学术信息网 西电导航 关于 使用说明 搜索 系统首页 登录 控制面板 收藏 仲鹏的留言板
学术论文

[63] JL. Nie, W. Cao, P. Yu, MS. Wang, JY. Xu, WW. Wang, L. Gu, QY. Jia, P. Zhong*, XH. Ma*, Hexafluoroisopropanol Modified MXene for Perovskite Surface Remodeling and Interfacial Dipole Effect Enhancement, Journal of Power Sources, 2025, 625, 235710. (https://www.sciencedirect.com/science/article/pii/S0378775324016628?dgcid=author#mmc1

 

[62] MD. Que, SH. He, LL. Gao*, BY. Zhang, YB Wang, J. Chen, B. Li, W. Huang, P. Zhong*, Dual-Anchored Configuration Involving on Pb(NO3)2 for Effective and Stable FAPbI3 Quantum Dot Solar Cells, Journal of Materials Chemistry C, 2024, DOI: 10.1039/D4TC02697G. (https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02697g)

 

[61] JL. Nie, XM. Zhang, MS. Wang, YC. Ou, SP. Li, P. Zhong*, WW. Wang*, GQ. Zhu*, XH. Ma, MXene quantum dots decorated g-C3N4/BiOI heterojunction photocatalyst for efficient NO deep oxidation and CO2 reduction, Separation and Purification Technology, 2025, 354, 128961.(https://www.sciencedirect.com/science/article/pii/S138358662402700X?via%3Dihub)

 

[60] W. Cao, JL. Nie, Y. Cao, CJ. Gao, MS. Wang, WW. Wang, XL. Lu, XH. Ma, P. Zhong*, A review of how to improve Ti3C2Tx MXene stability, Chemical Engineering Journal, 2024, 496, 154097.(https://www.sciencedirect.com/science/article/abs/pii/S1385894724055864?via%3Dihub)

 

[59] MD Que*, QZ. Wu, YT. Li, H. Yuan, P. Zhong, SH. He, Y. Xu, B. Li, XY. Ma, WX. Que*, Construction Au/FAPbI3 Schottky Heterojunction towards a High-Speed Electron Transfer Channel for High-Performance Perovskite Quantum Dot Solar Cells, ACS Applied Materials & Interfaces, 2024, DOI: 10.1021/acsami.4c04856.(https://pubs.acs.org/doi/10.1021/acsami.4c04856)

 

[58] Y. Cao, YJ. Wang, JL. Nie, CJ. Gao, W. Cao, WW. Wang, H. Xi, WH. Chen, P. Zhong*, XH. Ma*, 3-aminopropyltriethoxysilane modified MXene on three-dimensional nonwoven fiber substrates for low-cost, stable, and efficient solar-driven interfacial evaporation desalination, Journal of Colloid and Interface Science, 2024, 671, 553-563.(https://www.sciencedirect.com/science/article/pii/S0021979724011718?via%3Dihub)

 

[57] MD. Que*, H. Yuan, QZ. Wu, SH. He, P. Zhong, B. Li*, Amino Acid Double-Passivation-Enhanced Quantum Dot Coupling for High-Efficiency FAPbI3 Perovskite Quantum Dot Solar Cells, ACS Applied Materials & Interfaces, 2024, 16 (5), 6189-6197. (https://pubs.acs.org/doi/10.1021/acsami.3c16486)

 

[56] Q. Zhu, ZN. Wang, YX. Wei, L. Yang, XL. Lu, JJ. Zhu, P. Zhong, YM. Lei*, XH. Ma*, Realtime observation of "spring fracture" like AlGaN/GaN HEMT failure under bias, SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (1), 114401. (https://link.springer.com/article/10.1007/s11432-023-3867-4)

 

[55] TJ. Han, WD. Zhu*, TR. Wang, M. Yang, YB. Zhou, H. Xi, P. Zhong*, DZ. Chen, JC. Zhang, CF. Zhang*, Y. Hao, MXene-Interconnected Two-Terminal, Mechanically-Stacked Perovskite/Silicon Tandem Solar Cell with High Efficiency, Advanced Functional Materials, 2024, 34 (12), 2311679. (https://onlinelibrary.wiley.com/doi/10.1002/adfm.202311679)

 

