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Abstract
The development of two-dimensional (2D) magnetic semiconductors promotes the study of
nonvolatile control of magnetoelectric nanodevices. MnBi2Te4 is the first realization of
antiferromagnetic topological insulator. In semiconductor circuits, metal-semiconductor contacts are
usually essential. In future all-carbon circuits, graphene is a promising material for 2D conductive
connections. This work studies electronic transport through graphene-MnBi2Te4-graphene junctions.
We find that graphene-MnBi2Te4 interfaces are perfect Ohmic contacts, which benefits the use of
MnBi2Te4 in carbon circuits. The currents through MnBi2Te4 junctions possess high spin
polarization. Compared with usual van der Waals junctions, lateral graphene-MnBi2Te4-graphene
junctions present a lower barrier and much higher conductance to electrons. These findings may
provide guidance for further study of 2D spin filtering.

Supplementary material for this article is available online
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1. Introduction

The discovery of two-dimensional (2D) materials has inspired
a great revolution in material science. 2D materials have been
considered as building blocks for nanoelectronics and
optoelectronics. In recent years, the development of 2D
materials has brought new opportunities for spintronics [1–4].
Magnetic 2D materials have invoked tremendous research
interest in developing magnetic nanodevices. The spin degree
of freedom has been utilized to demonstrate exotic phenom-
ena. Significant effort has been devoted to fabricating ultra-
thin films down to the monolayer limit because the magnetic
properties of 2D layered materials change significantly as
their thickness reduces to atomically thin [4, 5]. Designing
conceptual magnetic devices composed of 2D magnetic
monolayers may drive the development of new technology.

As basic structures for electronic devices, 2D materials
can lead to drastic reduction in characteristic lengths [6–8].
As isolated atomic planes, 2D materials can be reassembled as
van der Waals (vdW) heterostructures [9–11]. Different 2D
materials can assemble various vdW heterostructures, which

reveal new physical properties and phenomena. With dis-
tinctive electronic and optoelectronic properties, graphene-
[12–15] and transition-metal-dichalcogenide-based [16–19]
vdW heterostructures have attracted many research efforts.
Without direct chemical bonding, vdW heterostructures are
being considered as a novel way to construct devices that
integrate the properties of isolated components without a
transition region [20]. However, electrons across vdW het-
erostructures (with interlayer spacing of about 3∼5 Å) have
to pass through a barrier. In contrast, lateral heterostructures,
which are connected by covalent bonds, have close-connected
atomic interfaces in the plane. A high-quality covalent inter-
face ensures good growth characteristics and device perfor-
mance of lateral heterostructures [21–23]. The development
of 2D lateral heterostructures with the powerful tunability of
electronic properties is of great realistic significance for next-
generation device [24] and photo-chemical [25] applications.
In lateral heterostructures, the connections of distinct 2D
layers may be with higher transmission. Therefore, devices
constituted of 2D materials with lateral arrangement are also
worthy of further study.
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Nonvolatile electrical control of 2D ferromagnets is pro-
posed as a key technology for future magnetoelectric nanode-
vices [26]. People have found that 2D CrI3 [27–35], Cr2Ge2Te6
[36], CrSiTe3 [37] and VSe2 [38, 39] possess intrinsic
magnetocrystalline anisotropy. 2D ferromagnetic Fe3GeTe2
[40–46] was found to have a Curie temperature close to
room temperature (150–220 K depending on Fe occupancy
[43, 44, 47]). Recently, 2D MnBi2Te4 was successfully syn-
thesized and confirmed as an intrinsic magnetic topological
insulator [48, 49]. With ferromagnetic intralayer and anti-
ferromagnetic interlayer interactions, MnBi2Te4 was suggested
to be the first realization of antiferromagnetic topological
insulator [50–55]. In multi-layer MnBi2Te4, quantum phase
transition can be realized by the manipulation of magnetic
orientation [5, 48, 54, 55], interlayer twisting [56] or electric
field [57]. Recently, MnBi2Te4 monolayer is suggested to be a
material for spin transport [58]. On this basis, the construction
of spintronics devices with MnBi2Te4 is worth further study.

