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Abstract
An equitable tree-k-coloring of a graph is a vertex coloring using k distinct colors such
that every color class induces a forest and the sizes of any two color classes differ by
at most one. The equitable vertex arboricity conjecture states that every graph with
maximum degree � has an equitable tree-m-coloring for every m ≥ ��+1

2 �. In this
paper, we verify this conjecture for graphs with maximum degree at most 6.

Keywords Equitable partition · Vertex arboricity · Vertex coloring

1 Introduction

We only consider simple and fiite graphs in this paper. For a graph G, V (G), E(G),
�(G), and δ(G) denote the vertex set, the edge set, the minimum degree, and the
maximum degree of G, respectively. By |G|, we denoted the value of |V (G)|. For two
disjoint subsets U ,W ⊆ V (G), e(U ,W ) denotes the number of edges that have one
end-vertex inU and the other inW . For a vertex v ∈ V (G) and a set S ⊆ V (G), NS(v)

is the set of vertices in S that are adjacent to v, and dS(v) is the number of vertices
in S that are adjacent to v. For convenience, we write NG(v) and dG(v) instead of
NV (G)(v) and dV (G)(v). For S ⊆ V (G), G[S] denotes the subgraph of G induced by
S.

An equitable tree-k-coloring of a graph is a vertex k-coloring such that each color
class induces a forest and the size of any color class is �|G|/k� or �|G|/k�. The
minimum integer k such that G has a equitable tree-k-coloring is the equitable vertex
arboricity of G, denoted by vaeq(G). The equitable vertex arboricity threshold of
G is the smallest k such that G has an equitable tree-k′-coloring for every k′ ≥ k,
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denoted by va∗
eq(G). The difference between vaeq(G) and va∗

eq(G) can be any large,
see Kn,n for an easy example.

The equitable tree-k-coloring was initially introduced byWu, Zhang and Li [14] in
2013. They conjectured that there is a constant c independent ofG such that va∗

eq (G) ≤
c for every planar graph G. In 2016, Esperet, Lemoine, and Maffray verified this
conjecture by proving va∗

eq(G) ≤ 4 for every planar graph G. It is still open whether
every planar graph can be equitably partitioned into three induced forests. Concerning
this problem,Kim,Oum, andZhang [7] proved that every planar graph can be equitably
partitioned into three induced graphs, two of which are forests; and every planar
graph can be equitably partitioned into three induced 2-degenerate graphs. Another
interesting conjecture posed by Wu, Zhang and Li [14] is the following so-called
equitable vertex arboricity conjecture (EVAC for short).

Conjecture 1.1 If G is a graph with maximum degree �, then G has an equitable

tree-m-coloring for every m ≥ ��+1
2 �. In other words, va∗

eq(G) ≤
⌈

�(G)+1
2

⌉
for

every graph G.

In 2014, Zhang and Wu [20] proved that every graph G has an equitable tree-
��(G)+1

2 �-coloring provided �(G) ≥ |G|/2. Later in 2020, Zhang and Niu [20]
verified EVAC for graphs G with �(G) ≥ (|G| − 1)/2. For graphs with small
maximum degree, Zhang [18] showed that every subcubic graph has an equitable
tree-m-coloring for every m ≥ 2. In 2017, Chen, Gao, Shan, Wang, and Wu [1]
considered EVAC for degenerate graphs. They proved that EVAC holds for every 5-
degenerate graphs. For graphs with larger degeneracy, Zhang, Niu, Li, and Li [19]
proved that every d-degenerate graph with maximum degree at most � has an equi-
table tree-m-coloring for everym ≥ ��+1

2 � provided that � ≥ 9.818d. Other specific
problems related to the equitable tree coloring of graphs have also been investigated
by numerous authors [2–6, 8–13, 15–17].

Following this line of thought, in this paper, we prove the following, which implies
that EVAC completely holds for graphs with maximum degree 6.

Theorem 1.1 If G is a graph with maximum degree � ≤ 6, then G has an equitable
tree-m-coloring for every m ≥ max{��+1

2 �, 4}.

