quality for
the five contaminated images are different. Since Zhang2009
and Wei2009 are subband-domain JND models, degradations
on the DCT coefficients may cause ringing artifact at the
edge regions. By overestimating the JND thresholds of the
regions with high edge height, the two subband-domain JND
models generate noticeable distortions on the edge regions,
such as the boundaries of the building and the fencing as
shown in Fig. 9 (b) and (c). In Liu2010 (a pixel-wise model),

the image is firstly classified into textural and non-textural
regions for separative JND estimation [10]. However, this
method still has difficulty in classifying texture from non-
texture, due to the nature of lack of appropriate definition
of texture; moreover, texture is not the same as irregularity,
and the masking for regular texture is also weak. As shown
in Fig. 9 (d), though most of the boundaries of buildings are
protected (with less noise injected), the fencing regions (with
regular texture/structure) are highlighted with too much noise.
As a result, the degradation on the fencing regions is obvious
with Liu2010. In Wu2013, the disorder extent of of visual
contents is firstly considered for masking estimation [13]. With
a complicated procedure for disorder computation, Wu2013
injects less noise into the boundaries of buildings, and more
noise into the disorderly grassland. However, Wu2013 still
cannot accurately estimate the extend of disorder for the
fencing regions, and injects too much noise into such regions
to cause visible distortion, as shown in Fig. 9 (e). With the
help of the pattern complexity, the proposed JND model can
correctly highlight the irregular grassland and wall regions,
and injects much noise into such irregular regions. At the
meanwhile, the proposed model injects less noise into the
boundaries of building and fencing. As a result, the noise in
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(a) Original Image (b) Zhang2008 (c) Wei2009

(d) Liu2010 (e) Wu2013 (f) Proposed

Fig. 9: JND comparison among the proposed model and the latest four JND models. The noise levels on the five contaminated
images (with the size of 256×384) are the same, with PSNR = 26.65dB.
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TABLE I: Computational complexity analysis on different
JND models

Models Zhang2008 Wei2009 Liu2010 Wu2013 Proposed

Time 2.064s 9.022s 0.406s 3.560s 0.418s

Fig. 10: Image set for subjective viewing test, From top left
to bottom right, they are named as I1-I12.

Fig. 9 (f) is almost invisible.
As can be seen, the proposed model injects much noise

into the irregular regions where the HVS is insensitive to,
and little noise into the regular (with high edge height but
low pattern complexity) regions where the HVS is sensitive
to. With a same level of noise, the proposed model enables a
better perceptual quality than the other compared JND models,
as shown in Fig. 9.

Furthermore, the computational complexity of these JND
models is also analyzed. All of the five JND models are
running with an unoptimized MATLAB programs on a per-
sonal computer (2 cores Intel i7-3790K CPU at 4.00GHz and
8GB RAM). A testing image (the horse image, as shown in
Fig. 9 (a)) with size of 256×384 is chosen in the comparing
experiment. The execution time for all of the five models on
this image is listed in Table I. As can be seen, the proposed
model (with 0.418s) is slightly slower than Liu2010 (with
0.406s), but much faster than the other three JND models.

C. Subjective Viewing Test

For a more comprehensive analysis, a set of images (as
shown in Fig. 10, for which I1-I6 are often used in JND
estimation [9–11] and I7-I12 are often used in image quality
assessment [34] are selected for comparison among different

TABLE II: The standard of evaluation for quality comparison
between two images

Description Same quality Slightly better Better Much better

Score 0 1 2 3

JND models. A subjective viewing test experiment on per-
ceptual quality comparison has been conducted. During the
experiment, two JND noise-contaminated images on a same
scene (one is with the guidance of the proposed JND model,
and the other one is with the guidance of another existing
JND model) are randomly juxtaposed on the right or left part
of a screen. Subjects are asked to decide the image which
has better quality, and how much better it is (the standard for
evaluation is shown in Table II). The viewing environment
and the viewing condition are set with the guidance of ITU-R
BT.500-11 standard [35].

