Supplementary Information

2D MoSi₂N₄ as electrode material of Li-air battery — A DFT study

Li-Rong Cheng, Zheng-Zhe Lin^{*}, Xi-Mei Li, Xi Chen[†]

School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China

* Corresponding Author. E-mail address: zzlin@xidian.edu.cn

[†] Corresponding Author. E-mail address: <u>xichen_phys@xidian.edu.cn</u>

1. Some MoSi₂N₄-Li structures

Fig. S1 The structure of $MoSi_2N_4$ with 100% Li coverage (Li: $MoSi_2N_4 = 1:1$, corresponding to E in Fig. 2(a)). Top and side views are shown.

Fig. S2 The structure of $MoSi_2N_4$ with 4% Li coverage (Li: $MoSi_2N_4 = 1:25$, corresponding to A in Fig. 2(a)). Top and side views are shown.

Fig. S3 The structure of $MoSi_2N_4$ with 12% Li coverage (Li:MoSi₂N₄ = 3:25, corresponding to **B** in **Fig. 2(a)**). Top and side views are shown.

2. Reaction coordinate

Fukui assumed that the atoms move along the minimal-energy path. For the massweighted coordinates $\xi_i = \sqrt{m_i x_i}$, we define

$$\frac{\Delta\xi_1}{\left(\frac{\partial E}{\partial\xi_1}\right)} = \frac{\Delta\xi_2}{\left(\frac{\partial E}{\partial\xi_2}\right)} = \dots = \frac{\Delta\xi_{3N}}{\left(\frac{\partial E}{\partial\xi_{3N}}\right)}$$

The reaction coordinate is the trajectory determined by the above equation.