Part-Level Fully Convolutional Networks for Pedestrian Detection

Xinran Wang

School of Electronic Engineering Xidian University, China

Pedestrian Detection

- Key problem for visual surveillance, automotive safety, and robotics applications
- Wide variety of appearances: Body pose, occlusions, clothing, lighting, and complex backgrounds

Pedestrian Statistics

The **Caltech Pedestrian Dataset** consists of approximately 10 hours of **640x480** 30Hz video taken from a vehicle driving through regular traffic in an urban environment. About 250,000 frames (in 137 approximately minute long segments) with a total of 350,000 bounding boxes and 2,300 unique pedestrians were annotated.

- Various scales: 10 ~ 250 in height (mainly 30~80)
- Occlusion: over 70% of pedestrians are occluded in at least one frame.
- **Distribution**: Narrow band running horizontally across the center of the image
- **Posture**: Stand still or walking

Distribution of pedestrians' position

0.02

0.01

<section-header>

height (pixels)

Sample frame

Occluded pedestrians

VJ Detector (ICCV 2003)

- Features of motion and appearance in integral images;
- Extension of the rectangle filters to the motion domain;
- Trained by AdaBoost algorithm;
- Very fast: 0.25 sec/image (360×240 , 2.8 GHz P4 Processor)

HOG Detector (CVPR 2005)

• Basic idea: Object appearance is characterized by the **distribution of local intensity gradients** or edge directions;

-0

Weighted R-HOGs

R-HOG

• Histogram of oriented gradient (HOG)+Linear SVM;

SquaresChnFtrs (CVPR 2013)

- Seek the strongest rigid detector;
- Best combination of features: HOG+LUV (with Nonlinear SVM);

Detector aspect	Average miss-rate	
	INRIA	ETH
Strong baseline (§2)	18.21%	55.55%
+AllFeatures(§4)	17.87%	55.50%
+ Multi-scales (§2)	15.55%	53.17%
+ GlobalNormalization (§5)	13.06%	43.90%
= Roerei detector	$\mathbf{13.06\%}$	$\mathbf{43.90\%}$
HOG+SVM	45.18%	65.03%
Previous best, VeryFast/MLS	15.40%	49.90%

ConvNet (CVPR 2013)

- Unsupervised method based on convolutional sparse coding;
- Two layers: Each layer initialized by convolutional sparse coding;
- 2nd stage: Extract a **global structure and local details**;

$$\tilde{z}_j = g_j \times \tanh\left(\sum_{i \in P_j} \left(x_i \otimes k_{j,i}\right) + b_j\right)$$

x: a set of feature maps*k*: a set of 2D filters;

$$\mathbb{E}_{ConvSC} = \sum_{i} \|x_i - \sum_{j \in \bar{P}_i} \mathcal{D}_{i,j} \otimes z_j\|_2^2 + \lambda \|z\|_2$$

Multi-scale convolutional network

D: dictionary of filters

Problem Formulation

- **Proposal shifting problem** of pedestrian detectors:
 - Poor localization quality of the detection proposals*
 - IoU ** = 0.5: Recall 93% of GT
 - IoU = 0.9: Recall only 10% of GT
- Detectors suffer from proposal shifting problem.
- Easily fail in body part detection:
 - Proposals lost some parts
 - Parts are not in the correct location
- Part-based proposal alignment is needed.

*Detection Proposal: Bounding box by pedestrian detection **IoU: Intersection of Union

Examples of proposal shifting. Colored boxes are detection proposals, image regions with black boundaries are ground truths.

Proposed Method

We combine CNN and FCN^{*} to generate the heat map and align the detection proposal. We adopt part detection to recall the lost body parts.

*Shelhamer et al., "Fully convolutional networks for semantic segmentation," Proc. IEEE CVPR 2015.

CNN Architecture: *CifarNet*

- Use CifarNet* for learning multiple layers of features (caffe)
- 3 convolutional layers, 3 pooling layers, 2 fully connected layers, softmax output

*Hosang et al., "Taking a Deeper Look at Pedestrians," Proc. IEEE CVPR 2015.

Training: Part-Level CNNs

Example: Training the head detector

- **Training data**: Every 3th frames in the training sequences (42782 frames; average 3 windows/frame);
- Whole body: Proposals resized into 128×64 ;
- Part division: Divide ground truth regions into 4 body parts (head, left torso & right torso: 32×32, leg: 64×64)
- Train 5 CNNs for whole body, head, left torso, right torso and legs.
- 532 Mini-batch (128 patches) x 70 epochs to get the parameter set

FCN: Fully Convolutional Network

- Generate heat map for inference (Semantics);
- Transform fully connected layers into convolution layers;

$$f_{ks} \circ g_{k's'} = (f \circ g)_{k'+(k-1)s',ss'}$$

Convolutionalization

Testing: Part-Level FCN (CNN+FCN)

- Crop larger regions as proposals: $128 \times 64 \rightarrow 160 \times 80$
- Detection proposals: SquaresChnFtrs*(HOG+LUV);
- Output: Heat map by FCN for whole body or each part
- Benenson et al., "Seeking the strong rigid detector," Proc. IEEE CVPR 2013.

BB Alignment

- Origin: Original BB, The person is located at the top left position;
- Larger: Enlarged BB;
- Heat map: Output of FCN (Coarse map);
- Enlarged: Shift each heat map by f(=3) pixels on 2 directions (dilation), and combine them;
- **Up-sampled**: Up-sampled heat map into a corresponding size;
- Better: Align BB with the highest average score;

• Evaluation metrics:

Miss rate-false positive per image (FPPI) curve; Log-average miss rate;

• Detection proposals:

Generated by SquaresChnFtrs (Log-average miss rate: about 34.8%);

3 methods for performance comparison:

CifarNet: CifarNet on pedestrian detection (CVPR 2015);

CifarNet+SH: CifarNet with BB alignment;

CifarNet+SH+P: Proposed (Part-level FCNs with BB alignment);

6.83% improvement in log-average miss rate over CifarNet

Method	Avg. miss rate (%)	Improvement (%)
CifarNet	29.35	
CifarNet+SH	26.27	3.08
CifarNet+SH+P	22.52	3.75

Comparison with other deep learning ones with a few convolution layers More layers

	training data	miss rate (%)
ConvNet	INRIA	77.20
DBN-Isol	INRIA	53.14
DBN-Mut	INRIA/Caltech	48.22
JointDeep	INRIA/Caltech	39.32
SDN	INRIA/Caltech	37.87
LFOV	Caltech	35.85
DeepCascade	Caltech	31.11
CifarNet	Caltech	28.40
DeepCascade+	Caltech+	26.21
SCF+AlexNet	Caltech+ImageNet	23.32
Proposed	Caltech	22.52
TA-CNN	Caltech++	20.86
DeepParts	Caltech+ImageNet	11.89
SA-FastRCNN	Caltech+ImageNet	9.68

• BB alignment results

Conclusions

- We have proposed part-level fully convolutional networks for pedestrian detection.
- We have handled **detection proposal shifting problem using deep learning.**
- Two main contributions to pedestrian detection:
 - Part-level detection to recall the lost body parts
 - CNN+FCN for BB alignment
- We have achieved **6.83% performance improvement** in log-average miss rate over CifarNet.

THANK YOU!