2 The Proof of theMaim Theorem

Lemma 2.1 Let m ≥ 4 be an integer and G be the class of graphs with �(G) ≤ 6. If
G has an equitable tree-m-coloring for every graph G ∈ G with |G| divisible by m,
then G has an equitable tree-m-coloring for every graph G ∈ G.

Proof We prove this Lemma by induction on the order n of G. We assume m � n
because otherwise we are already done. Let t be an integer such that mt < n <

m(t + 1). Let u ∈ V (G). By the induction hypothesis, G − u has an equitable tree-
m-coloring ϕ with color classes V1, V2, . . . , Vm such that |Vi | = t or t + 1 for all
i ∈ [m].
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Since dG(u) ≤ 6, we may assume that each of the colors 4, 5, . . . ,m appears at
most once among NG(u). If |Vi | = t for some i ≥ 4, then by adding u to Vi , we get
an equitable tree-m-coloring of G. Hence we assume that |Vi | = t + 1 for all i ≥ 4.
It follows

m(t + 1) − 1 ≥ n ≥ 1 + (m − 3)(t + 1) + 3t = m(t + 1) − 2,

and thus n = m(t + 1) − 1 or n = m(t + 1) − 2.
If n = m(t+1)−1, thenG ′ := G∪K1 is a graph of orderm(t+1) and�(G ′) ≤ 6.

By our assumption, G ′ has an equitable m-tree coloring ϕ′ with the size of each color
class being exactly t + 1. Restricting ϕ′ to G, we obtain an equitable tree-m-coloring
of G.

If n = m(t + 1) − 2, then let G ′ := G ∪ K2, where the K2 is denoted as vw.
By our assumption, G ′ has a tree-m-coloring ϕ′ with color classes V1, . . . , Vm such
that |Vi | = t + 1 for each i ∈ [m]. If v and w are in different color classes of ϕ′,
then restricting ϕ′ to G, we obtain an equitable tree-m-coloring of G. If v and w are
in a same color class of ϕ′, say V1, then we look into two cases. First, if there exist
a vertex x ∈ Vi for some i ∈ {2, . . . ,m}, say i = 2, such that dV1(x) ≤ 1, then G
has an equitable tree-m-partition (V1 ∪ {x} \ {v,w}, V2 \ {x}, V3, . . . , Vm). Next, if
dV1(x) ≥ 2 for each x ∈ ∪m

i=2Vi , then

6(t − 1) = 6(|V1| − 2) ≥ e(V1,∪m
i=2Vi ) ≥ 2(m − 1)(t + 1) ≥ 6(t + 1),

a contradiction. �
ByLemma 2.1, it is sufficient to verify Theorem1.1 for graphsG withm | |G|. Now

we set |G| = mt , where t is a positive integers, and prove the theorem by induction
on |E(G)|.

Choose a vertex x ∈ V (G) such that d := dG(x) = δ(G) ≤ 6. Let NG(x) =
{x1, . . . , xd}. By induction, the graph G \ {xx1} has an equitable tree-m-coloring ϕ

with color classes V1, . . . , Vm such that |Vi | = t for each 1 ≤ i ≤ m. Clearly, ϕ is
also an equitable tree-m-coloring of G unless x and x1 belong to a same color class,
say V1, and meanwhile, there is a cycle passing through xx1 in G[V1]. Let x2 be the
other neighbor of x on that cycle. Since x has at most 4 neighbors among ∪m

i=2Vi , we
may assume

dVi (x) ≤ 1, 4 ≤ i ≤ m. (2.1)

Let I1 be a set of isolated vertices in G[V1], and let V ′
1 = V1 \ {I1 ∪ {x}}. Since

x1, x2 /∈ I1, V ′
1 �= ∅ and thus 2 ≤ |V ′

1| ≤ t − 1.
A vertex v ∈ Vi is movable to a color class Vj with j �= i if G[Vj ∪ {v}] contains

no cycles. In other words, if v is not movable to Vj , then dVj (v) ≥ 2 and there is a
vertex u ∈ NVj (v) such that dVj (u) ≥ 1. For vertices u ∈ Vi and v ∈ Vj , exchanging
u and v refers to moving u into Vj and v into Vi .

