学术成果
【论文】
部分代表性成果:
- D. Wang, D. Chen, B. Song, N. Guizani, X. Yu, and X. Du, “From IoT to 5G I-IoT: The Next Generation IoT-Based Intelligent Algorithms and 5G Technologies,” IEEE Communications Magazine, vol. 56, no. 10, pp. 114-120, 2018.
- D. Wang, B. Song, D. Chen, and X. Du, “Intelligent Cognitive Radio in 5G: AI-Based Hierarchical Cognitive Cellular Networks,” IEEE Wireless Communications, vol. 26, no. 3, pp. 54-61, 2019.
- D. Wang, B. Song, N. Zhao, P. Lin, and F. R. Yu, “Resource Management for Secure Computation Offloading in Softwarized Cyber-Physical Systems,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9294-9304, 2021.
- D. Wang, W. Zhang, B. Song, X. Du, and M. Guizani, “Market-Based Model in CR-IoT: A Q-Probabilistic Multi-Agent Reinforcement Learning Approach,” IEEE Transactions on Cognitive Communications and Networking, 2021.
- D. Wang, B. Song, P. Lin, F. R. Yu, X. Du, and M. Guizani, “Resource Management for Edge Intelligence (EI)-Assisted IoV Using Quantum-Inspired Reinforcement Learning,” IEEE Internet of Things Journal, doi: 10.1109/JIOT.2021.3137984, 2022.
- D. Wang, B. Li, B. Song Y. Liu, K. Muhammand, and X. Zhou, “Dual-Driven Resource Management for Sustainable Computing in the Blockchain-Supported Digital Twin IoT”, IEEE Internet of Things Journal, doi:10.1109/JIOT.2022.3162714, 2022.
- D. Wang, B. Song, Y. Liu, M. Wang, “Secure and Reliable Computation Offloading in Blockchain-assisted Cyber-Physical IoT Systems,” Digital Communications and Networks, doi: 10.1016/j.dcan.2022.05.025, 2022.
- D. Wang, Y. Bai, G. Huang, B. Song and F. R. Yu, “Cache-Aided MEC for IoT: Resource Allocation Using Deep Graph Reinforcement Learning,” IEEE Internet of Things Journal, doi: 10.1109/JIOT.2023.3244909, 2023.
- D. Wang, Yingjie Liu and Bin Song, “A Credible Trafffc Prediction Method Based on Self-supervised Causal Discovery”, Science China Information Sciences, Accept, 2023.
- D. Wang, Bo Li, Bin Song, Chen Chen and Fei Richard Yu, “HSMH: A Hierarchical Sequence Multi-hop Reasoning Model with Reinforcement Learning,” IEEE Transactions on Knowledge and Data Engineering, 2023.08, Accept. 10.1109/TKDE.2023.3303617.
- D. Wang, Yalu Bai and Bin Song, “A Knowledge Graph-based Reinforcement Learning Approach for Cooperative Caching in MEC-enabled Heterogeneous Networks”, Digital Communications and Networks, doi: 10.1016/j.dcan.2024.12.006,2025.
- D. Wang, Keke Zhu, Bin Song and F. R. Yu, “Transcoding-Enabled Edge Caching Strategy Optimization: A Dual-Timescale Meta-Learning Based Stackelberg Game Approach”, IEEE Internet of Things Journal, Accepted, 2025.
论文详情见Google Scholar
【专利】
授权专利;
- 基于深度卷积生成式对抗网络的车牌字符识别方法,发 明人:宋彬,王丹,关韬,黄家冕,专利号:ZL201710781905.0, 授权公告日:2019 年 10 月 25 日
- 一种 D2D 通信中联合资源分配和功率控制方法,发明人:宋彬,许珂,王丹,秦浩,专利号:ZL201910609855.7,授权公告日:2020 年 05 月 22 日
- 一种基于深度 Q 学习的社交感知 D2D 协同缓存方法,发明人:宋彬,白雅璐,王丹;专利号:ZL20211522610. 4,授权公告日:2024 年 07 月 11 日
申请专利:
- 基于 ChatGPT 的联合推荐和边缘缓存模型训练方法,发明人:王丹,赵梦晗,宋彬,白雅璐,申请号:202311013361.5,申请日:2023年08月11日
- 一种基于强化学习的知识图谱多跳推理方法,发明人:王丹,孙红,李波,宋彬等,申请号:2023111749499,申请日:2023年09月12日
- 一种基于动态实体原型的权重网络推理方法,发明人:王丹,姚建超,宋彬,秦浩,申请号:2023104346012,申请日:2023年04月21日