[54] YM. Lei*, YX. Wei, DK. Wu, Q. Zhu, YA. Sun, XJ. Zhou, H. Xi, P. Zhong, J. Sun*, High catalytic activity of Ti4O7/CNTs oxygen reduction reaction (ORR) electrocatalysts with excellent circulation and methanol resistance, Journal of Solid-State Electrochemistry, 2023, 27 (10), 2787-2798. (https://link.springer.com/article/10.1007/s10008-023-05556-0)

 

[53] RP. Wang, LZ. Xing*, Y. Ha, P. Zhong, ZN. Wang, Y. Cao, ZM. Li*, Photothermal Conversion and Thermal Management of Magnetic Plasmonic Fe3O4@Au Nanofluids, Solar RRL, 2023, 7 (13), 2300269. (https://onlinelibrary.wiley.com/doi/10.1002/solr.202300269

 

[52] HL. Wang, LF. Geng, ZX. Zhang, P. Zhong, F. Liu, Y. Xie, YJ. Zhao, PX. Li*, XH. Ma*, Vertically molybdenum disulfide nanosheets on carbon cloth using CVD by controlling growth atmosphere for electrocatalysis, Nanotechnology, 2023, 34, 375601. (https://iopscience.iop.org/article/10.1088/1361-6528/acd854)

 

[51] JL. Nie, BQ. Niu, YJ. Wang, XM. Zhang, Z. He, HH. Zheng, YM. Lei, P. Zhong*, XH. Ma, Multi-functional MXene quantum dots enhance the quality of perovskite polycrystalline films and charge transport for solar cells, Journal of Colloid and Interface Science, 2023, 646, 517-528. (https://www.sciencedirect.com/science/article/pii/S0021979723008512?dgcid=author)

 

[50] YX. Wei#, DK. Wu#, CY. Yong, ZN. Wang, P. Zhong, JJ. Qiu, JT. Fan, J. Sun*, , YM. Lei*, XQ. Wu*, Robust and highly conductive Ti4O7/MXene nanocomposites as high-performance and long cyclic stability oxygen reduction electrocatalysts, Applied Surface Science, 2023, 607, 154929. (https://www.sciencedirect.com/science/article/abs/pii/S0169433222024576)

 

[49] C. Li*, H. Li, ZN. Zhu, T. Yin, ZN. Wang, PP. Li, CX. Zeng, F. Yang, P. Zhong*, NY. Cui, CH. Shou*, Electric field enhanced with CdS/ZnS quantum dots passivation for efficient and stable perovskite solar cells, Journal of Power Sources, 2022, 537, 231519. (https://www.sciencedirect.com/science/article/abs/pii/S0378775322005262#!)

 

[48] HMA. Javed*, M. Sarfaraz, A. Mahmood, MZ. Nisar, AA. Qureshi*, MA. Khan, P. Zhong, YL Liao, Design and Development of a Solar Water Purification System with Graphene-Plasmonic Based Hybrid Nanocomposites: A Review, Recent Patent on Nanotechnology, 2022, 16(1), 30-44. (https://www.eurekaselect.com/article/116076)

 

[47] YJ. Wang, JL. Nie, Z. He, YH. Zhi, XH. Ma, P. Zhong*, Ti3C2Tx MXene nanoflakes embedded with copper indium selenide nanoparticles for desalination and water purification through high-efficiency solar-driven membrane evaporations, ACS Applied Materials & Interfaces, 2022, 14(4), 5876-5886. (https://pubs.acs.org/doi/10.1021/acsami.1c22952)

该项工作被公众号“化学与材料科学”报道(https://mp.weixin.qq.com/s/uML2LwWfrM0sVc3pB7Ofpw

 

[46] DK. Wu, CZ. Yang, J. Sun*, P. Zhong, XH. Ma*, YM. Lei*, Ti4O7/g-C3N4 Nanocomposites as an Excellently Durable and Active Electrocatalyst for Oxygen Reduction Reaction, Advanced Materials Interfaces, 2022, IN PRESS.(https://onlinelibrary.wiley.com/doi/10.1002/admi.202101831)

 