Lemma 2.2 Vertices in ∪m
i=4Vi are not movable to V ′

1.
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Proof Suppose, to the contrary, that v ∈ ∪m
i=4Vi that is movable to V ′

1. Now, exchang-
ing the vertices x and v, we obtain an equitable tree-m-coloring of G. �
Lemma 2.3 There exists a vertex w ∈ V2 ∪ V3 that is movable to V ′

1.

Proof Otherwise, dV ′
1
(w) ≥ 2 for each w ∈ V2 ∪ V3. By Lemma 2.2, dV ′

1
(v) ≥ 2 for

each v ∈ ∪m
i=4Vi . For every vertex v ∈ V ′

1, dV ′
1
(v) ≥ 1 by the definition of V ′

1. So
dG\V ′

1
(v) ≤ � − 1. Hence

(� − 1)(t − 1) ≥ e(V ′
1,∪m

i=2Vi ) ≥ 2(m − 1)t ≥ (� − 1)t,

a contradiction. �
By Lemma 2.3, we assume, without loss of generality, that V2 has a vertex w2 that

is movable into V ′
1. Let V

′
2 = V2 \ {w2}

Lemma 2.4 Every vertices in ∪m
i=4Vi are not movable to V ′

2.

Proof Otherwise, there is a vertex v ∈ ∪m
i=4Vi movable to V ′

2. For convenience, we
assume v ∈ V4. Moving w2, v, x into V1, V2, V4, respectively, we obtain an equitable
tree-m-coloring of G. �

For two vertices x ∈ Vi and y ∈ Vj with i �= j , if both G[Vi ∪ {y} \ {x}] and
G[Vj ∪{x} \ {y}] are forests, then we say that (x, y) is an exchangeable pair between
Vi and Vj .

Lemma 2.5 Suppose that dV ′
2
(v) = 2 for every vertex v ∈ Vi with 4 ≤ i ≤ m. Let

z ∈ V ′
2.

(a) Let v ∈ Vi , where 4 ≤ i ≤ m. If G[V ′
2 ∪ {v} \ {z}] has no cycles, then

(a1) dV ′
2
(z) ≥ 1;

(a2) dV ′
1
(z) ≥ 2 provided vw2 /∈ E(G);

(a3) dVi (z) ≤ 3 provided vw2 /∈ E(G), and moreover, the equality implies zx /∈
E(G).

(b) If there is a vertex v ∈ Vi with 4 ≤ i ≤ m such that zv ∈ E(G) and vw2 /∈ E(G),
then dVi (z) ≤ 2 and (z, v) forms an exchangeable pair.

(c) Let y1 and y2 be two nonadjacent vertices in Vi such that (z, y1) and (z, y2) are
exchangeable pairs.

(c1) If 4 ≤ i ≤ m, or i = 3 and dV ′
2
(v) = 2 for every vertex v ∈ V3, then

G[V ′
2 ∪ {y1, y2} \ {z}] is a forest provided dVi (x) ≤ 1.

(c2) Suppose 4 ≤ i ≤ m and suppose y1w2 /∈ E(G) or y2w2 /∈ E(G). If dVi (z) �=
1, or dVi (z) = 1 and the neighbor of z in Vi is not adjacent to w2, then

(c2.1) G[Vi ∪ {z, w3} \ {y1, y2}] is a forest for each vertex w3 ∈ V3 such that
dVi (w3) ≤ 1;

(c2.2) dV ′
2
(x) + dVi (x) ≤ 3.
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Proof (a1) Since G[V ′
2 ∪ {v} \ {z}] has no cycles, if there is a cycle in G[V ′