Semiconductor devices are usually connected to external
circuits. Thus, metal-semiconductor contacts are essential. In
future all-carbon circuits, graphene is a promising material for
2D conductive connections. In this paper, we carry out basic
study on the structure and the electronic transport through
lateral and vdW graphene-MnBi2Te4-graphene junctions.
Both lateral and vdW graphene-MnBi2Te4 interfaces are
found to be Ohmic contacts, which benefits the use of
MnBi2Te4 in carbon circuits. We design several models as the
prototypes of graphene-MnBi2Te4-graphene devices. Trans-
port calculations are performed to show the high spin polar-
ization of currents. Lateral graphene-MnBi2Te4-graphene
junctions present much higher conductance than the vdW
junctions. Our findings may provide theoretical guidance for
further study of spin filtering based on 2D magnetic materials.

2. Methods

We perform DFT calculations with the projector augmented
wave method [59, 60], as implemented in the Vienna ab initio
simulation package (VASP) [61–64]. Plane-wave basis set is
used with a kinetic energy cutoff of 500 eV. The generalized
gradient approximation of Perdew–Burke–Ernzerhof [65]
plus Hubbard U correction [66] (PBE+U) is employed as
the exchange-correlation functional for geometry relaxation
(for obtaining the value of U, see the next paragraph). To
obtain reliable results of energy bands and the projected
density of states, the hybrid Heyd–Scuseria–Ernzerhof
(HSE06) functional [67, 68] is employed in the electronic
structure calculations. The Brillouin-zone integration is per-
formed with a k-spacing of 0.02 Å−1. The convergence of
total energy is considered to be achieved until the total energy
difference of two iterated steps is less than 10−5 eV. spin–
orbit coupling (SOC) is included in the computation with a
full k-point grid. To reduce the interlayer interactions, the
replicas of the simulation system are separated by a vacuum
spacing of at least 16 Å in the direction perpendicular to the
2D surface. The atomic positions are fully relaxed until the
Hellmann–Feynman forces are below 0.01 eV Å−1.

In the PBE+U approach, the rotationally invariant
formalism of Hubbard U correction [66] (where only
Ueff=U − J value is meaningful, the U parameter used in
this paper denotes the Ueff) is employed to account for the
correlation energy of Mn 3d orbitals. To determine the
parameter U, we adopt the linear response approach intro-
duced by Cococcioni et al [69], in which the interacting (χ)
and the non-interacting (χ0) density response functions of the
system with respect to localized perturbations are first cal-
culated. Then, the parameter Ueff=4.1 eV for Mn can be
obtained by Ueff=χ−1 − χ0

−1 (see supplementary section 1
(available online at stacks.iop.org/NANO/33/325201/
mmedia) for details). To verify the reliability of the
PBE+U approach, we compare the calculated energy bands
at the level of PBE+U and HSE06 in supplementary section
2, showing the similarity of the two methods.

Quantum transport calculations are performed using the
non-equilibrium Green’s function method [70] implemented
in the TRANSIESTA code [71]. The generalized gradient
approximation of PBE+U is also used here. The improved
Troullier–Martins pseudopotentials [72] are employed to
describe the ion cores. Valence electrons are taken as C
(2s22p2), Bi (6s26p3) and Te (5s25p4) described by double-ζ
basis set, and Mn (3d54s2) described by double-ζ plus
polarization basis set. The grid mesh cutoff is set as 350 Ry.
For lateral graphene-MnBi2Te4-graphene junctions, the elec-
trode is taken as 7 × 3 graphene electrode (x-direction: 7, z-
direction: 3 ). For vdW graphene-MnBi2Te4-graphene
junctions, the electrode is taken as 3 × 3 graphene electrode
(x-direction: 3, z-direction: 3 ). A vacuum layer of 16 Å is
set along the y direction (perpendicular to the 2D surface). For
self-consistent calculations, the Brillouin zone is sampled
by 9×1×36/21×1×60 Monkhorst–Pack grid for
7 × 3/3 × 3 graphene, respectively. For transmission
calculations, the Brillouin zone sampling is increased to
45×1×180/126×1×240 Monkhorst–Pack grid for
7 × 3/3 × 3 graphene, respectively. The above sam-
plings cover the graphene Dirac point. For a bias voltage Vb

applied in the z-direction, the current Iσ is given by the
Landauer–Büttiker formula [73]
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where σ=±1 denotes spin up/down, Tσ(E, Vb) is the
transmission, EF is the Fermi energy, and fL/fR are the Fermi–
Dirac distributions of left/right electrodes at room temper-
ature. For a 2D material width L, surface current density can
be calculated as jσ =Iσ/L.