[45] H. Li#, C. Li#*, T. Yin, QH. Yu, SL. Jin, HY. He, Q. Shen, MJ. Huang, P. Zhong*, NY. Cui, CH. Shou*, Undercoordinated Pb2+ defects passivation via tetramethoxysilane-modified for efficient and stable perovskite solar cells, Organic Electronics, 2021, 99, 106332. (https://www.sciencedirect.com/science/article/abs/pii/S1566119921002688)

 

[44] DY. Qu, YY. Jian, LH. Guo, C. Su, N. Tang, XM. Zhang, WW. Hu, Z. Wang, ZH. Zhao, P. Zhong, PP. Li, T. Du*, H. Haick*, WW. Wu*, An Organic Solvent-Assisted Intercalation and Collection (OAIC) for Ti3C2Tx MXene with Controllable Sizes and Improved Yield, Nano-Micro Letters, 2021, 13, 188. (https://link.springer.com/article/10.1007/s40820-021-00705-4)

 

[43] XM. Zhang#, JL. Nie#, F. Rao, HX. Liu, YJ. Wang, DY. Qu, WW. Wu, P. Zhong*, GQ. Zhu, Ti3C2@TiO2/g-C3N4 heterojunction photocatalyst with improved charge transfer for enhancing visible-light NO selective removal, Ceramics International, 2021, 47(22), 31302-31310. (XM. Zhang and JL. Nie contribute equally) (https://www.sciencedirect.com/science/article/pii/S0272884221023622?dgcid=author)

 

[42] HH. Zheng, YJ. Wang, BQ. Niu, R. Ge, YM. Lei, LH. Yan, JH. Si, P. Zhong*, XH. Ma, Controlling the defect density of perovskite films by MXene/SnO2 hybrid electron transport layers for efficient and stable photovoltaic, Journal of Physical Chemistry C, 2021, 125(28), 15210-15222.(https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04361

该项工作被“材料科学与工程”公众号报道 (https://mp.weixin.qq.com/s/cU4DOawj3nB8Ib1wnAoQng),并被网易、搜狐、新浪、材料Material、知乎、孜然学术等多家媒体转载。

 

[41] JL. Nie, GQ. Zhu*, WB. Zhang, JZ. Gao, P. Zhong, XT. Xie, Y. Huang*, M. Hojamberdiev, Oxygen vacancy defects-boosted deep oxidation of NO by β-Bi2O3/CeO2-δ p-n heterojunction photocatalyst in situ synthesized from Bi/Ce(CO3) (OH) precursor, Chemical Engineering Journal, 2021, 424, 130327. (https://www.sciencedirect.com/science/article/abs/pii/S1385894721019136?via%3Dihub)

 

[40] YJ Wang, BQ Niu, XM Zhang, YM Lei, P Zhong*, XH Ma, Ti3C2Tx MXene: an emerging two-dimensional layered material in water treatment, ECS Journal of Solid State Science and Technology2021, 10, 047002. (https://iopscience.iop.org/article/10.1149/2162-8777/abf2de#)

 

[39]  HH. Zheng, BQ. Niu, YJ. Wang, HMA. Javed, P. Zhong*, XH. Ma, Two-dimensional transitional metal disulfides as charge transport layers in organic-inorganic perovskite solar cells, Recent Patent on Nanotechnology, 2020, DOI:10.2174/1872210514666201223093838.(https://www.eurekaselect.com/189373/article

 

 

[38]  C. Li, ZN. Zhu, BQ. Niu, F. Yang, XP Chen, YK Ren, P. Zhong, S. Hayase, TH. Cui, and R. Yang*, Interdiffusion stomatal movement in efficient multiple-cation-based perovskite solar cells, ACS Appl. Mater. Interfaces 2020, 12, 35105-35112.   (https://pubs.acs.org/doi/abs/10.1021/acsami.0c10873)

 

[37]  V. Nguyen*, Na Zhao, Lihe Yan*, P Zhong, VC Nguyen, PH. Le, Double-pulse femtosecond laser ablation for synthesis of ultrasmall carbon nanodots, Materials Research Express, 2020, 7, 015606. (https://iopscience.iop.org/article/10.1088/2053-1591/ab6124/meta)

 

[36]   P. Zhong*, XP. Chen, BQ. Niu, C. Li, YC. Wang. H. Xi, YM. Lei, ZN. Wang, XH. Ma*, Niobium doped TiO2 nanorod arrays as efficient electron transport materials in photovoltaic, Journal of Power Sources, 2020, 450, 227715.  ( https://www.sciencedirect.com/science/article/abs/pii/S0378775320300185 )