2 ∪ {v}]
then it would pass z. This is impossible if dV ′

2
(z) = 0. Hence, moving w2, v, x into

V1, V2, Vi , respectively, we obtain an equitable tree-m-coloring of G, a contradiction.
(a2) Suppose that dV ′

1
(z) ≤ 1 and vw2 /∈ E(G). If G[V2 ∪{v} \ {z}] is a forest, then

moving z, x, v into V1, Vi , V2, respectively, we obtain an equitable tree-m-coloring of
G, a contradiction. Hence G[V2 ∪ {v} \ {z}] contains a cycle C1, and by the symmetry
of z and w2 (note that both z and w2 are movable to V ′

1), G[V2 ∪ {v} \ {w2}] contains
a cycle C2. Since G[V ′

2 ∪ {v} \ {z}], G[V2 \ {z}], and G[V2 \ {w2}] have no cycles,

• C1 passes v,w2, and does not pass z;
• C2 passes v, z, and does not pass w2.

Since vw2 /∈ E(G) and dV ′
2
(v) = 2, dV2(v) = 2 and we set NV2(v) = {a, b}. Clearly,

the path avb are on bothC1 andC2. This implies thatG[V (C1)∪V (C2)\{v}] contains
a cycle, a contradiction.

(a3) By (a1) and (a2), dVi (z) ≤ � − 1 − 2 ≤ 3. Moreover, if dVi (z) = 3, then
dV ′

2
(z) = 1 and dV ′

1
(z) = 2, which implies zx /∈ E(G).

(b) Since dV ′
2
(v) = 2 and zv ∈ E(G), G[V ′

2 ∪ {v} \ {z}] has no cycles.
By (a3), dVi (z) ≤ 3. If dVi (z) = 3, then z has two neighbors y1 and y2 in Vi such

that they are not adjacent (otherwise there would be a triangle in the graph induced by
Vi ) and zx /∈ E(G) by (a3). Now, moving w2 into V1, y1, y2 into V2, and z, x into Vi ,
we obtain an equitable tree-m-coloring of G, a contradiction. Hence dVi (z) ≤ 2 and
therefore (z, v) forms an exchangeable pair between V ′

2 and Vi .
(c1) Suppose thatG[V ′

2∪{y1, y2}\{z}] contains a cycleC . Since (z, y1) and (z, y2)
are exchangeable pairs, G[V ′

2 ∪{y1} \ {z}] and G[V ′
2 ∪{y2} \ {z}] have no cycles. This

concludes that

• C passes y1 and y2.

If zy1 ∈ E(G), then dV ′
2
(y1) = 2 and y1y2 /∈ E(G) implies that y1 has degree

one in G[V ′
2 ∪ {y1, y2} \ {z}], and thus it cannot be contained in any cycles there, a

contradiction. Hence zy1 /∈ E(G), and by symmetry, zy2 /∈ E(G).
If G[V ′

2 ∪ {y1}] has no cycles, then we move w2, y1, x to V1, V2, Vi , respectively.
This gives an equitable tree-m-coloring of G. Hence G[V ′

2 ∪ {y1}] contains a cycle
C1, and by symmetry, G[V ′

2 ∪ {y2}] contains a cycle C2.
Since G[V ′

2 ∪ {y1} \ {z}] and G[V ′
2 ∪ {y2} \ {z}] have no cycles, we conclude the

following:

• C1 passes y1 and z;
• C2 passes y2 and z.

Denote C by a1y1b1 · · · a2y2b2 · · · a1 (it is possible that a1 = b2 or a2 = b1). Since
dV ′

2
(y1) = dV ′

2
(y2) = 2, we have a1, b1 ∈ V (C1) and a2, b2 ∈ V (C2). Let P(z, a1)

be the path on C1 from z to a1 that does not pass y1, P(b2, z) be the path on C2 from
b2 to z that does not pass y2, and P(a1, b2) be the path on C from a1 to b2 that does
not pass y1 and y2. We walk along a trail that connects by turn P(z, a1), P(a1, b2)
and P(b2, z), and find a cycle in G[V ′