In this experiment, forty nine subjects (all of them have
normal or corrected-to-be-normal eyesight) are invited. The
statistical results on the testing image set (I1-I12) are listed
in Table III, where ‘Mean’ refers to the mean of the quality
values given by the subjects and ‘Std’ refers to their standard
deviation.

By comparing with the two subband-domain JND mod-
els (i.e., Zhang2008 and Wei2009), we can see that the
proposed models outperforms them (with positive mean values
as the second and the fourth columns in Table III) on all
of these images, especially for I6, I11, and I12 (the three
images are with both regular and irregular regions as shown in
Fig. 10). For comparison with Liu2010, the proposed model
performs better on most of the images, especially for I4, I6 and
I12 (all of these three images are with a large irregular region);
the proposed model performs just a little bit worse than
Liu2010 on I2 and I5 (with negative values -0.33 and -0.10).
For the comparison with Wu2013, the two models performs
similarly (since both models take the disorderness/irregularity
into account) except for I2 and I3(the proposed method has
better performance on these 2 images than Wu2013). With
further analysis we have found that although Wu2013 uses a
self-similarity procedure for content complexity computation,
it is sensitive to small disturbance (it highlights the freckle of
the faces in I2 and I3).

Besides, standard deviation values (i.e., ‘Std’) are a little bit
large for most of the quality comparison results as listed in
Table III, which means the results from all of the subjects are
not so consistent. Actually, it is extremely hard to get highly
consistent quality assessment results from different people in
this test, the reason may as follows: 1) During the subjective
viewing test, the level of JND noise is no so high, and the
quality degradation for both contaminated images are always
not so obvious. As a result, it is not so easy for the subjects
to give a confident quality score. 2) All of the subjects invited
for this experiments are naive (rather than expert) in image
processing, and they will judge the quality according to their
own hobbies.

In general, as the last row shown in Table. III, the proposed
model performs better than Zhang2008, Wei2009, Wei2009
and Wu2013 (with average scores of 1.33, 1.17, 0.75, and
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TABLE III: Quality comparison between two contaminated images from the proposed model and one of the four latest JND
models

Images
Methods VS. Zhang2008 VS. Wei2013 VS. Liu2010 VS. Wu2013

Mean Std Mean Std Mean Std Mean Std

I1 1.03 0.72 1.08 0.86 0.12 1.11 0.04 0.21

I2 1.68 0.32 1.42 0.59 -0.33 0.82 1.35 0.61

I3 0.83 1.37 0.65 1.21 0.00 1.11 1.53 0.84

I4 0.54 1.16 0.73 0.94 1.85 0.88 -0.17 0.96

I5 0.96 0.84 0.88 1.25 -0.10 0.97 0.02 1.64

I6 1.89 0.67 1.43 0.51 1.57 0.93 0.38 1.17

I7 0.96 0.85 1.08 0.77 0.42 1.21 0.12 1.35

I8 1.38 0.25 1.06 0.39 1.25 0.67 0.48 1.33

I9 0.85 1.31 0.77 1.08 0.25 1.25 0.08 1.06

I10 1.59 0.68 1.33 0.83 1.25 0.95 0.12 0.88

I11 1.95 0.77 1.64 0.93 1.19 0.48 0.33 1.25

I12 2.32 0.85 1.96 0.91 1.54 0.84 0.25 1.35

Average 1.33 – 1.17 – 0.75 – 0.37 –

0.37, respectively). Therefore, the proposed pattern complexity
based JND model is more consistent with the subjective
perception, because it is able to more accurately represent the
sensitivity of the HVS on different image regions.

