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Topological materials are a new class of quantum matters
including topological insulators,[1,2] topological crystal
insulators,[3] Dirac semimetals,[4,5] Weyl semimetals,[6–8] nodal-
line semimetals,[9–12] and so on. In the past decade, topological
materials have received great attention due to their novel physical
properties and behaviors. Recently, a scheme for quantum com-
puting based on Majorana zero-energy mode was proposed.[13]

The study of topological materials can not only bring emerging
applications to the field of electronics, but also help us to under-
stand the new states of quantum matters. The novel physical
properties of Dirac semimetals,[14–20] e.g., Klein tunneling,
have attracted research interests of physicists. The low-energy
effective Hamiltonian near the Dirac point behaves as massless
(2þ1)-dimensional Dirac particles. So far, most of the research
on Dirac fermions has been concerned with the nonmagnetic
system with time-reversal symmetry. Dirac points of these
systems are not easy to be controlled due to lack of coupling with
magnetic field. Therefore, it is necessary to conduct further
studies on ferromagnetic Dirac systems.

A spin-unpolarized Dirac node can be viewed as a fourfold
degenerate “kissing” point. Without necessary crystalline

symmetries, the Dirac nodes on the high-
symmetry points or lines in the Brillouin
zone may be split into two Weyl nodes with
opposite spin directions. In recent years,
Weyl fermions have been found in ferro-
magnetic systems.[21–24] These systems
with time-reversal symmetry breaking
can be directly coupled with the magnetic
field to achieve the modulation of the trans-
port and spintronic properties of electrons.
In contrast, the fourfold degenerate Dirac
points may also be split into two nodes with
different energies (Figure S1, Supporting
Information). The split Dirac nodes have
different spin directions with time-reversal
symmetry breaking. These Dirac points are
not topologically stable against the mass
term, which breaks the γ5 symmetry and
opens a bandgap.[25] Lately, massive Dirac

fermions have been found in ferromagnetic Fe3Sn2 kagome
lattice.[26] The Dirac electrons in Fe3Sn2 have unitary spin
direction. Spin–orbit coupling (SOC) opens the gap of Dirac
cone and gives effective mass to the Dirac electrons.
Temperature-independent intrinsic anomalous Hall conductiv-
ity was observed, which suggests a prominent Berry curvature
from the time-reversal-symmetry-breaking electronic bands
of the kagome plane. In layered ferromagnetic crystals, spin-
polarized itinerant electrons travel freely along the layers with
less resistance. The effective mass of Dirac electrons can be
directly controlled by the magnetic field. The study on the
modulation of transport properties of Dirac electrons will be
beneficial to the miniaturization of high-mobility electronic
and spintronic devices.

Dirac systems present novel quantum effects. A study on
these systems is of great significance for understanding phase,
symmetry, and other basic physics and is closely relative to the
development of quantum information technology. In this article,
the mechanism for obtaining the effective mass of (2þ1)-
dimensional Dirac electrons in Fe3Sn2 is theoretically interpreted.
The formation of spin-polarized Dirac states is investigated, and
the relation of SOC and effective mass of Dirac electrons is clari-
fied. This work reveals the physical origin of a new phenomenon
in Dirac quantum systems and proposes mechanisms for modu-
lating energy bands and topological properties of kagome lattices.
A method to control effective mass of Dirac electrons is then pro-
posed. The results would provide guidance for future applications
of Dirac materials.

As shown in Figure 1a, the lattice of Fe3Sn2 (space group R3̄m)
is composed of Fe3Sn bilayer and Sn layer, alternatively stacking
along the c-axis perpendicular to layer planes. Each Fe3Sn bilayer
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based on SOC and guidance to the miniaturization of high-mobility electronic
and spintronic devices.
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includes two Fe kagome layers with Sn atoms embedded in the
centers of Fe hexagons (Figure 1b). The Fe kagome layers have
two kinds of equilateral triangles (yellow and cyan ones) with
different Fe─Fe bond lengths. In neighboring kagome layers,
the Fe triangles with small side lengths (cyan ones) orient to
opposite directions (Figure 1c). The Fe triangles with small side
lengths in neighboring layers bond with each other and make up
Fe octahedra. Sandwiched between Fe3Sn kagome layers are Sn
honeycomb layers. Density-functional theory (DFT) Perdew–
Burke–Ernzerhof (PBE) calculation provides hexagonal lattice
constants a¼ 5.328 Å and c¼ 19.782 Å, which are in agreement
with previous experiments.[26,38] The lengths of Fe─Fe bonds in a
kagome layer are 2.543 and 2.785 Å. The interlayer distance of
the neighboring kagome layers is 2.094 Å.

