ORIGINAL PAPER

Equitable Vertex Arboricity of Graphs with Low Maximum Degree

Ping Chen¹ · Weichan Liu² · Xin Zhang¹

Received: 23 August 2024 / Accepted: 13 May 2025 © The Author(s), under exclusive licence to Springer Nature Japan KK 2025

Abstract

An equitable tree-*k*-coloring of a graph is a vertex coloring using *k* distinct colors such that every color class induces a forest and the sizes of any two color classes differ by at most one. The equitable vertex arboricity conjecture states that every graph with maximum degree Δ has an equitable tree-*m*-coloring for every $m \ge \lceil \frac{\Delta+1}{2} \rceil$. In this paper, we verify this conjecture for graphs with maximum degree at most 6.

Keywords Equitable partition · Vertex arboricity · Vertex coloring

1 Introduction

We only consider simple and fitte graphs in this paper. For a graph G, V(G), E(G), $\Delta(G)$, and $\delta(G)$ denote the vertex set, the edge set, the minimum degree, and the maximum degree of G, respectively. By |G|, we denoted the value of |V(G)|. For two disjoint subsets $U, W \subseteq V(G), e(U, W)$ denotes the number of edges that have one end-vertex in U and the other in W. For a vertex $v \in V(G)$ and a set $S \subseteq V(G), N_S(v)$ is the set of vertices in S that are adjacent to v, and $d_S(v)$ is the number of vertices in S that are adjacent to v. For convenience, we write $N_G(v)$ and $d_G(v)$ instead of $N_{V(G)}(v)$ and $d_{V(G)}(v)$. For $S \subseteq V(G), G[S]$ denotes the subgraph of G induced by S.

An *equitable tree-k-coloring* of a graph is a vertex k-coloring such that each color class induces a forest and the size of any color class is $\lceil |G|/k \rceil$ or $\lfloor |G|/k \rfloor$. The minimum integer k such that G has a equitable tree-k-coloring is the *equitable vertex arboricity* of G, denoted by $va_{eq}(G)$. The *equitable vertex arboricity threshold* of G is the smallest k such that G has an equitable tree-k'-coloring for every $k' \ge k$,

Communicated by Ingo Schiermeyer.

[⊠] Xin Zhang xzhang@xidian.edu.cn

¹ School of Mathematics and Statistics, Xidian University, Xi'an 710071, China

² School of Mathematics, Shandong University, Jinan 250100, China

denoted by $va_{eq}^*(G)$. The difference between $va_{eq}(G)$ and $va_{eq}^*(G)$ can be any large, see $K_{n,n}$ for an easy example.

The equitable tree-k-coloring was initially introduced by Wu, Zhang and Li [14] in 2013. They conjectured that there is a constant c independent of G such that $va_{eq}^*(G) \leq c$ for every planar graph G. In 2016, Esperet, Lemoine, and Maffray verified this conjecture by proving $va_{eq}^*(G) \leq 4$ for every planar graph G. It is still open whether every planar graph can be equitably partitioned into three induced forests. Concerning this problem, Kim, Oum, and Zhang [7] proved that every planar graph can be equitably partitioned into three induced 2-degenerate graphs. Another interesting conjecture posed by Wu, Zhang and Li [14] is the following so-called equitable vertex arboricity conjecture (EVAC for short).

Conjecture 1.1 If G is a graph with maximum degree Δ , then G has an equitable tree-m-coloring for every $m \geq \lceil \frac{\Delta+1}{2} \rceil$. In other words, $va_{eq}^*(G) \leq \lceil \frac{\Delta(G)+1}{2} \rceil$ for every graph G.

In 2014, Zhang and Wu [20] proved that every graph *G* has an equitable tree- $\lceil \frac{\Delta(G)+1}{2} \rceil$ -coloring provided $\Delta(G) \ge |G|/2$. Later in 2020, Zhang and Niu [20] verified EVAC for graphs *G* with $\Delta(G) \ge (|G| - 1)/2$. For graphs with small maximum degree, Zhang [18] showed that every subcubic graph has an equitable tree-*m*-coloring for every $m \ge 2$. In 2017, Chen, Gao, Shan, Wang, and Wu [1] considered EVAC for degenerate graphs. They proved that EVAC holds for every 5-degenerate graphs. For graphs with larger degeneracy, Zhang, Niu, Li, and Li [19] proved that every *d*-degenerate graph with maximum degree at most Δ has an equitable tree-*m*-coloring for every $m \ge \lceil \frac{\Delta+1}{2} \rceil$ provided that $\Delta \ge 9.818d$. Other specific problems related to the equitable tree coloring of graphs have also been investigated by numerous authors [2–6, 8–13, 15–17].