3. Results and discussion

3.1. Basic properties

The primitive cell of MnBi2Te4 is hexagonal (figure 1(a)),
with a lattice constant of a0=4.38 Å and a magnetic moment
of m=5.0 μB. The Mn atomic layer is sandwiched between
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two Te–Bi–Te slabs. The magnetic coupling between Mn2+ is
transmitted by indirect exchange of Te. The magnetic
moments are mainly distributed on Mn2+ (3d5) whose atomic
spin is S=5/2. To understand the distribution of magnetic
moments, spin density difference, i.e. the difference ρ↑ - ρ↓ of

the spin-up and spin-down electron density, is plotted in
figure 1(b). The region of spin polarization further indicates
the magnetic moments around Mn atoms. Magnetic aniso-
tropy energy (MAE) (figure 1(c)) indicates that the easy axis
is perpendicular to MnBi2Te4 surface.

Figure 1. (a) Structure of MnBi2Te4. The primitive cell is shown by red lines. (b) The isosurface of spin density difference in MnBi2Te4 with
a value of ρ↑ - ρ↓=0.01 e Å−3. (c) MAE varying with angle θ that is the angle relative to the direction perpendicular to MnBi2Te4 surface.
Energy bands of (d)MnBi2Te4 (shown by spin-polarization and Bi-orbital-proportion resolved) and (e) graphene are plotted with the vacuum
level set to zero. (f) Four types of MnBi2Te4 edges along x and y directions. The cutting planes are shown in blue lines.
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The energy bands of MnBi2Te4 are plotted in figure 1(d).
Within SOC, an electron in a certain state does not have a
definite spin. The electronic wavefunction is presented as

r r, ,TY = Y Y ( ( ) ( )) and the spin polarization of a state reads

P
d d

d d
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Thus, we plot each band state with color to show the
polarization. On the left panel of figure 1(d), we can see the
spin-up valence band top and the spin-down conduction band
bottom. The valence and conduction bands are mainly com-
posed of Bi 6p and Te 5p orbitals. To plot orbital constituents
of the band states, the contributions of Bi 6p and Te 5p
orbitals on state | Ψ>are expressed as |< Bi 6p | Ψ >|2 and
|< Te 5p | Ψ >|2, respectively. Then, the orbital proportion of
| Ψ>reads
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On the right panel of figure 1(d), we can see that the
valence bands are mainly composed of Te 5p orbitals, while
the conduction bands are mainly composed of Bi 6p orbitals.

To investigate the band alignment in the
graphene-MnBi2Te4 junction, the energy bands of MnBi2Te4
(figure 1(d)) and graphene (figure 1(e)) are plotted with the
vacuum level set to zero. The Dirac cone of graphene
(EF=−4.29 eV) is higher than the Fermi level (EF=
−4.97 eV) and even the conduction band bottom (ECBM=
−4.78 eV) of MnBi2Te4. So, the graphene-MnBi2Te4 junc-
tion will be metal-semiconductor contact with electrons
injected from graphene to MnBi2Te4, i.e. an Ohmic contact.
The details are discussed in section 3.2.

For the follow-up study of graphene-MnBi2Te4 contact,
the edge types of MnBi2Te4 are investigated here. We con-
sider cutting MnBi2Te4 along natural cleavage planes, i.e. the
atoms on the cut surface are basically in a plane. Figure 1(f)
shows four types of relaxed edges, among which type x is cut
along the y direction, and type y-A, y-B, y-C are cut along the
x direction. The edge stability is represented by the formation
energy

E E E S2 , 4edge cleaved bulk= -( ) ( )/

in which S is the surface area of the cutting plane (one cutting
produces two surfaces). Table 1 lists the formation energies.
We can see that type y-B with the lowest edge formation
energy is the most stable. In the following text, we mainly
consider the contact of the y-B edge with graphene.