A previous study measured a high Curie temperature of
TC¼ 670 K.[39] DFT calculations reveal that all the magnetic
moments are located on Fe atoms, with μ¼ 2.05 μB atom�1

at the level of PBE, which is in agreement with the recent experi-
ment (μ¼ 1.9 μB atom�1).[26] In the ground state, all the magnetic
moments of Fe atoms lie in the kagome plane and point to a
same direction (Figure 1a). In contrast, the LDA functional gives
μ¼ 1.65 μB atom�1. We also test the Hubbard U correction to
the LDA functional. With the effective U¼ 2.0, 4.0, and 6.0 eV,
the magnetic moments are overestimated to be μ¼ 2.23, 2.52,
and 2.75 μB atom�1, respectively. PBEþU even worsens the
overestimation. Moreover, LDA or LDAþU with U¼ 2.0 or
4.0 eV slightly underestimates the lattice parameters by about
1–3%. A proper larger U can give accurate lattice parameters,
but it yields an overlarge magnetic moment. Overall, the previ-
ously mentioned comparison calculations suggest that the PBE
functional can accurately describe the structure and magnetic
properties of Fe3Sn2 lattice. Given the good agreement between
theory and experiment, we expect that the PBE functional is also

suitable to the electronic properties of Fe3Sn2. Henceforth, the
PBE functional is used throughout this work.

To understand the basic magnetic properties of Fe3Sn2,
magnetic anisotropy energy (MAE) is calculated and plotted in
Figure 1d. In the lowest-energy configuration, all the magnetic
moments of Fe atoms are along the same direction. With hexag-
onal symmetry, the MAE of Fe3Sn2 exhibits uniaxial anisotropy
and can be fit to[40]

MAE ¼ K1 sin2 θ þ K2 sin4 θ (1)

where θ is the angle of the magnetic moment of the cell relative
to the z-axis. The resulting magnetocrystalline anisotropy coeffi-
cients are K1¼�0.074meV atom�1 and K2¼ 0.037meV atom�1.
The easy axis lies in the Fe kagome plane, which is in agreement
with experiment at a low temperature.[41] The maximum MAE is
defined as the energy difference of the system with magnetization
axis along the easy axis and perpendicular to it. For practical
applications at room temperature, it is crucial to find magnetic
nanostructures with MAE up to 0.03–0.05meV.[42] For Fe3Sn2,
the maximum MAE is calculated to be 0.037meV per Fe atom,
which is close to 2D Cr2Ge2Te6

[43] (on the order of �0.1meV per
Cr), and is about an order of magnitude smaller than 2D CrI3

[44]

(on the order of �0.6meV per Cr). This indicates that it may be
suitable for spintronic applications.

To investigate magnetic modulation on electronic structures,
energy bands and the projected density of states (PDOS) are plot-
ted under different directions of lattice magnetic moment.
Figure 2a,b shows the bands and PDOS for the lattice magnetic
moment along the x-axis. With the SOC, the electron in a certain
state does not have a definite spin. The electronic wavefunction is
presented as Ψ ¼ ðΨ"ðrÞ,Ψ#ðrÞÞT , and the spin polarization of a
state reads

Figure 1. Basic properties of Fe3Sn2. a) The atomic structure of Fe3Sn2 lattice. The unit cell is enclosed by the dashed lines. The green arrows denote
magnetic moments of Fe atoms in the ground state. b) A single Fe3Sn layer in Fe3Sn2. c) Fe3Sn bilayer in Fe3Sn2. d) MAE of Fe3Sn2 lattice varying with the
angle θ between the magnetic moment of the cell and the z-axis.
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Z
P ¼

R
Ψ"ðrÞdr�

R
Ψ#ðrÞdrR

Ψ"ðrÞdrþ
R
Ψ#ðrÞdr

(2)

The polarization of each band state is shown by color in
Figure 2a. The energy bands near the Fermi level are mainly
composed of Fe 3d orbitals. A Dirac point is found at �0.35 eV
below the Fermi level. The electronic states near the Dirac point
show a spin-up feature.