Following this line of thought, in this paper, we prove the following, which implies that EVAC completely holds for graphs with maximum degree 6.

Theorem 1.1 If G is a graph with maximum degree $\Delta \leq 6$, then G has an equitable tree-m-coloring for every $m \geq \max\{\lceil \frac{\Delta+1}{2} \rceil, 4\}$.

2 The Proof of the Maim Theorem

Lemma 2.1 Let $m \ge 4$ be an integer and \mathcal{G} be the class of graphs with $\Delta(G) \le 6$. If G has an equitable tree-m-coloring for every graph $G \in \mathcal{G}$ with |G| divisible by m, then G has an equitable tree-m-coloring for every graph $G \in \mathcal{G}$.

Proof We prove this Lemma by induction on the order *n* of *G*. We assume $m \nmid n$ because otherwise we are already done. Let *t* be an integer such that mt < n < m(t+1). Let $u \in V(G)$. By the induction hypothesis, G - u has an equitable tree*m*-coloring φ with color classes V_1, V_2, \ldots, V_m such that $|V_i| = t$ or t + 1 for all $i \in [m]$. Since $d_G(u) \le 6$, we may assume that each of the colors 4, 5, ..., *m* appears at most once among $N_G(u)$. If $|V_i| = t$ for some $i \ge 4$, then by adding *u* to V_i , we get an equitable tree-*m*-coloring of *G*. Hence we assume that $|V_i| = t + 1$ for all $i \ge 4$. It follows

$$m(t+1) - 1 \ge n \ge 1 + (m-3)(t+1) + 3t = m(t+1) - 2$$

and thus n = m(t + 1) - 1 or n = m(t + 1) - 2.

If n = m(t+1) - 1, then $G' := G \cup K_1$ is a graph of order m(t+1) and $\Delta(G') \le 6$. By our assumption, G' has an equitable *m*-tree coloring φ' with the size of each color class being exactly t + 1. Restricting φ' to G, we obtain an equitable tree-*m*-coloring of G.

If n = m(t + 1) - 2, then let $G' := G \cup K_2$, where the K_2 is denoted as vw. By our assumption, G' has a tree-*m*-coloring φ' with color classes V_1, \ldots, V_m such that $|V_i| = t + 1$ for each $i \in [m]$. If v and w are in different color classes of φ' , then restricting φ' to G, we obtain an equitable tree-*m*-coloring of G. If v and w are in a same color class of φ' , say V_1 , then we look into two cases. First, if there exist a vertex $x \in V_i$ for some $i \in \{2, \ldots, m\}$, say i = 2, such that $d_{V_1}(x) \le 1$, then G has an equitable tree-*m*-partition $(V_1 \cup \{x\} \setminus \{v, w\}, V_2 \setminus \{x\}, V_3, \ldots, V_m)$. Next, if $d_{V_1}(x) \ge 2$ for each $x \in \bigcup_{i=2}^m V_i$, then

$$6(t-1) = 6(|V_1| - 2) \ge e(V_1, \bigcup_{i=2}^m V_i) \ge 2(m-1)(t+1) \ge 6(t+1),$$

a contradiction.

By Lemma 2.1, it is sufficient to verify Theorem 1.1 for graphs *G* with m | |G|. Now we set |G| = mt, where *t* is a positive integers, and prove the theorem by induction on |E(G)|.

Choose a vertex $x \in V(G)$ such that $d := d_G(x) = \delta(G) \leq 6$. Let $N_G(x) = \{x_1, \ldots, x_d\}$. By induction, the graph $G \setminus \{xx_1\}$ has an equitable tree-*m*-coloring φ with color classes V_1, \ldots, V_m such that $|V_i| = t$ for each $1 \leq i \leq m$. Clearly, φ is also an equitable tree-*m*-coloring of *G* unless *x* and x_1 belong to a same color class, say V_1 , and meanwhile, there is a cycle passing through xx_1 in $G[V_1]$. Let x_2 be the other neighbor of *x* on that cycle. Since *x* has at most 4 neighbors among $\bigcup_{i=2}^m V_i$, we may assume

$$d_{V_i}(x) \le 1, \ 4 \le i \le m.$$
 (2.1)

Let I_1 be a set of isolated vertices in $G[V_1]$, and let $V'_1 = V_1 \setminus \{I_1 \cup \{x\}\}$. Since $x_1, x_2 \notin I_1, V'_1 \neq \emptyset$ and thus $2 \leq |V'_1| \leq t - 1$.