2], a contradiction.
(c2.1) Suppose that G[Vi ∪ {z, w3} \ {y1, y2}] has a cycle C . Since (z, y1) is an

exchangeable pair, G[Vi ∪ {z} \ {y1, y2}] has no cycles. Therefore, C passes w3, and
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thusw3 has degree at least two inG[Vi ∪{z, w3}\{y1, y2}]. This implies zw3 ∈ E(G),
as dVi (w3) ≤ 1. On the other hand, dVi (w3) ≤ 1 implies that G[Vi ∪ {w3} \ {y1, y2}]
has no cycles. Therefore, C passes z, and thus z has degree at least two in G[Vi ∪
{z, w3} \ {y1, y2}]. Now, since zw3 ∈ E(G), we conclude dVi (z) ≥ 1, and by (a1) and
(a2), we further have dVi (z) ≤ � − (1 + 2 + 1) ≤ 2.

If dVi (z) = 2, then zx /∈ E(G). We obtain an equitable tree-m-coloring of G by
moving w2 into V1, y1, y2 into V2, and x, z into Vi , respectively. Note that G[V2 ∪
{y1, y2} \ {z, w2}] is a forest by (c1).

If dVi (z) = 1, then let y ∈ Vi such that yz ∈ E(G) (it is possible that y ∈ {y1, y2}).
By Lemmas 2.2 and 2.4, dV ′

1
(y) ≥ 2 and dV ′

2
(y) ≥ 2. If yy1, yy2 ∈ E(G), then

dVi\{y1,y2}(y) = 0 and yw3 /∈ E(G). This implies that G[Vi ∪ {z, w3} \ {y1, y2}] has
no cycles, a contradiction. Hence we assume by symmetry that yy1 /∈ E(G). By (b),
(z, y) is an exchangeable pair because yw2 /∈ E(G), and then by (c1),G[V2∪{y, y1}\
{z, w2}] is a forest. Since dVi (z) = 1 and zy ∈ E(G), G[Vi ∪ {x, z} \ {y, y1}] is a
forest. Therefore, we obtain an equitable tree-m-coloring of G by moving w2 into V1,
y, y1 into V2, and x, z into Vi , respectively.

(c2.2) Suppose that dV ′
2
(x) + dVi (x) ≥ 4 for some 4 ≤ i ≤ m. Since dV ′

1
(x) ≥ 2

and � ≤ 6, dV ′
2
(x) + dVi (x) = 4. If dVi (x) = 0, then we move w2 into V1, y1, y2

into V2, and z, x into Vi . This gives an equitable tree-m-coloring of G by (c1). So
dVi (x) = 1, which follows dV ′

2
(x) = 3 and dV3(x) = 0. Note that dV ′

1
(x) ≥ 2.

Let v ∈ V3. If dV ′
2
(v) ≤ 1, then we move w2, x, v into V1, V3, V2, respectively.

This gives an equitable tree-m-coloring of G, a contradiction. If dV ′
1
(v) ≤ 1, then

exchanging x and v also results in an equitable tree-m-coloring of G, a contradiction.
Hence dV ′

1
(v) ≥ 2 and dV ′

2
(v) ≥ 2. If dV2(v) ≥ 3, then dVi (v) ≤ 1. We move w2 into

V1, y1, y2 into V2, x into V3, and z, v into Vi . This gives an equitable tree-m-coloring
of G by (c1) and (c2.1), a contradiction. Therefore, dV2(v) = 2 for every v ∈ V3. If
vw2 ∈ E(G), then dV ′

2
(v) = 1. We move w2, v, x into V1, V2, V3, respectively, and

obtain an equitable tree-m-coloring of G, a contradiction. Hence vw2 /∈ E(G) and
dV ′