3.2. Lateral graphene-MnBi2Te4 junction

In this section, we consider the properties of lateral
graphene-MnBi2Te4 junctions. For graphene, the zigzag edge
has a smoother arrangement of atoms than the armchair edge,
and it is more stable than the armchair edge [74]. So, we focus
on the contact of zigzag graphene edge with the most stable y-
B MnBi2Te4 edge. The C–C bond length in graphene is
1.42 Å. Along the zigzag direction of graphene, the periodic
distance is 1.42 × 3 = 2.46 Å. In comparison, the periodic
distance along the x direction of MnBi2Te4 is a0=4.38 Å.
The best lattice match of zigzag graphene and y-B MnBi2Te4
edges is 7:4 with a periodic length of 17.37 Å (for graphene,
2.46×7=17.22 Å; for MnBi2Te4, 4.38×4=17.52 Å;
taking their average 17.37 Å with a ±0.9% compromise for
both graphene and MnBi2Te4). It is worth noting that lattice
match is important to the stability of the connection. All the
type y edges of MnBi2Te4 have a periodic width a0=4.38 Å,
while that of type x edge is 7.57 Å. For edge x, the best match
is one period of edge x connecting to three periods of gra-
phene zigzag edge (2.46×3=7.38 Å), for which a ±1.2%
compromise is need. So, each type of MnBi2Te4 edge can
found a good match with graphene. The match of type y is
slightly better than type x. Considering type y-B is the most
stable MnBi2Te4 edge, in the following we study the electron
transport through graphene-MnBi2Te4(type y-B)-graphene
systems.

We consider two types of contacts. The first one is
contact type LA with graphene connected to the bottom layer
of MnBi2Te4 (figure 2(a)). The second one is contact type LB
with graphene connected to the middle of MnBi2Te4
(figure 2(b)). To find the most stable graphene-MnBi2Te4
connection, energy profile with different alignment is calcu-
lated for each type of contact (see the right panels of
figures 2(a) and (b)). We start from one C atom aligned with
one Te atom as 0% displacement. When the C atom is aligned
with the next Te atom, the displacement is defined as 100%.
In contact type LA, C–Te bonding exists. With increasing
slip, old C–Te bonds break and new C–Te bonds form. The
fluctuation in the energy profile is small (less than 0.03 eV).
In contact type LB, C–Te bonding pulls on the surrounding
Bi and Mn atoms, leading to complex contact structure. Thus,
the fluctuation in the energy profile is large (∼1.0 eV). The
most stable configuration is located at a displacement of 25%.
In the following text, we only study the most stable config-
urations of contact LA and LB.

In order to investigate the spatial distribution of electron
states in lateral graphene-MnBi2Te4 junction, local density of
states (LDOS)

n r r, , , 5
i

i i
k

k k
2åe s d e e= Y -s s( ) ∣ ( )∣ ( ) ( )

is calculated throughout the junction. Here, ε is the energy. r
is a position. σ denotes the spin. ikY s is the ith state on Bloch
wave vector k and spin σ. To present the state distribution
along the lateral z-direction, xy-integrated LDOS

n z n dxdyr, , , , 6l òe e s=( ) ( ) ( )

Table 1. Formation energies of the edges in MnBi2Te4.

Formation Energy (meV Å−2)

x y-A y-B y-C

28.8 35.9 22.7 62.2
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is calculated. As an example, the calculation result of contact
type LB is shown in figure 2(c). In the graphene side (left),
the semimetallic property (i.e. the Dirac-cone bands) makes
the n z,l e( ) above and below the Fermi level contact to each
other (at Fermi level, n z,l e( ) = 0). At the MnBi2Te4 side,
band gaps exist for both spin-up and spin-down cases. With
electron injection from graphene to MnBi2Te4, their Fermi
energies are pulled to the same level. No obvious band
bending is found near the connection place. At the MnBi2Te4
side, the spin-down conduction band is lower than the spin-up
one (like the bulk bands figure 1(d)).