A vertex $v \in V_i$ is *movable* to a color class V_j with $j \neq i$ if $G[V_j \cup \{v\}]$ contains no cycles. In other words, if v is not movable to V_j , then $d_{V_j}(v) \ge 2$ and there is a vertex $u \in N_{V_j}(v)$ such that $d_{V_j}(u) \ge 1$. For vertices $u \in V_i$ and $v \in V_j$, *exchanging* u and v refers to moving u into V_j and v into V_i .

Lemma 2.2 Vertices in $\bigcup_{i=4}^{m} V_i$ are not movable to V'_1 .

Proof Suppose, to the contrary, that $v \in \bigcup_{i=4}^{m} V_i$ that is movable to V'_1 . Now, exchanging the vertices x and v, we obtain an equitable tree-*m*-coloring of G.

Lemma 2.3 There exists a vertex $w \in V_2 \cup V_3$ that is movable to V'_1 .

Proof Otherwise, $d_{V'_1}(w) \ge 2$ for each $w \in V_2 \cup V_3$. By Lemma 2.2, $d_{V'_1}(v) \ge 2$ for each $v \in \bigcup_{i=4}^m V_i$. For every vertex $v \in V'_1$, $d_{V'_1}(v) \ge 1$ by the definition of V'_1 . So $d_{G\setminus V'_1}(v) \le \Delta - 1$. Hence

$$(\Delta - 1)(t - 1) \ge e(V_1', \cup_{i=2}^m V_i) \ge 2(m - 1)t \ge (\Delta - 1)t,$$

a contradiction.

By Lemma 2.3, we assume, without loss of generality, that V_2 has a vertex w_2 that is movable into V'_1 . Let $V'_2 = V_2 \setminus \{w_2\}$

Lemma 2.4 Every vertices in $\bigcup_{i=4}^{m} V_i$ are not movable to V'_2 .

Proof Otherwise, there is a vertex $v \in \bigcup_{i=4}^{m} V_i$ movable to V'_2 . For convenience, we assume $v \in V_4$. Moving w_2, v, x into V_1, V_2, V_4 , respectively, we obtain an equitable tree-*m*-coloring of *G*.

For two vertices $x \in V_i$ and $y \in V_j$ with $i \neq j$, if both $G[V_i \cup \{y\} \setminus \{x\}]$ and $G[V_j \cup \{x\} \setminus \{y\}]$ are forests, then we say that (x, y) is an *exchangeable pair* between V_i and V_j .

Lemma 2.5 Suppose that $d_{V'_2}(v) = 2$ for every vertex $v \in V_i$ with $4 \le i \le m$. Let $z \in V'_2$.

(a) Let $v \in V_i$, where $4 \le i \le m$. If $G[V'_2 \cup \{v\} \setminus \{z\}]$ has no cycles, then

- (a1) $d_{V'_2}(z) \ge 1$;
- (a2) $d_{V'_1}(z) \ge 2$ provided $vw_2 \notin E(G)$;
- (a3) $d_{V_i}(z) \leq 3$ provided $vw_2 \notin E(G)$, and moreover, the equality implies $zx \notin E(G)$.
- (b) If there is a vertex $v \in V_i$ with $4 \le i \le m$ such that $zv \in E(G)$ and $vw_2 \notin E(G)$, then $d_{V_i}(z) \le 2$ and (z, v) forms an exchangeable pair.
- (c) Let y_1 and y_2 be two nonadjacent vertices in V_i such that (z, y_1) and (z, y_2) are exchangeable pairs.
 - (c1) If $4 \le i \le m$, or i = 3 and $d_{V'_2}(v) = 2$ for every vertex $v \in V_3$, then $G[V'_2 \cup \{y_1, y_2\} \setminus \{z\}]$ is a forest provided $d_{V_i}(x) \le 1$.
 - (c2) Suppose $4 \le i \le m$ and suppose $y_1w_2 \notin E(G)$ or $y_2w_2 \notin E(G)$. If $d_{V_i}(z) \ne 1$, or $d_{V_i}(z) = 1$ and the neighbor of z in V_i is not adjacent to w_2 , then
 - (c2.1) $G[V_i \cup \{z, w_3\} \setminus \{y_1, y_2\}]$ is a forest for each vertex $w_3 \in V_3$ such that $d_{V_i}(w_3) \leq 1$;

$$(c2.2) \ d_{V'_2}(x) + d_{V_i}(x) \le 3.$$

🖄 Springer

Proof (a1) Since $G[V'_2 \cup \{v\} \setminus \{z\}]$ has no cycles, if there is a cycle in $G[V'_2 \cup \{v\}]$ then it would pass z. This is impossible if $d_{V'_2}(z) = 0$. Hence, moving w_2, v, x into V_1, V_2, V_i , respectively, we obtain an equitable tree-*m*-coloring of G, a contradiction.