When the lattice magnetic moment orients along the z-axis,
i.e., perpendicular to Fe kagome planes, the spin-up Dirac point
opens a small gap (Figure 2c). The change in the magnetic
moment direction does not cause much change in PDOS
(Figure 2d). Compared with previous bands shown in Figure 2a,
the bands shown in Figure 2c are similar but some gaps in the
bands are slightly changed. For comparison, we also show the
energy bands at the level of HSE06 (Figure S2a,b, Supporting
Information). Because Fe3Sn2 is a metal, the bands do not show
much change under hybrid functional. Such a delicate change
can be used to adjust the transport properties of electrons in
specific states. In the following subsection, the fundamental
principle will be represented.

SOC acts on the Dirac states and influences the electronic
properties. In the classical picture, an electron passing through
electric field E feels an effective magnetic field acting on its spin.
For an electron moving at velocity V, the magnetic field in the
rest frame of the electron reads Beff ¼ � 1

c2 V � E. The SOC
Hamiltonian reads HSOC ¼ �1=2μ · Beff , where μ ¼ � e

m S is
the spin magnetic moment of electron and the factor 1=2 orig-
inates from the Thomas precession. When a 3d electron hops
between the second-nearest-neighboring Fe atoms, the chemical
environment on both sides of the atomic link line is different.
This asymmetry leads to an electric field E (Figure S3,
Supporting Information) and Beff acting on the electron. For a
3d electron with its spin perpendicular to the Fe kagome plane,
HSOC would affect the band structure of Dirac electrons and gen-
erate an effective mass. For a lattice magnetic moment lying in

the kagome plane, HSOC ¼ 0 does not affect the Dirac electrons
and the effective mass remains zero even when the spin is
rotated in the plane.

To reveal the mechanism of the opening gap in the Dirac state,
a tight-binding model is used. For the bands with single spin
direction, the tight-binding Hamiltonian

H0 ¼ �t
X
<ij>

cþi cj (3)

describes the orbital overlapping between the nearest neigh-
boring sites i and j, where t is the interatomic orbital
hopping. In momentum space, the Hamiltonian becomes
H0 ¼

P
kΨ

þ
k H0ðkÞΨk. In kagome lattice (Figure 3a), the annihi-

lation operator reads Ψk ¼ ðc1k, c2k, c3kÞT , where c1k, c2k, and c3k
correspond to the Blöch states on atoms 1, 2, and 3. The effective
Hamiltonian reads

H0ðkÞ ¼ �2t

0
B@

0 cos k · a1 cos k · a2
cos k · a1 0 cos k · a3
cos k · a2 cos k · a3 0

1
CA (4)

where a1 ¼ a0x̂, a2 ¼ a0ðx̂ þ ffiffiffi
3

p
ŷÞ=2, and a3 ¼ a2 � a1 denote

the three nearest-neighbor vectors. The energy spectrum of
H0ðkÞ (dashed lines in Figure 3b) consists of one flat band
Eð3ÞðkÞ ¼ 2t and two Dirac bands

Eð1,2ÞðkÞ ¼ t
�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðcos2 k · a1þ cos2 k · a2þ cos2 k · a3Þ�3

q �

(5)

which touch each other at the Dirac points K� ¼ �2πx̂=3a0. By
linearization near K� and projection onto the subspace associ-
ated with bands (1) and (2), the low-energy effective Hamiltonian

H0ðkÞ ¼ vðτ3k0x þ τ1k0yÞ (6)

Figure 2. Electronic structures of Fe3Sn2. a) The band structures and b) PDOS of Fe3Sn2 lattice with the magnetic moment of the cell along the x-axis.
c) The band structures and d) PDOS of Fe3Sn2 lattice with the magnetic moment of the cell along the z-axis.

www.advancedsciencenews.com www.pss-rapid.com

Phys. Status Solidi RRL 2020, 1900705 1900705 (3 of 6) © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.pss-rapid.com


behaves as Dirac fermion with zero mass. Here, the energy at the
Dirac points is set to zero and k 0 ¼ k – K� is the wave vector near
K�. v ¼

ffiffiffi
3

p
ta0 is Fermi velocity. τi are Pauli matrices of the pseu-

dospin spanned by the degenerate eigenstates at K�. The effec-
tive Hamiltonian leads to linearly dispersing energy EðkÞ ¼ �vk.

