Xidian Meeting Xidian Guide About Help Search Home Login Control Panel AddBookMark Qi Chen's MessageBoard
Theoretical Topics

Characterization of the entropy functions


  • Matroidal entropy functions

  1. Q. Chen, M. Cheng and B. Bai, “Matroidal entropy functions: a quartet of theories of information, matroid, design and coding,”  Entropy, vol. 23:3, 1-11, 2021.
  2. Q. Chen, M. Cheng and B. Bai, “Matroidal entropy functions: characterizations, constructions and representations,” IEEE Int. Symp. Info. Theory, Espoo, Finland, June 2022.
  3. Q. Chen, M. Cheng and B. Bai, “Matroidal entropy functions: characterizations, constructions and representations,” accepted by IEEE Trans. Inf. Theory
  • Markov random field and more

  1. Q. Chen, F. Cheng, T. Liu, and R. W. Yeung, “A marginal characterization of entropy functions for conditional mutually independent random variables (with application to wyner’s common information),” in IEEE Int.Symp. Info. Theory, Hong Kong, China June 2015.
  2. R. W. Yeung, A. Al-Bashabsheh, C. Chen, Q. Chen and P. Moulin, “On Information-Theoretic Characterizations of Markov Random Fields and Subfields,”  IEEE Int. Symp. Info. Theory, Aachen, Germany, June 2017.
  3. R. W. Yeung, A. Al-Bashabsheh, C. Chen, Q. Chen and P. Moulin, “On Information-Theoretic Characterizations of Markov Random Fields and Subfields,”  IEEE Trans. Inf. Theory, vol.65, no. 3, Mar. 2019.
  4. T. H. Chan, Q. Chen and R. W. Yeung,  “Characterisation of conditional independence structures for polymatroids using vanishing sets,” Kybernetika (Prague) 56(6), 1022–1044 (2020). 
  • Entropy functions on the faces of polymatroidal regions
  1. Q. Chen and R. W. Yeung, “Characterizing the entropy function region via extreme rays,”  IEEE Info. Theory Workshop, Lausanne, Switzerland Sep. 2012.

  2. Q. Chen, F. Cheng, T. Liu, and R. W. Yeung, “A marginal characterization of entropy functions for conditional mutually independent random variables (with application to wyner’s common information),” in IEEE Int.Symp. Info. Theory, Hong Kong, China June 2015.

  3. S. Liu and Q. Chen,“Entropy functions on two-dimensional faces of polymatroidal region of degree four,” IEEE Int. Symp. Info. Theory, Taipei, China, June 2023.

  4. S. Liu, Q. Chen, and M. Cheng, “Information theoretic constraints breed new combinatorial structures: Entropy functions on two-dimensional faces of polymatroidal region of degree four,” in preparation.

  • Symmetrical entropy functions

  1. Q. Chen and R. W. Yeung,  "Two-Partition-Symmetrical Entropy Functions," IEEE Info. Theory Workshop, Seville, Spain, Sept. 2013.
  2. Q. Chen and R. W. Yeung,  "Partition-Symmetrical Entropy Functions," IEEE Trans. Inf. Theory vol. 62, no. 10, 2016, pp.5385–5402.
  3. Apte, Q. Chen and J. W. Walsh, "Symmetries in the entropy space," IEEE Info. Theory Workshop, Cambridge, UK, Sept. 2016.

  4. Z. Li, S. Liu and Q. Chen ''Symmetric Entropy Regions of Degrees Six and Seven'',   IEEE Int.Symp. Info. Theory, Athens, Greece July 2024.


Zero-error capacity

  1. Q. Cao and Q. Chen*, "On Zero-Error Capacity of \'One-Edge\' Binary Channels with Two Memories," IEEE Int. Symp. Info. Theory, Espoo, Finland, June 2022.