(a2) Suppose that $d_{V'_1}(z) \le 1$ and $vw_2 \notin E(G)$. If $G[V_2 \cup \{v\} \setminus \{z\}]$ is a forest, then moving z, x, v into V_1, V_i, V_2 , respectively, we obtain an equitable tree-*m*-coloring of *G*, a contradiction. Hence $G[V_2 \cup \{v\} \setminus \{z\}]$ contains a cycle C_1 , and by the symmetry of z and w_2 (note that both z and w_2 are movable to V'_1), $G[V_2 \cup \{v\} \setminus \{w_2\}]$ contains a cycle C_2 . Since $G[V'_2 \cup \{v\} \setminus \{z\}]$, $G[V_2 \setminus \{z\}]$, and $G[V_2 \setminus \{w_2\}]$ have no cycles,

- C_1 passes v, w_2 , and does not pass z;
- C_2 passes v, z, and does not pass w_2 .

Since $vw_2 \notin E(G)$ and $d_{V'_2}(v) = 2$, $d_{V_2}(v) = 2$ and we set $N_{V_2}(v) = \{a, b\}$. Clearly, the path *avb* are on both C_1 and C_2 . This implies that $G[V(C_1) \cup V(C_2) \setminus \{v\}]$ contains a cycle, a contradiction.

(a3) By (a1) and (a2), $d_{V_i}(z) \le \Delta - 1 - 2 \le 3$. Moreover, if $d_{V_i}(z) = 3$, then $d_{V'_2}(z) = 1$ and $d_{V'_1}(z) = 2$, which implies $zx \notin E(G)$.

(b) Since $d_{V'_2}(v) = 2$ and $zv \in E(G)$, $G[V'_2 \cup \{v\} \setminus \{z\}]$ has no cycles.

By (a3), $d_{V_i}(z) \leq 3$. If $d_{V_i}(z) = 3$, then *z* has two neighbors y_1 and y_2 in V_i such that they are not adjacent (otherwise there would be a triangle in the graph induced by V_i) and $zx \notin E(G)$ by (a3). Now, moving w_2 into V_1 , y_1 , y_2 into V_2 , and z, *x* into V_i , we obtain an equitable tree-*m*-coloring of *G*, a contradiction. Hence $d_{V_i}(z) \leq 2$ and therefore (z, v) forms an exchangeable pair between V'_2 and V_i .

(c1) Suppose that $G[V'_2 \cup \{y_1, y_2\} \setminus \{z\}]$ contains a cycle *C*. Since (z, y_1) and (z, y_2) are exchangeable pairs, $G[V'_2 \cup \{y_1\} \setminus \{z\}]$ and $G[V'_2 \cup \{y_2\} \setminus \{z\}]$ have no cycles. This concludes that

• C passes y_1 and y_2 .

If $zy_1 \in E(G)$, then $d_{V'_2}(y_1) = 2$ and $y_1y_2 \notin E(G)$ implies that y_1 has degree one in $G[V'_2 \cup \{y_1, y_2\} \setminus \{z\}]$, and thus it cannot be contained in any cycles there, a contradiction. Hence $zy_1 \notin E(G)$, and by symmetry, $zy_2 \notin E(G)$.

If $G[V'_2 \cup \{y_1\}]$ has no cycles, then we move w_2 , y_1 , x to V_1 , V_2 , V_i , respectively. This gives an equitable tree-*m*-coloring of *G*. Hence $G[V'_2 \cup \{y_1\}]$ contains a cycle C_1 , and by symmetry, $G[V'_2 \cup \{y_2\}]$ contains a cycle C_2 .

Since $G[V'_2 \cup \{y_1\} \setminus \{z\}]$ and $G[V'_2 \cup \{y_2\} \setminus \{z\}]$ have no cycles, we conclude the following:

- C_1 passes y_1 and z;
- C_2 passes y_2 and z.