 

[35]  YM Lei*, X. Lin, DK Wu, Z. Wang, P. Zhong, XH. Ma*, J. Sun*, Diverse Interface Structures in TiO2 (B)/Anatase Dual‐Phase Nanofibers, Advanced Materials Interfaces, 2020, IN PRESS.   ( https://onlinelibrary.wiley.com/doi/10.1002/admi.201901819 )

 

[34]  C. Li, ZN. Zhu, YM. Wang, Q. Guo, CY. Wang, P. Zhong, Z. Tan*, R. Yang*, Lead acetate produced from lead-acid battery for efficient perovskite solar cells, Nano Energy, 2020, 69, 104380.    ( https://www.sciencedirect.com/science/article/abs/pii/S2211285519310948  )

 

[33]  YM. Lei*, X. Lin, QH. Hu, NY. Cui, P. Zhong, XH. Ma, J. Sun*, The Prediction of Carbothermal Reduction Reaction Induced Ti4O7/Ti5O9 Interface Structures in Titanium Oxide Nanosystems, Advanced Materials Interfaces, 2018, 5, 1801256. 

[32]  P. Zhong, H. Xi, XH. Ma*, Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays, Polymers, 2018, 10, 4.

[31]  P. Zhong*, XP. Chen, QY. Jia, GQ. Zhu, YM. Lei, H. Xi, Y. Xie, XJ. Zhou, XH. Ma*, Annealing temperature dependent electronic properties in hydrothermal TiO2 nanorod arrays, Journal of Solid State Electrochemistry, 2018, 22, 567-580. 

[30]  H. Xi,* DZ. Chen, L. Lv, P. Zhong,  ZH. Lin, JJ. Chang, H Wang, B. Wang, XH Ma*, CF. Zhang*, High performance transient organic solar cells on biodegradable polyvinyl alcohol composite substrates, RSC Advances, 2017, 7, 52930-52937. 

[29]  P. Zhong*, XP. Chen, H. Xi, YM. Lei, XH. Ma*, Freeze Drying as a Novel Approach to Improve Charge Transport in Titanium Dioxide Nanorod Arrays, Chemelectrochem, 2017, 4, 2783-2787. 

[28]  H. Xi*, S. Tang, XH. Ma, JJ. Chang, DZ. Chen, ZH. Lin, P. Zhong, H. Wang, CF. Zhang*, Performance Enhancement of Planar Heterojunction Perovskite Solar Cells through Tuning the Doping Properties of Hole-Transporting Materials, ACS Omega, 2017, 2, 326–336.

[27]  K. Gu, P. Zhong*, MQ. Guo, J. Ma, Q. Jiang, S. Zhang, XJ. Zhou, Y. Xie, XH. Ma, Y. Wang, Sonication-polished anodic TiO2 nanotube array-based photoanode for efficient solar energy conversion, Journal of Solid State Electrochemistry, 2016, 20, 3337-3348. 

[26]  XJ. Zhou, SW. Guo*, P. Zhong, Y. Xie, ZM. Li, XH. Ma*, Large scale production of graphene quantum dots through the reaction of graphene oxide with sodium hypochlorite, RSC Advances, 2016, 6, 54644-54648. 

[25]  P. Zhong, XH. Ma*, XP. Chen, R. Zhong, XH. Liu, DJ. Ma, ML. Zhang, ZM. Li, Morphology-controllable TiO2 nanorod arrays for enhanced electron collection in dye-sensitized solar cells, Nano Energy, 2015, 16, 99-111. 

[24]  P. Zhong*, YL. Liao, WX. Que*, QY. Jia, TM. Lei, Enhanced electron collection in photoanode based on ultrafine TiO2 nanotubes by a rapid anodization process, Journal of Solid State Electrochemistry, 2014, 18, 2087-2098. 

[23]  P. Zhong, WX. Que*, J. Zhang, Y. Yuan, YL. Liao, XT. Yin, LB. Kong, X. Hu, Enhancing the performance of poly(3-hexylthiophene)/ZnO nanorod arrays based hybrid solar cells through incorporation of a third component, Science China-Physics Mechanics & Astronomy, 2014, 57, 1289-1298. 

