主要研究方向:
主要研究方向涉及:人工智能,机器学习,数据挖掘,模式识别
具体方向:多模态学习,聚类,鲁棒特征提取,图表征学习,联邦学习
主要研究成果:
(一)基于图卷积的多模态属性社交图表示模型:
1.多视图图卷积
Jiafeng Cheng, Qianqian Wang, Zhiqiang Tao, De-Yan Xie, Quanxue Gao: Multi-View Attribute Graph Convolution Networks for Clustering. IJCAI 2020: 2973-2979
Zihao Zhang, Qianqian Wang, Zhiqiang Tao, Quanxue Gao, Wei Feng,Dropping Pathways Towards Deep Multi-View Graph Subspace Clustering Networks,ACM MM, 3259-3267 (2023)
(二)多模态一致表征:
1.深度多模态聚类
Qianqian Wang, Jiafeng Cheng, Quanxue Gao, Guoshuai Zhao, Licheng Jiao: Deep Multi-View Subspace Clustering With Unified and Discriminative Learning. IEEE Trans. Multim. 23: 3483-3493 (2021)
Qianqian Wang, Zhiqiang Tao, Quanxue Gao, Licheng Jiao:Multi-View Subspace Clustering via Structured Multi-Pathway Network. IEEE Trans. Neural Networks Learn. Syst. 35(5): 7244-7250 (2024)
2.缺失多视图聚类
Qianqian Wang, Zhengming Ding, Zhiqiang Tao, Quanxue Gao, Yun Fu: Generative Partial Multi-View Clustering With Adaptive Fusion and Cycle Consistency. IEEE Trans. Image Process. 30: 1771-1783 (2021)
Qianqian Wang, Huanhuan Lian, Gan Sun, Quanxue Gao, Licheng Jiao: iCmSC: Incomplete Cross-Modal Subspace Clustering. IEEE Trans. Image Process. 30: 305-317 (2021)
(三)鲁棒判别表征:
1.基于L2p-范数的鲁棒主成分分析(L2p-PCA)
Qianqian Wang, Quanxue Gao, Xinbo Gao, Feiping Nie: ℓ2, p -Norm Based PCA for Image Recognition. IEEE Trans. Image Process. 27(3): 1336-1346 (2018)
2.鲁棒角度主成分模型(Angle-PCA)
Qianqian Wang, Quanxue Gao, Xinbo Gao, Feiping Nie: Angle Principal Component Analysis. IJCAI 2017: 2936-2942