Denote *C* by $a_1y_1b_1 \cdots a_2y_2b_2 \cdots a_1$ (it is possible that $a_1 = b_2$ or $a_2 = b_1$). Since $d_{V'_2}(y_1) = d_{V'_2}(y_2) = 2$, we have $a_1, b_1 \in V(C_1)$ and $a_2, b_2 \in V(C_2)$. Let $P(z, a_1)$ be the path on C_1 from *z* to a_1 that does not pass y_1 , $P(b_2, z)$ be the path on C_2 from b_2 to *z* that does not pass y_2 , and $P(a_1, b_2)$ be the path on *C* from a_1 to b_2 that does not pass y_1 and y_2 . We walk along a trail that connects by turn $P(z, a_1)$, $P(a_1, b_2)$ and $P(b_2, z)$, and find a cycle in $G[V'_2]$, a contradiction.

(c2.1) Suppose that $G[V_i \cup \{z, w_3\} \setminus \{y_1, y_2\}]$ has a cycle C. Since (z, y_1) is an exchangeable pair, $G[V_i \cup \{z\} \setminus \{y_1, y_2\}]$ has no cycles. Therefore, C passes w_3 , and

thus w_3 has degree at least two in $G[V_i \cup \{z, w_3\} \setminus \{y_1, y_2\}]$. This implies $zw_3 \in E(G)$, as $d_{V_i}(w_3) \leq 1$. On the other hand, $d_{V_i}(w_3) \leq 1$ implies that $G[V_i \cup \{w_3\} \setminus \{y_1, y_2\}]$ has no cycles. Therefore, *C* passes *z*, and thus *z* has degree at least two in $G[V_i \cup \{z, w_3\} \setminus \{y_1, y_2\}]$. Now, since $zw_3 \in E(G)$, we conclude $d_{V_i}(z) \geq 1$, and by (a1) and (a2), we further have $d_{V_i}(z) \leq \Delta - (1 + 2 + 1) \leq 2$.

If $d_{V_i}(z) = 2$, then $zx \notin E(G)$. We obtain an equitable tree-*m*-coloring of *G* by moving w_2 into V_1 , y_1 , y_2 into V_2 , and x, z into V_i , respectively. Note that $G[V_2 \cup \{y_1, y_2\} \setminus \{z, w_2\}]$ is a forest by (c1).

If $d_{V_i}(z) = 1$, then let $y \in V_i$ such that $yz \in E(G)$ (it is possible that $y \in \{y_1, y_2\}$). By Lemmas 2.2 and 2.4, $d_{V'_1}(y) \ge 2$ and $d_{V'_2}(y) \ge 2$. If $yy_1, yy_2 \in E(G)$, then $d_{V_i \setminus \{y_1, y_2\}}(y) = 0$ and $yw_3 \notin E(G)$. This implies that $G[V_i \cup \{z, w_3\} \setminus \{y_1, y_2\}]$ has no cycles, a contradiction. Hence we assume by symmetry that $yy_1 \notin E(G)$. By (b), (z, y) is an exchangeable pair because $yw_2 \notin E(G)$, and then by (c1), $G[V_2 \cup \{y, y_1\} \setminus \{z, w_2\}]$ is a forest. Since $d_{V_i}(z) = 1$ and $zy \in E(G)$, $G[V_i \cup \{x, z\} \setminus \{y, y_1\}]$ is a forest. Therefore, we obtain an equitable tree-*m*-coloring of *G* by moving w_2 into V_1 , y, y_1 into V_2 , and x, z into V_i , respectively.

(c2.2) Suppose that $d_{V'_2}(x) + d_{V_i}(x) \ge 4$ for some $4 \le i \le m$. Since $d_{V'_1}(x) \ge 2$ and $\Delta \le 6$, $d_{V'_2}(x) + d_{V_i}(x) = 4$. If $d_{V_i}(x) = 0$, then we move w_2 into V_1 , y_1 , y_2 into V_2 , and z, x into V_i . This gives an equitable tree-*m*-coloring of *G* by (c1). So $d_{V_i}(x) = 1$, which follows $d_{V'_2}(x) = 3$ and $d_{V_3}(x) = 0$. Note that $d_{V'_i}(x) \ge 2$.