To study the spin transport through lateral
graphene-MnBi2Te4 contact, we construct two-probe
graphene-MnBi2Te4-graphene models of contact types LA

and LB with 3× 7 graphene electrodes and two buffer
layers in both left and right sides (figure 2(d)). The trans-
mission spectra and current–voltage curves are shown in
figures 2(e) and (f). We can see that the currents through
contacts LA and LB are highly spin-polarized. In contact
type LA, the spin polarization of current is 89%–85% in the
range of Vb=0–0.2 V. In contact type LB, the spin
polarization of current is 83%–80% in the range of
Vb=0–0.2 V. In contact type LB, graphene is connected to
the middle of MnBi2Te4, and thus electrons pass through
more easily than they do through MnBi2Te4 surface. Under
a same bias voltage, the current through LB is about forty
times as much as that of LA. Both LA and LB contacts
show a feature of Ohmic contact with the nearly linear

Figure 2. Type (a) LA and (b) LB of lateral graphene-MnBi2Te4 contacts. The alignment is quantified by the displacement of a C atom
relative to a Te atom. The energy profiles changing with displacement are shown. (c) xy-integrated LDOS of the electron transmission (in arb.
unit) through contact type LB. (d) Two-probe graphene-MnBi2Te4-graphene configurations with contact type LA and LB, whose
transmission spectra and current–voltage curves are shown in (e) and (f), respectively.

5
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current–voltage curves. The difference of transmission
between LA and LB can be understood by the electron
distribution of MnBi2Te4 conduction band. Supplementary
figure S4(a) shows the Bloch function of MnBi2Te4 con-
duction band minimum, in which we can see that it mainly
composed of Bi 6p states and parts of the 5p states of the
inner Te layers. MnBi2Te4 has two Bi atomic layers. In
contact LA, graphene only connects to one Bi layer, and
thus the transmission is low. Supplementary figure S4(b)
shows the detail of transmission spectrum of LA. In contact
LB, graphene connects to both Bi layers and the inner Te
layers. Thus it obtains higher transmission. We also con-
sider other types of graphene-MnBi2Te4-graphene junc-
tions. Supplementary section 6 presents the transport
through a junction in which the graphene zigzag edge is
connected to the type x MnBi2Te4 edge. The current
through the junction also shows spin polarization. The spin
transport through graphene-MnBi2Te4-graphene junctions
is general, independent of the type of MnBi2Te4 edge.

3.3. vdW graphene-MnBi2Te4 junction

vdW heterojunctions are an emerging kind of device
structure, in which 2D atomic layers are stacked to realize
expected functions by the combination. In this section,
electronic transport through graphene-MnBi2Te4 vdW
heterostructures is studied to make comparison with the
lateral junctions. Our calculation model matches 3 × 3
graphene (lattice vector length 4.26 Å) with 1×1
MnBi2Te4 lattice (lattice vector length 4.38 Å) and takes an
average lattice vector length 4.32 Å, with a ±1% compro-
mise for both graphene and MnBi2Te4. We consider hol-
low, top and bridge types of stacking (figure 3(a)). Binding
energy

E E E E S, 7b hetero graphene MnBi Te2 4= - -( ) ( )/

is used to evaluate the stability of difference stacking (S is
the surface area). Table 2 lists the calculation results,
indicating that hollow stacking is the most stable (which is
used in the following simulations). The balance distance
from graphene layer to MnBi2Te4 surface is 3.58 Å.

The spin-resolved energy bands of hollow-type
graphene-MnBi2Te4 heterostructure are plotted in the left
panel of figure 3(b) (spin polarization calculated by
equation (2)). The Fermi energy respective to the vacuum
level is −4.62 eV, which is between that of isolated graphene
and MnBi2Te4. To resolve the energy bands distribution,
orbital contribution of graphene and MnBi2Te4 in every
Bloch state is calculated, and the proportion of MnBi2Te4 is
evaluated by the method similar to equation (3). In the right
panel of figure 3(b), we can see that graphene and MnBi2Te4
keep their original band structures. vdW interaction just
combines the two 2D layers, but does not strongly affects the
band structure.

In vdW heterostructures, the two 2D layers do not closely
contact to each other. For electronic transport, a barrier exists
in the space between the two layers. To reveal the barrier
shape, average Hartree potential

V z
S

V dxdyr
1

, 8H Hò=¯ ( ) ( ) ( )

is calculated along the z-direction perpendicular to the 2D
surfaces. Here VH(r) is the Hartree potential at position r.
Equation (8) takes the average in the xy plane. In figure 3(c),
we pay attention to the part of VH̄ above the Fermi energy. A
tunneling potential barrier ΦTB=4.19 eV impedes electron
transport through the graphene-MnBi2Te4 interface. ΦTB and
the barrier width dTB=1.93 Å determine the transmission.
Based on Simmons tunneling injection model [75, 76], the
tunneling-specific resistivity across the interface can be esti-
mated as
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where m is the electron mass. The calculated resistivity
ρ≈1.5×10−9 Ω·cm2 is comparable to that of the recently
reported Bi/MoS2 contact of ultralow contact resistance [77].