2
(v) = 2.
We now count the number f of exchangeable pairs between V ′

2 and V3.
Let v ∈ V3 and let u ∈ V ′

2 such that uv ∈ E(G). If dV ′
1
(u) ≤ 1, thenwemove u, v, x

into V1, V2, V3, respectively. If dV ′
2
(u) = 0, then we move w2, v, x into V1, V2, V3,

respectively. In either caseweobtain an equitable tree-m-coloringofG, a contradiction.
So dV ′

1
(u) ≥ 2, dV ′

2
(u) ≥ 1, and thus dV3(u) ≤ � − (2 + 1) ≤ 3. If dV3(u) = 3,

then u has two neighbors u1 and u2 in V3 such that they are not adjacent. Move w2
into V1, u1, u2 into V2, and u, x into V3. This gives an equitable tree-m-coloring of G
by (c1) and by the fact that dV3(x) = 0. Hence dV3(u) ≤ 2 and thus (u, v) forms an
exchangeable pair between V ′

2 and V3. This implies f ≥ 2|V3| = 2t .
Now we count f in another direction. Let u ∈ V ′

2. If there are three vertices
u1, u2, u3 ∈ V3 such that (u, u j ) forms an exchangeable pair between V ′

2 and V3 for
each j ∈ [3], then we assume, without loss of generality, that u1u2 /∈ E(G). We move
w2 into V1, u1, u2 into V2, and u, x into V3. SinceG[V2∪{u1, u2}\{u, w2}] is a forest
by (c1) and dV3(x) = 0, this gives an equitable tree-m-coloring of G, a contradiction.
So there are at most two vertices in V3 forming exchangeable pairs with u. This gives
f ≤ 2|V ′

2| = 2(t − 1), a contradiction. �
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Lemma 2.6 There exists y ∈ Vi for some 4 ≤ i ≤ m such that dV2(y) ≥ 3 and
dV3(y) ≤ 1.

Proof Arbitrarily fix an integer i so that 4 ≤ i ≤ m. Suppose dV2(v) ≤ 2 for every
vertex v ∈ Vi .

Let v ∈ Vi . If vw2 ∈ E(G), then dV ′
2
(v) ≤ 1. We move w2, v, x into V1, V2, Vi ,

respectively, and obtain an equitable tree-m-coloring of G, a contradiction. Hence
vw2 /∈ E(G). If dV ′

2
(v) ≤ 1, then we obtain an equitable tree-m-coloring by moving

w2, v, x into V1, V2, Vi , respectively. Hence 2 ≥ dV2(v) ≥ dV ′
2
(v) ≥ 2. Therefore,

for every vertex v ∈ Vi , we have vw2 /∈ E(G) and dV ′
2
(v) = 2.

We count the number f of exchangeable pairs between V ′
2 and Vi as follows. For

each v ∈ Vi and each z ∈ NV ′
2
(v), (z, v) is an exchangeable pair by Lemma 2.5(b),

which implies f ≥ 2|Vi | = 2t .
On the other hand, let z ∈ V ′

2. If there are vertices y1, y2, y3 ∈ Vi such that (z, y j )
forms an exchangeable pair between V ′

2 and Vi for each j ∈ [3], then we assume,
without loss of generality, that y1y2 /∈ E(G). Since dVi (x) ≤ 1, G[V2 ∪ {y1, y2} \
{z, w2}] is a forest by Lemma 2.5(c1). If we further have thatG[Vi ∪{z, x}\{y1, y2}] is
a forest, thenwe obtain an equitable tree-m-coloring ofG bymovingw2 into V1, y1, y2
into V2, and z, x into Vi . If we come to the case thatG[Vi ∪{z, x}\{y1, y2}] has a cycle,
then zx ∈ E(G) anddVi \{y1,y2}(x) = 1. It follows that xy1 /∈ E(G). IfdV ′

2
(x) ≤ 2, then

wemovew2 intoV1, x, y1 intoV2, and z intoVi . This gives an equitable tree-m-coloring
ofG. Hence dV ′