Let $v \in V_3$. If $d_{V'_2}(v) \leq 1$, then we move w_2, x, v into V_1, V_3, V_2 , respectively. This gives an equitable tree-*m*-coloring of *G*, a contradiction. If $d_{V'_1}(v) \leq 1$, then exchanging *x* and *v* also results in an equitable tree-*m*-coloring of *G*, a contradiction. Hence $d_{V'_1}(v) \geq 2$ and $d_{V'_2}(v) \geq 2$. If $d_{V_2}(v) \geq 3$, then $d_{V_i}(v) \leq 1$. We move w_2 into V_1, y_1, y_2 into V_2, x into V_3 , and *z*, *v* into V_i . This gives an equitable tree-*m*-coloring of *G* by (c1) and (c2.1), a contradiction. Therefore, $d_{V_2}(v) = 2$ for every $v \in V_3$. If $vw_2 \in E(G)$, then $d_{V'_2}(v) = 1$. We move w_2, v, x into V_1, V_2, V_3 , respectively, and obtain an equitable tree-*m*-coloring of *G*, a contradiction. Hence $vw_2 \notin E(G)$ and $d_{V'_3}(v) = 2$.

We now count the number f of exchangeable pairs between V'_2 and V_3 .

Let $v \in V_3$ and let $u \in V'_2$ such that $uv \in E(G)$. If $d_{V'_1}(u) \leq 1$, then we move u, v, xinto V_1, V_2, V_3 , respectively. If $d_{V'_2}(u) = 0$, then we move w_2, v, x into V_1, V_2, V_3 , respectively. In either case we obtain an equitable tree-*m*-coloring of G, a contradiction. So $d_{V'_1}(u) \geq 2$, $d_{V'_2}(u) \geq 1$, and thus $d_{V_3}(u) \leq \Delta - (2 + 1) \leq 3$. If $d_{V_3}(u) = 3$, then u has two neighbors u_1 and u_2 in V_3 such that they are not adjacent. Move w_2 into V_1, u_1, u_2 into V_2 , and u, x into V_3 . This gives an equitable tree-*m*-coloring of G by (c1) and by the fact that $d_{V_3}(x) = 0$. Hence $d_{V_3}(u) \leq 2$ and thus (u, v) forms an exchangeable pair between V'_2 and V_3 . This implies $f \geq 2|V_3| = 2t$.

Now we count f in another direction. Let $u \in V'_2$. If there are three vertices $u_1, u_2, u_3 \in V_3$ such that (u, u_j) forms an exchangeable pair between V'_2 and V_3 for each $j \in [3]$, then we assume, without loss of generality, that $u_1u_2 \notin E(G)$. We move w_2 into V_1, u_1, u_2 into V_2 , and u, x into V_3 . Since $G[V_2 \cup \{u_1, u_2\} \setminus \{u, w_2\}]$ is a forest by (c1) and $d_{V_3}(x) = 0$, this gives an equitable tree-*m*-coloring of G, a contradiction. So there are at most two vertices in V_3 forming exchangeable pairs with u. This gives $f \leq 2|V'_2| = 2(t-1)$, a contradiction.

Lemma 2.6 There exists $y \in V_i$ for some $4 \le i \le m$ such that $d_{V_2}(y) \ge 3$ and $d_{V_3}(y) \le 1$.

Proof Arbitrarily fix an integer *i* so that $4 \le i \le m$. Suppose $d_{V_2}(v) \le 2$ for every vertex $v \in V_i$.

Let $v \in V_i$. If $vw_2 \in E(G)$, then $d_{V'_2}(v) \leq 1$. We move w_2, v, x into V_1, V_2, V_i , respectively, and obtain an equitable tree-*m*-coloring of *G*, a contradiction. Hence $vw_2 \notin E(G)$. If $d_{V'_2}(v) \leq 1$, then we obtain an equitable tree-*m*-coloring by moving w_2, v, x into V_1, V_2, V_i , respectively. Hence $2 \geq d_{V_2}(v) \geq d_{V'_2}(v) \geq 2$. Therefore, for every vertex $v \in V_i$, we have $vw_2 \notin E(G)$ and $d_{V'_2}(v) = 2$.

We count the number f of exchangeable pairs between V'_2 and V_i as follows. For each $v \in V_i$ and each $z \in N_{V'_2}(v)$, (z, v) is an exchangeable pair by Lemma 2.5(b), which implies $f \ge 2|V_i| = 2t$.