[22]  YL. Liao*, HW. Zhang*, J. Li, GL. Yu, ZY. Zhong, FM. Bai, LJ. Jia, SH. Zhang,  P. Zhong, Ferromagnetism at room temperature in Cr-doped anodic titanium dioxide nanotubes, Journal of Applied Physics, 2014, 115, 17C304.

[21]  P. Zhong, WX. Que*, YN. Liang, XT. Yin, YL. Liao, LB. Kong, X. Hu*, Origin of the boosted exciton separation at fullerene molecule modified ZnO/poly(3-hexylthiophene) interfaces, RSC Advances, 2013, 3, 17904-17913. 

[20]  YL. Liao*, HW. Zhang*, ZY. Zhong, LJ. Jia, FM. Bai, J. Li, P. Zhong, H. Chen, J. Zhang, Enhanced visible-photocatalytic activity of anodic TiO2 nanotubes film via decoration with CuInSe2 nanocrystals, ACS Applied Materials & Interfaces, 2013, 5, 11022-11028. 

[19]  YL. Liao*, HW. Zhang*, WX. Que, P. Zhong, ZY. Zhong, FM. Bai, QY. Wen, WH. Chen, Activating the single-crystal TiO2 nanoparticles film with exposed {001} facets, ACS Applied Materials & Interfaces, 2013, 5, 6463 -6466.

[18] YL. Liao, WX. Que*, J. Zhang, P. Zhong, Y. Yuan, FY. Shen, Quantum dots coupled ZnO nanowire-array panels and their photocatalytic activities, Journal of Nanoscience and Nanotechnology, 2013, 13, 959 -963. 

[17]  HX. Xie, WX. Que*, ZL. He, P. Zhong, YL. Liao, Preparation and Photocatalytic Activities of Sb2S3/TiO2 Nanotube Coaxial Heterogeneous Structure Arrays via an Ion Exchange Adsorption Method, Journal of Alloys and Compounds, 2013, 550, 314 -319. 

[16]  P. Zhong, WX. Que*, J. Chen, X. Hu*, Elucidating the role of ultrathin Pt film in back-illuminated dye-sensitized solar cells using anodic TiO2 nanotube arrays, Journal of Power Sources, 2012, 210, 38-41. 

[15]  P. Zhong, WX. Que*, YL. Liao, J. Zhang, X. Hu*, Improved performance in dye-sensitized solar cells by rationally tailoring anodic TiO2 nanotube length, Journal of Alloys and Compounds, 2012, 540, 159-164. 

[14]  YL. Liao, WX. Que*, QY. Jia, YC. He, J. Zhang, P. Zhong, Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array, Journal of Materials Chemistry, 2012, 22, 7937-7944. 

[13]  QY. Jia, WX. Que*, XK. Qiu, P. Zhong, J. Chen, Preparation of hierarchical TiO2 microspheres for enhancing photocurrent of dye sensitized solar cells, Science China-Physics Mechanics & Astronomy, 2012, 55, 1158 -1162.

[12]  J. Zhang, WX. Que*, Y. Yuan, P. Zhong, YL. Liao, Preparation of Al-doped ZnO nanocrystalline aggregates with enhanced performance for dye adsorption, Science China-Physics Mechanics & Astronomy, 2012, 55, 1198-1202. 

[11]  P. Zhong, WX. Que*, X. Hu, Direct imprinting of ordered and dense TiO2 nanopore arrays by using a soft template for photovoltaic applications, Applied Surface Science, 2011, 257, 9872-9878. 

[10]  P. Zhong, WX. Que*, J. Zhang, QY. Jia, WJ. Wang, YL. Liao, X. Hu*, Charge transport and recombination in dye-sensitized solar cells based on hybrid films of TiO2 particles/TiO2 nanotubes, Journal of Alloys and Compounds, 2011, 509, 7808-7813. 

[9]  FY. Shen, WX Que*, P. Zhong, J. Zhang, XT. Yin, Trigonal pyramidal CuInSe2 nanocrystals derived by a new method for photovoltaic applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392, 1-6. 

[8]  GQ. Zhu, WX. Que*, J. Zhang, P. Zhong, Photocatalytic activity of SnWO4 and SnW3O9 nanostructures prepared by a surfactant-assisted hydrothermal process, Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2011, 176, 1448-1455. 