Then, we study the spin transport through two-probe
vdW graphene-MnBi2Te4-graphene junctions. Two types of
structures are considered. The first type HA is composed of a
MnBi2Te4 slab sandwiched between two graphene layers
(figure 3(d)). The second type HB is composed of a
MnBi2Te4 slab suspended on two graphene layers
(figure 3(f)). The transmission spectra and current–voltage
curves of HA and HB are shown in figures 3(e) and (g),
respectively. Due to the scattering caused by vacuum barrier
tunneling, the transmission and currents are much smaller
than those in the lateral two-probe junctions (figures 2(e) and
(f)). The HB type has a horizontal structure that benefits
electron flows with lower scattering. So, under same bias
voltage, the current through HB is about ten times as much
as that HA. In the HA junction, currents through MnBi2Te4
have a spin polarization of 98%–94% in the range of
Vb=0–0.2 V. In the HB junction, the spin polarization of
currents is 94%–71% in the range of Vb=0–0.2 V. Overall,
in both lateral and vdW junctions, as long as the current goes
through the Mn layer, high spin polarization can be realized.
In contrast, such spin transport cannot be realized in usual
MnBi2Te4 junction structures. As an example, supplementary
section 3 shows the electronic transmission and currents
through Cu-MnBi2Te4-Cu junction. The contact is also
Ohmic. But the spin polarization is only about 37%. To
understand the spin polarization in metal-MnBi2Te4-metal
junctions, the energy band diagram of the Cu-MnBi2Te4-Cu
system is analyzed in supplementary section 5. In figure
S5(b), we can see that in the Cu-MnBi2Te4-Cu junction, the
main part of MnBi2Te4 bands are contaminated by Cu-bulk
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bands. The Cu electrodes are spin-unpolarized. The extend
states of Cu-bulk Bloch waves through MnBi2Te4 weaken the
spin polarization of current. In contrast, graphene is a Dirac
material with vanishing density of states at the Dirac point.
So, graphene has very little effect on the energy bands of
MnBi2Te4. This reason leads to high spin polarization in
lateral and vdW graphene-MnBi2Te4-graphene junctions.

Figure 3. (a) Structures of graphene-MnBi2Te4 vdW heterostructures. (b) Energy bands of hollow-type graphene-MnBi2Te4 vdW
heterostructure, shown by spin-polarization and MnBi2Te4-orbital-proportion resolved. The vacuum level set to zero. (c) Average Hartree
potential VH̄ in the hollow-type graphene-MnBi2Te4 vdW heterostructure. (d) Structure, (e) transmission spectrum and current–voltage curve
of vertically stacked HA type of graphene-MnBi2Te4 vdW heterostructure. (f) Structure, (g) transmission spectrum and current–voltage curve
of horizontally stacked HB type of graphene-MnBi2Te4 vdW heterostructure.

Table 2. Binding energies of graphene-MnBi2Te4 vdW
heterostructures.

Binding Energy (meV Å−2)

Hollow Top Bridge

−16.0 −15.4 −15.5
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4. Conclusions

In conclusion, the spin transport through graphene-
MnBi2Te4-graphene junctions are studied by employing DFT
calculations. The results prove that the graphene-MnBi2Te4
connections are Ohmic contacts. The resistance of vdW
graphene-MnBi2Te4 connections is close to that of the
recently reported Bi/MoS2 contact of ultralow contact
resistance. By contrast, lateral graphene-MnBi2Te4 connec-
tions are more favorable for electrons to pass through. Much
higher currents can be realized by lateral graphene-MnBi2Te4
connections. In both lateral and vdW graphene-MnBi2Te4
junctions, high spin polarization can be obtained. Our work
may provide useful theoretical guidance for exploring new
spintronic devices based on 2D vdW magnetic materials.
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