On the other hand, let $z \in V'_2$. If there are vertices $y_1, y_2, y_3 \in V_i$ such that (z, y_j) forms an exchangeable pair between V'_2 and V_i for each $j \in [3]$, then we assume, without loss of generality, that $y_1y_2 \notin E(G)$. Since $d_{V_i}(x) \leq 1$, $G[V_2 \cup \{y_1, y_2\} \setminus \{z, w_2\}]$ is a forest by Lemma 2.5(c1). If we further have that $G[V_i \cup \{z, x\} \setminus \{y_1, y_2\}]$ is a forest, then we obtain an equitable tree-*m*-coloring of *G* by moving w_2 into V_1, y_1, y_2 into V_2 , and z, x into V_i . If we come to the case that $G[V_i \cup \{z, x\} \setminus \{y_1, y_2\}]$ has a cycle, then $zx \in E(G)$ and $d_{V_i \setminus \{y_1, y_2\}}(x) = 1$. It follows that $xy_1 \notin E(G)$. If $d_{V'_2}(x) \leq 2$, then we move w_2 into V_1, x, y_1 into V_2 , and z into V_i . This gives an equitable tree-*m*-coloring of *G*. Hence $d_{V'_2}(x) \geq 3$, and thus $d_{V'_2}(x) + d_{V_i}(x) \geq 3 + 1 = 4$, contradicting Lemma 2.5(c2.2) (note that all conditions needed by this lemma are satisfied as $vw_2 \notin E(G)$ for every vertex $v \in V_i$). So there are at most two vertices in V_i forming exchangeable pairs with *z*, and therefore, $f \leq 2|V'_2| = 2(t-1)$, a contradiction.

This proves that there is a vertex $y \in V_i$ such that $d_{V_2}(y) \ge 3$. Finally, since $d_{V'_1}(y) \ge 2$ by Lemma 2.2, $d_{V_3}(y) \le \Delta - (2+3) \le 1$.

In the following, we set y be a vertex in V_i with $4 \le i \le m$ such that $d_{V_3}(y) \le 1$, which exists by Lemma 2.6.

Lemma 2.7 $d_{V'_2}(v) \ge 2$ for every vertex $v \in V_3$.

Proof If there exists $v \in V_3$ such that $d_{V'_2}(v) \leq 1$, then we move w_2, v, y, x into V_1, V_2, V_3, V_i , respectively, and obtain an equitable tree-*m*-coloring of *G*, a contradiction.

Let

$$A = \{v \mid v \in \bigcup_{i=3}^{m} V_i, d_{V_2}(v) = 2\},\$$

$$A' = \{v \mid v \in \bigcup_{i=3}^{m} V_i, d_{V'_2}(v) = 2\},\$$

$$B = A' \setminus N_{\bigcup_{i=3}^{m} V_i}(w_2),\$$

$$S = N_{V_2}(A),\$$

$$S' = N_{V'_2}(B).$$

Lemma 2.8 $d_{V'_1}(z) \ge 2$ for every $z \in S$.

Proof Suppose, to the contrary, that $d_{V'_1}(z) \le 1$ for some $z \in S$. It follows that there is a vertex $v \in V_j$ for some $3 \le j \le m$ such that $zv \in E(G)$.

If j = 3, then we move z, v, y, x into V_1, V_2, V_3, V_i $(4 \le i \le m)$, respectively. If $4 \le j \le m$, then we move z, v, x into V_1, V_2, V_j , respectively. In either case we obtain an equitable tree-*m*-coloring of *G*, a contradiction.

Lemma 2.9 $S' \subseteq S$.

Proof Let $s \in S'$. It follows that there is a vertex $b \in B$ such that $bs \in E(G)$. Since $b \notin N_{\bigcup_{i=3}^{m} V_i}(w_2), d_{V_2}(b) = d_{V'_2}(b) = 2$. Therefore, $b \in A$ and thus $s \in S$. \Box

We are ready to complete the proof of Theorem 1.1. Since $d_{\bigcup_{i=3}^{m}V_i}(z) \le \Delta - 2 \le 4$ for every $z \in S'$ by Lemmas 2.8 and 2.9, $2|B| = e(B, S') \le 4|S'|$ by the definition of *B*, implying

$$|B| \le 2|S'|. \tag{2.2}$$

Also, we have

$$3(m-2)t - |A'| = 2|A'| + 3(|\cup_{i=3}^{m} V_i| - |A'|)$$
Lemmas 2.4 and 2.7
$$\leq e(V'_2, \cup_{i=3}^{m} V_i)$$
Lemmas 2.8 and 2.9
$$\leq (\Delta - 2)|S'| + \Delta(|V'_2 \setminus S'|)$$

$$= \Delta(t-1) - 2|S'|. \qquad (2.3)$$

Since $\Delta \leq 6$,

$$|A'| - |B| \le 6. \tag{2.4}$$

Combing (2.2), (2.3) and (2.4) together, we deduce

$$6(t-1) - 2|S'| \stackrel{(2.2)}{\leq} 6t - (|B|+6) \stackrel{(2.4)}{\leq} 6t - |A'|$$

$$\stackrel{(2.3)}{\leq} e(V'_2, \cup_{i=3}^m V_i) \stackrel{(2.3)}{\leq} 6(t-1) - 2|S'|$$
(2.5)

as $m \ge 4$ and $\Delta \le 6$. This implies that all qualities in (2.5) holds and therefore

- $d_{\bigcup_{i=2}^{m} V_i}(z) = \Delta 2$ for every vertex $z \in S'$, and
- $d_{\bigcup_{i=3}^{m}V_i}(z) = \Delta$ for every vertex $z \in V'_2 \setminus S'$.