[7]  J. Zhang, WX. Que*, QY. Jia, P. Zhong, YL. Liao, XD. Ye, YC. Ding, Novel bil[ant]ayer structure ZnO based photoanode for enhancing conversion efficiency in dye-sensitized solar cells, Journal of Alloys and Compounds, 2011, 509, 7421-7426. 

[6]  YL. Liao, WX. Que*, P. Zhong, J. Zhang, YC. He, A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature, ACS Applied Materials & Interfaces, 2011, 3, 2800-2804. 

[5]  YL. Liao, WX. Que*, J. Zhang, P. Zhong, YC. He, A facile method for rapid preparation of individual titania nanotube powders by a two-step process, Materials Research Bulletin, 2011, 46, 478-482.

[4]  P. Zhong, WX. Que*, Highly ordered TiO2 nano-pore arrays fabricated from a novel polymethylmethacrylate /polydimethylsiloxane soft template, Nano-Micro Letters, 2010, 2, 1-5. 

[3]  P. Zhong, WX. Que*, J. Zhang, Fabrication of regular TiO2 nanoporous films derived by combining nanoimprint technique with sol-gel method, Journal of Nanoscience and Nanotechnology, 2010, 10, 7574-7577.

[2]  J. Zhang, WX. Que*, P. Zhong, GQ. Zhu, p-Cu2O/n-ZnO nanowires on ITO glass for solar cells, Journal of Nanoscience and Nanotechnology, 2010, 10, 7473 -7476. 

[1]  仲鹏,阙文修,朱刚强,纳米压印法制备规则TiO2纳米孔阵列薄膜,中国科技论文在线[J]. [2009-12-1].

专利

[11] 适用于水环境的钙钛矿量子点MOFs 复合发光材料及制备方法,申请号:202410152697.8,发明人:仲鹏,高程杰,曹烨,曹巍,聂俊丽,马晓华。

[10] 一种用于透明电极的Cu NWs-MXene 复合材料及其制备方法,申请号:202310301210.3,发明人:仲鹏,贺章,聂俊丽,曹巍,王巍巍。

[9]  一种基于聚氧化乙烯的轻质PEO/MXene气凝胶吸波材料及其制备方法,申请号:202210800764.3,发明人:周雪皎,文军武,仲鹏,马晓华。

[8] 一种基于丙烯酰胺绝缘层量子隧穿效应的钙钛矿太阳能电池及其制备方法,申请号:202210509772.2,发明人:仲鹏、聂俊丽、樊昱桢、王巍巍、郑欢欢。

[7] MXene/非织造纤维三维蒸发器的制备方法及水处理装置,申请号:202110924938.2,发明人:仲鹏、王艺锦、聂俊丽、周雪皎、贺章。

[6] 太阳能电池用无机空穴传输材料及制备方法和应用,专利号:ZL 2020 1 0860539.X,授权公告日:2023年2月24日,发明人:仲鹏、郑欢欢、牛兵强、王艺锦、张兴茂。

[5]  一种二维层状纳米材料MXene量子点的制备方法,专利号:ZL 2019 1 0521969.6,授权公告日:2022年4月22日,发明人:仲鹏,张兴茂,王昱程,雷毅敏,马晓华。

[4]  一种基于CuInSe2/MXene纳米复合材料的海水淡化结构,专利号:ZL 2019 1 0458003.2,授权公告日:2020年6月30日,发明人:仲鹏,王腾,王玉,刘媛,张兴茂,支元宏,马晓华。

[3]  一种异质结薄膜光伏器件的制备方法,专利号:ZL 2018 1 1232412.2,授权公告日:2020年6月30日,发明人:仲鹏,陈新鹏,马晓华,贾巧英,习鹤。

[2]  一种多层次TiO2纳米结构阵列材料的制备方法,专利号:ZL201510917987.8,授权公告日:2017年9月29日,发明人:仲鹏,马晓华,谢涌,周雪皎。

[1]  高介电损耗钛硅碳粉体微波吸收剂的制备方法,专利号:ZL 2014 1 0571175.8,授权公告日:2016年4月20日,发明人:李智敏,黄云霞,张茂林,马晓华,仲鹏。