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1. Total energy of EuS lattice 

EuS bulk is an ionic lattice of NaCl type. The energy of one primitive cell reads 
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   , where α = 1.748 is the Madelung constant and m = 6 is the 

number of nearest S2- for one Eu2+. We perform DFT calculations with different Eu-S 

bond length r = a/ 2  (a is the lattice constant) while keeping the lattice type. The 

repulsion energy 
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 is then obtained by subtracting the Madelung energy 
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from the total energy E. The values of B = 904.9 (for r in units of Å) and n = 6.36 is 

gotten by data fitting. The data are listed below.  

 

Table S1. Energy of EuS bulk under different Eu-S bond lengths.  
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    (eV) DFT energy (eV) 

3.732 2.639 -38.153 11.343 -26.810 -26.984 

3.939 2.785 -36.145 8.042 -28.103 -28.040 

4.146 2.932 -34.338 5.804 -28.534 -28.441 

4.354 3.078 -32.702 4.255 -28.447 -28.405 

4.561 3.225 -31.216 3.165 -28.050 -28.087 
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2. Energy bands of EuS bulk 

 

Fig. S1 The energy bands of EuS 

bulk with SOC. The bands are plotted 

at the level of HSE06.  

 

 

 

 

 

 

 

 

 

 

Fig. S2 The energy bands of EuS bulk without SOC. (a) The 

bands at the level of HSE06. (b) The bands at the level of PBE+U 

with U = 5.0 eV.  

 

 

 

 

 

 

 

 



3. Quantum Monte Carlo simulations 

The magnetic moment M is simulated via Quantum Monte Carlo simulations. 

The thermal average value of M in the canonical ensemble reads 
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.  

Taking the basis states | i > as the eigenstates of spin Sz, we have 
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.  

At a given temperature T, the term 
ˆ /| |H kTi e i   is calculated by stochastic series 

expansion [S1, S2]. The sampling in the spin eigenstates | i > is performed using the 

Metropolis Monte Carlo method with relative probability 
ˆ /| |H kTi e i  . We take 20 

× 20 EuS supercells. The results are shown in Fig. S3.  

 
Fig. S3 Quantum Monte Carlo simulations of the magnetic moment of 2-layer (a) and 3-layer (b) 

EuS varying with temperature T.  

 

 

 

 

 

 



4. Magnon-phonon interaction and the self-energy 

To understand how the phonons influence the magnon spectrum, we import a 

Hamiltonian to describe the spin-phonon interactions. The longitudinal acoustic (LA) 

phonons lead to the stretching of lattice, and give rise to the change of Heisenberg 

coupling J. For LA phonons near the Γ point, the migration u  of Eu atoms locating 

at position r  can be describe by long-wave approximation as 
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Here, q  is the phonon wave vector, 
qa ( qa ) is the phonon annihilation (creation) 

operator, σ is mass areal density and A is the area. The LA phonon frequency 

( )q cq   (c is the longitudinal wave velocity in EuS). Based on the Heisenberg 

Hamiltonian 
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   , the magnon-phonon interaction Hamiltonian reads 
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The last step employs the Holstein–Primakoff representation. The atomic migration 

can be approximately written as 
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Then, with the Fourier transform 
1

iik R

i k
k

b e b
N

   to the magnons, for long-wave 

phonon q  (i.e. 
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 ) we have 

   
, ,

| | 2 | | (1 cos )( )
2 ( )

m p NN NN q qk q k k q k
NN q k

H S J i q R k R a b b a b b
A q 

  

  
    .  

This Hamiltonian Hm-p represents that a magnon of momentum k  can adsorb 

(release) a phonon of momentum q , and then becomes a magnon of momentum 



k q  ( k q ). At low temperature, the environment is close to phonon vacuum, and 

the term q k q k
a b b 


 is the main process. In the process of transmission, a k -magnon 

may release a q -phonon and then adsorb it soon (i.e. | ,0k q   → | ,1k q q   → 

| ,0k q  , see Fig. S4(a)), which leads to a self-energy correction of magnons. At the 

level of second-order perturbation, the energy correction of k -magnon reads 
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In the last estimation formula, a is the lattice constant and n is the nearest neighbor 

number. Such estimation provides a lower bound of magnon self-energy. If the 

denominator can be near zero, i.e. ( ) ( ) ( )E k E k q q    (Fig. S4(b)), the 

self-energy correction would be large. Fortunately, the LA phonons in layered EuS are 

very “hard” (Fig. S4(c) and (d)) and the case of ( ) ( ) ( )E k E k q q    cannot 

appear. So the self-energy correction would be small.  

 

 

Fig. S4 (a) The Feynman diagram of magnon self-energy. (b) The magnon and LA phonon 

spectrum for when ( ) ( ) ( )E k E k q q    can be satisfied. (c) The magnon and LA phonon 

spectrum 2-layer EuS. (d) The magnon and LA phonon spectrum 3-layer EuS.  

 

For the magnons near the Γ point, the spectrum is close to 
2( )E k k  and the 



denominator 
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                                   ( ) 2q k q    
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So we can estimate that 
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By DFT calculations, we obtain | |J = 0.12 (0.14) meV/Å for 2-layer (3-layer) EuS. 

By the calculations of Young’s modulus, we obtain c = 4.01×103 (4.18×103) m/s for 

2-layer (3-layer) EuS. We mainly care about the magnons near the Γ point whose 

self-energy correction may influence the low-energy gap. For k ≈ 0, 
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  . For 2- and 3-layer EuS, we finally obtain a rough estimation of 

(2)

m pE  > -8×10-4 meV. Such small value ensures that the low-energy gap of magnon is 

protected from the thermal disturbance of phonons.  
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