Combining this with Lemmas 2.8 and 2.9, we conclude that $d_{V_2}(z) = 0$ for every $z \in V'_2$, i.e., V'_2 is an independent set. Exchanging x and w_2 , we finally receive an equitable tree-*m*-coloring of G, a contradiction.

Funding Supported in part by the Natural Science Basic Research Program of Shaanxi (Nos. 2023-JC-YB-001, 2023-JC-YB-054) and the Fundamental Research Funds for the Central Universities (No. ZYTS24076).

Data Availability Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

- Chen, G., Gao, Y., Shan, S., Wang, G., Wu, J.: Equitable vertex arboricity of 5-degenerate graphs. J. Comb. Optim. 34(2), 426–432 (2017)
- Drgas-Burchardt, E., Dybizbański, J., Furmańczyk, H., Sidorowicz, E.: Equitable list vertex colourability and arboricity of grids. Filomat 32(18), 6353–6374 (2018)
- Drgas-Burchardt, E., Furmańczyk, H., Sidorowicz, E.: Equitable improper choosability of graphs. Theor. Comput. Sci. 844, 34–45 (2020)
- Guo, Z., Zhao, H., Mao, Y.: The equitable vertex arboricity of complete tripartite graphs. Inf. Process. Lett. 115(12), 977–982 (2015)
- Guo, Z., Zhao, H., Mao, Y.: On the equitable vertex arboricity of complete tripartite graphs. Discrete Math. Algorithms Appl. 7(4), 22 (2015)
- Kaul, H., Mudrock, J.A., Pelsmajer, M.J.: On equitable list arboricity of graphs. Aust. J. Comb. 80, 419–441 (2021)
- 7. Kim, R., Oum, S.-I., Zhang, X.: Equitable partition of planar graphs. Discrete Math. 344(6), 6 (2021)
- Li, B., Zhang, X.: Tree-coloring problems of bounded treewidth graphs. J. Comb. Optim. 39(1), 156– 169 (2020)
- 9. Li, Y., Zhang, X.: Equitable list tree-coloring of bounded treewidth graphs. Theor. Comput. Sci. 855, 61–67 (2021)
- Mao, Y., Guo, Z., Zhao, H., Ye, C.: On the equitable vertex arboricity of complete bipartite graphs. Util. Math. 99, 403–411 (2016)
- Nakprasit, K.M., Nakprasit, K.: The strong equitable vertex 2-arboricity of complete bipartite and tripartite graphs. Inf. Process. Lett. 117, 40–44 (2017)
- Niu, B., Li, B., Zhang, X.: Hardness and algorithms of equitable tree-coloring problem in chordal graphs. Theor. Comput. Sci. 857, 8–15 (2021)
- Tao, F., Lin, W.: On the equitable vertex arboricity of graphs. Int. J. Comput. Math. 93(6), 844–853 (2016)
- Wu, J.-L., Zhang, X., Li, H.: Equitable vertex arboricity of graphs. Discrete Math. 313(23), 2696–2701 (2013)
- Zhang, H., Zhang, X.: Theoretical aspects of equitable partition of networks into sparse modules. Theor. Comput. Sci. 871, 51–61 (2021)
- 16. Zhang, X.: Equitable vertex arboricity of planar graphs. Taiwan. J. Math. 19(1), 123–131 (2015)
- 17. Zhang, X.: Equitable list point arboricity of graphs. Filomat **30**(2), 373–378 (2016)
- 18. Zhang, X.: Equitable vertex arboricity of subcubic graphs. Discrete Math. 339(6), 1724–1726 (2016)
- 19. Zhang, X., Niu, B., Li, Y., Li, B.: Equitable vertex arboricity conjecture holds for graphs with low degeneracy. *Acta Math. Sin., Engl. Ser.*, 37(8):1293–1302, (2021)
- Zhang, X., Wu, J.-L.: A conjecture on equitable vertex arboricity of graphs. Filomat 28(1), 217–219 (2014)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.