SOC leads to the formation of a gap at the Dirac points with
the breaking of SU(2) spin symmetry. The SOC-induced hopping
between the second-nearest neighbors takes the Kane–Mele
form[45,46]

HSOC ¼ i
2λffiffiffi
3

p
a20

X
�ij≫αβ

ðd1 ij � d2 ijÞ · σαβcþiαcjβ (7)

where λ is the SOC strength, d1ij and d2ij are the nearest-
neighbor vectors traversed between the second-nearest

neighbors i and j, and σ is the Pauli matrices of electronic spin.
In kagome lattice, it becomes

HSOC ¼ iλ
X
�ij≫

vijðcþi"cj" � cþi#cj#Þ (8)

where vij¼�vij¼�1 depends on the orientation of d1ij and d2ij.
vij¼þ1 (�1) if the second-nearest hopping is along the anticlock-
wise (clockwise) direction in the kagome plane.[45,47] For a lattice
with magnetic moment μ, rewrite Equation (8) as

HSOC ¼ iλ
X
�ij≫

vijðcos θðcþiμ"cjμ" � cþiμ#cjμ#Þ

þ sin θðcþiμ"cjμ# þ cþiμ#cjμ"ÞÞ
(9)

Figure 3. Band properties of Fe3Sn2 near the k-point. a) The kagome lattice model and the Brillouin zone. b) The energy bands with (blue) and without
SOC (red) calculated by the tight-binding model with t¼ 1 and λ¼ 0.1. c) The band structures near the k-point of Fe3Sn2 lattice with the magnetic
moment of the cell along the x-axis. d) The band structures near the k-point of Fe3Sn2 lattice with the magnetic moment of the cell along the z-axis.
e) The effective massm* of Dirac electrons in bands 1, 2, and 3.me denotes the real electron mass. f ) The energy difference EF–EDirac between the Fermi
level and the Dirac points varies with the Fermi level EF. g) DOS at E¼ EDirac (in states eV�1).
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where θ is angle of μ relative to the z-axis, ciμ" (ciμ#) corresponds
to the spin-up (spin-down) state along the direction of μ.
For Dirac bands with a single spin direction along the direction
of μ, one expands the SOC Hamiltonian into HSOC ¼P

kΨþ
k HSOCðkÞΨk in k space and obtains

HSOCðkÞ ¼ 2iλcosθ0
B@

0 cosk · ða2þ a3Þ �cosk · ða3� a1Þ
cosk · ða2þ a3Þ 0 cosk · ða1þ a2Þ
�cosk · ða3� a1Þ cosk · ða1þ a2Þ 0

1
CA (10)

By projection onto the subspace associated with bands (1)
and (2) near K�, the low-energy effective SOC Hamiltonian reads

HSOCðkÞ ¼
ffiffiffi
3

p
λ cos θð2� 3k02a20=2Þτ2 (11)

The first term leads to the separation of two Dirac bands. The
second momentum-quadratic term leads to topological edge
states.[48] If only considering the first term, the total Hamiltonian

HðkÞ ¼ H0ðkÞ þHSOCðkÞ ¼ vðτ3k0x þ τ1k0yÞ þ 2
ffiffiffi
3

p
λ cos θτ2

(12)

behaves as a massive Dirac fermion with an effective rest mass
m* ¼ 2λ cos θ=

ffiffiffi
3

p
t2a20 that depends on magnetization direction

θ. It leads to a relativistic momentum–energy relation EðkÞ2 ¼
m*2v4 þ v2k

0 2 and a θ-dependent bandgap Δ ¼ 4
ffiffiffi
3

p
λ cos θ

between the two Dirac bands.
For θ¼ 0, the energy spectrum ofHðkÞ is plotted by solid lines

in Figure 3b. To verify the prediction of tight-binding model,
energy bands near K� are plotted in detail along the Γ! K
and K!Mpaths by DFT calculations. When the lattice magnetic
moment μ is parallel to the kagome planes (Figure 3c), the up
and down Dirac bands meet each other at the Dirac points. In
Figure 3c, three Dirac bands that share the same Dirac point
in same energy are found (denoted by the green circle). To show
more details, atomic orbital–resolved bands are shown in
Figure S4, Supporting Information. This triple Dirac point is
mainly composed of Fe 3dxy and 3dx