D. Perceptual Redundancy Reduction

Since the JND threshold reveals the visibility of the HVS,
it is often used to preprocess the visual signal for optimiz-
ing compression [9, 11]. In this experiment, the proposed
JND model is applied to visual redundancy reduction during
compression. Generally, the smoothing operation can reduce
the signal variance, which makes image compression easier.
However, blindly smoothing operations will always jeopardize
image quality. Thus, we use the JND threshold for smoothing
guidance, with which we can optimize the smoothing operation
with limited perceptual distortion. For a given image F , the
JND guided smoothing operation for each pixel is as

F̃(x) =


F(x) + TJND(x), if F(x)−FB < −TJND(x),

FB, if |F(x)−FB | ≤ TJND(x),

F(x)− TJND(x), if F(x)−FB > TJND(x),
(16)

where FB is the mean value of the block that F(x) belongs
to during the compression (e.g., the divided 8×8 block which
F(x) located at during JPEG compression).

With the help of Eq. (16), the visual redundancy can be
removed to optimize the compression. An example is shown
in Fig. 11, for which the airplane image is directly com-
pressed (with compression QP=1) by the JPEG algorithm (as
shown in Fig. 11-a) and is preprocessed with JND threshold
for JPEG compression (as shown in Fig. 11-b). As can be
seen, though less bit rate is required (Fig. 11-a and b with
0.687 bpp and 0.589 bpp, respectively), the perceptual quality
of Fig. 11-b is almost equal to Fig. 11-a.

In order to give a more comprehensive demonstration, the 12
images (as shown in Fig. 10) are chosen for JPEG compression
comparison. Each image is with two types of compression:
1) directly compressed with the JPEG algorithm; and 2)

TABLE IV: Compression result comparison between JPEG
algorithm and the JND+JPEG.

Image
JPEG
(bpp)

JND+JPEG
(bpp)

Bit Rate
Saving

Subjective
Quality

Mean Std

I01 0.647 0.593 8.3% 0.812 1.033

I02 0.936 0.827 11.6% 0.353 1.342

I03 0.960 0.765 20.3% 0.137 1.458

I04 0.947 0.813 14.1% -0.080 1.727

I05 1.258 1.035 17.7% 0.102 1.853

I06 0.916 0.721 21.3% -0.137 1.887

I07 1.977 1.848 6.5% 1.125 0.857

I08 3.835 3.514 8.4% 0.237 1.137

I09 4.314 3.512 18.6% -0.118 1.895

I10 4.971 4.125 17% 0.375 1.028

I11 2.930 2.569 12.3% 0.368 1.249

I12 3.543 3.021 14.7% 0.275 0.977

Average – – 14.3% 0.288 –

compressed with the guide of JND threshold (i.e., JND+JPEG)
under a same compression QP. Then, a subjective quality
compression test is designed to compare the compression
results from the two types of compression (the setting of the
environment follows the ITU-R BT.500-11 standard [35] as de-
scribed in Subsection V-C). The comparison result is shown in
Tab. IV. With the help of the JND guided smoothing operator,
many bit rates can be saved by visual redundancy reduction
(an average of 14.3% bit rate is saved). At the meantime, the
qualities of these images are almost maintained (actually, the
proposed model turns out a slightly better quality due to the
reduction of disturbance with the smoothing operator).

VI. CONCLUSION

In this work, we have introduced an improved pixel-wise
JND estimation model for images based upon evaluation
of pattern complexity. The pattern complexity is important
in determining the visual signal masking; however, it has
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(a) JPEG (b) JND+JPEG

Fig. 11: The JND guided smoothing operation on the Airplane image (its size is 512×512 for JPEG compression, where (a)
is directly compressed with the JPEG algorithm (0.687 bpp) and (b) is preprocessed with the JND guided model for JPEG
compression (0.589 bpp).

not been considered in the existing JND models before this
work. The characteristic of the related visual perception, i.e.,
the active prediction on the visual pattern with the internal
generative mechanism in the HVS, has been firstly illustrated.
And then, by imitating the response of the local receptive
field in the primary visual cortex, a visual pattern has been
represented by the distribution of orientations in a local region.
Finally, the pattern complexity has been computed for the
interaction among different types of orientations.

The resultant spatial masking effect is determined by both
luminance contrast and pattern complexity. Combining with
the luminance adaptation, a new pixel-wise JND estimation
model has been built. Experiments for the proposed model
against the relevant existing JND models have demonstrated
the accuracy and efficiency of the proposed model.
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