2
(x) ≥ 3, and thus dV ′

2
(x)+dVi (x) ≥ 3+1 = 4, contradicting Lemma

2.5(c2.2) (note that all conditions needed by this lemma are satisfied as vw2 /∈ E(G)

for every vertex v ∈ Vi ). So there are at most two vertices in Vi forming exchangeable
pairs with z, and therefore, f ≤ 2|V ′

2| = 2(t − 1), a contradiction.
This proves that there is a vertex y ∈ Vi such that dV2(y) ≥ 3. Finally, since

dV ′
1
(y) ≥ 2 by Lemma 2.2, dV3(y) ≤ � − (2 + 3) ≤ 1. �
In the following, we set y be a vertex in Vi with 4 ≤ i ≤ m such that dV3(y) ≤ 1,

which exists by Lemma 2.6.

Lemma 2.7 dV ′
2
(v) ≥ 2 for every vertex v ∈ V3.

Proof If there exists v ∈ V3 such that dV ′
2
(v) ≤ 1, then we move w2, v, y, x into

V1, V2, V3, Vi , respectively, and obtain an equitable tree-m-coloring of G, a contra-
diction. �

Let

A = {v | v ∈ ∪m
i=3Vi , dV2(v) = 2},

A′ = {v | v ∈ ∪m
i=3Vi , dV ′

2
(v) = 2},

B = A′ \ N∪m
i=3Vi

(w2),

S = NV2(A),

S′ = NV ′
2
(B).

Lemma 2.8 dV ′
1
(z) ≥ 2 for every z ∈ S.
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Proof Suppose, to the contrary, that dV ′
1
(z) ≤ 1 for some z ∈ S. It follows that there

is a vertex v ∈ Vj for some 3 ≤ j ≤ m such that zv ∈ E(G).
If j = 3, then we move z, v, y, x into V1, V2, V3, Vi (4 ≤ i ≤ m), respectively.

If 4 ≤ j ≤ m, then we move z, v, x into V1, V2, Vj , respectively. In either case we
obtain an equitable tree-m-coloring of G, a contradiction. �
Lemma 2.9 S′ ⊆ S.

Proof Let s ∈ S′. It follows that there is a vertex b ∈ B such that bs ∈ E(G). Since
b /∈ N∪m

i=3Vi
(w2), dV2(b) = dV ′

2
(b) = 2. Therefore, b ∈ A and thus s ∈ S. �

We are ready to complete the proof of Theorem 1.1. Since d∪m
i=3Vi

(z) ≤ �− 2 ≤ 4
for every z ∈ S′ by Lemmas 2.8 and 2.9, 2|B| = e(B, S′) ≤ 4|S′| by the definition of
B, implying

|B| ≤ 2|S′|. (2.2)

Also, we have

3(m − 2)t − |A′| = 2|A′| + 3(| ∪m
i=3 Vi | − |A′|)

Lemmas 2.4 and 2.7≤ e(V ′
2,∪m

i=3Vi )

Lemmas 2.8 and 2.9≤ (� − 2)|S′| + �(|V ′
2 \ S′|)

= �(t − 1) − 2|S′|. (2.3)

Since � ≤ 6,

|A′| − |B| ≤ 6. (2.4)

Combing (2.2), (2.3) and (2.4) together, we deduce

6(t − 1) − 2|S′| (2.2)≤ 6t − (|B| + 6)
(2.4)≤ 6t − |A′|

(2.3)≤ e(V ′
2,∪m

i=3Vi )
(2.3)≤ 6(t − 1) − 2|S′| (2.5)

as m ≥ 4 and � ≤ 6. This implies that all qualities in (2.5) holds and therefore

• d∪m
i=3Vi

(z) = � − 2 for every vertex z ∈ S′, and
• d∪m

i=3Vi
(z) = � for every vertex z ∈ V ′

2 \ S′.

Combining this with Lemmas 2.8 and 2.9, we conclude that dV2(z) = 0 for every
z ∈ V ′

2, i.e., V
′
2 is an independent set. Exchanging x and w2, we finally receive an

equitable tree-m-coloring of G, a contradiction.
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