2
–y
2 orbitals. There also exist

other crossing bands at K, which are not composed of Fe 3dxy and
3dx

2
–y
2 orbitals, and thus the above mass mechanism cannot be

applied. When the lattice magnetic moment μ is perpendicular to
the kagome planes (Figure 3d), the three Dirac bands are sepa-
rated, in which bands 2 and 3 are degenerated. For any lattice
magnetic moment μ with an orientation θ, the effective mass
m* of the electron can be obtained by fitting the k 0 � E(k) relation
by EðkÞ2 ¼ m*2v4 þ v2k02. Figure 3e shows m* with θ, showing
the previous predicted relation m*¼m*(0) · cosθ. The earlier
results indicate a possible way to modulate electron mass in
kagome lattice via controlling the direction of lattice magnetic
moment. To exhibit the properties of Dirac states, one can utilize
an appropriate positive gate voltage to lower Fermi level to the
Dirac points, such as the experiment of anomalous Hall effect
in a previous study.[26] Because the electrons in the layered
kagome lattice behave as (2þ 1) Dirac fermion, such mass con-
trol may benefit research on the simulation of physical effects of
high-energy relativistic fermions. By controlling the gate voltage,
the Dirac points emerge from below the Fermi level. Figure 3f
shows EF–EDirac, i.e., the energy difference between the Fermi

level and the Dirac points, varying linearly with EF. At
EF¼�0.55 eV, the Dirac points just emerge at the Fermi level.
At this status, the conduction electrons along K� wave vectors
behave as Dirac fermions and the manipulation of mass can
be realized. The massive Dirac fermions may be detected on
the (0001) kagome surface. Figure 3g shows k-resolved density
of surface states (DOS) at E¼ EDirac. The maximum at the K�
points indicates the appearance of Dirac fermions on the surface.
Although the Dirac states are submerged in other metallic states,
the maximum surface DOS at K� reveals that the Dirac states
govern the surface transport. This may decide the transport prop-
erties along the K� directions.

In this work, we uncover the origin of effective mass of rela-
tivistic (2þ1)-dimensional Dirac fermions in Fe3Sn2 kagome lat-
tice. Theoretical analysis reveals the specificity of spin-polarized
Dirac states in Fe3Sn2. The Dirac electrons with a unitary spin
direction break time-reversal symmetry and provide a possibility
to couple with magnetic field. SOC opens a gap between the two
Dirac bands with SU(2) spin symmetry breaking and givesmass to
the Dirac fermions. This effect leads to a relativistic momentum–
energy relation and a massive (2þ1) Dirac equation. The effective
mass of Dirac electrons is proportional to the SOC strength and
relative to the direction of lattice magnetic moment. On this basis,
magnetic control to the mass and mobility of Dirac electrons can
be implemented. Under a proper gate voltage, the Dirac points in
Fe3Sn2 emerge on the Fermi surface, in which the conduction
Dirac electrons can then be manipulated. Our study provides
insight into a modulation mechanism based on SOC and guid-
ance for future applications of Dirac materials.

Computational Section
Electronic structure calculations were carried out within DFT using the

projector augmented wave (PAW) method,[27,28] as implemented in the
Vienna ab initio simulation package.[29–32] The PAW potential described
the [Ne]3s2 states of Fe and the [Kr]4d10 of Sn as core states. All the
calculations used the kinetic energy cutoff of 500 eV. The exchange and
correlation of electrons were described using the PBE functional[33] at
the level of generalized gradient approximation. To verify the reliability,
we also carried out comparison calculations using the local density approx-
imation (LDA)[34] with/without an effective Hubbard U parameter.[35] The
band structures were also calculated using the Heyd–Scuseria–Ernzerhof
(HSE06) hybrid functional.[36,37] The Brillouin-zone integration was
conducted using an 18� 18� 5 Γ-centered Monkhorst-Pack grid. The
SOC was included in the computation with a full k-point grid. The conver-
gence of total energy was achieved until the total energy difference of two
iterated steps was less than 10�7 eV. The atomic positions were fully
relaxed until the Hellmann–Feynman forces were below 0.001 eV Å�1.
The chosen energy cutoff and k-point meshes ensured the accuracy of
the total energy, MAE, and magnetic moments to be 0.001 eV atom�1,
0.001meV atom�1, and 0.01 μB atom�1, respectively.
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