Improper odd coloring of IC-planar graphs

Ping Chen, Xin Zhang*
School of Mathematics and Statistics, Xidian University, Xi'an, 710071, China

ARTICLE INFO

Article history:

Received 5 December 2023
Received in revised form 23 May 2024
Accepted 30 May 2024
Available online xxxx

Keywords:

IC-planar graph
Odd coloring
Conflict-free coloring
Hypergraph

Abstract

An IC-planar graph is a graph that can be drawn in the plane in such a way that each edge is crossed at most once and each vertex is incident with at most one crossed edge. In this paper, we show that every IC-planar graph can be colored with nine colors so that for every non-isolate vertex there exists a color occurring odd times in its neighbors.

© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

1. Introduction

A k-coloring of a graph $G=(V, E)$ is a mapping c from its vertex set V to $[k]$, where [k] denotes the set of integers $\{1,2, \ldots, k\}$. A coloring c is proper if adjacent vertices receive distinct colors under c. A proper coloring c is odd if for every non-isolate vertex v there exists a color occurring odd times in its neighbors. The notion of odd coloring was introduced in 2022 by Petruševski and Škrekovski [20], and this topic has attracted the interest of many research groups including [3,4,6-9,11,13,15,16,19,21,22].

A hypergraph is a generalization of a graph, where an edge can connect any number of vertices, instead of just two vertices like in a traditional graph. In a hypergraph, each edge is called a hyperedge. In 2012, Cheilaris, Keszegh, and Pálvölgyi [5] defined odd colorings for hypergraphs. Precisely, an odd coloring of a hypergraph \mathcal{H} with k colors is a function c from its vertex set to [k], such that for each hyperedge of \mathcal{H} there is a color that occurs an odd number of times on the vertices of this hyperedge. Under this notion, an odd k-coloring of a 2 -uniform hypergraph (i.e., a traditional graph) is equivalent to its proper k-coloring, instead of its proper odd k-coloring, however, let us forget this confusion now.

Given a graph $G=(V, E)$, the open neighborhood of a vertex $v \in V$ is the set of its adjacent vertices in G, denoted by $N_{G}(v)$. We define a hypergraph $\mathcal{H}=(X, S)$ based on G such that $X=V$ and $S=\left\{N_{G}(v) \mid v \in V\right\}$. We call such a hypergraph \mathcal{H} an open-neighborhood hypergraph of G, denoted by $\mathcal{H}_{O N}(G)$. In this sense, an odd coloring of $\mathcal{H}_{O N}(G)$ is equivalent to the improper odd coloring of G, i.e., a coloring of G, not necessarily proper, such that for every non-isolate vertex there exists a color occurring odd times in its neighbors.

In 2018, a relative notion with the improper odd coloring is given by Abel et al. [1]. A vertex coloring of a graph is openneighborhood conflict-free if for every non-isolated vertex there is a color appearing exactly once in its open neighborhood. It is easy to see that every open-neighborhood conflict-free coloring is an improper odd coloring.

A minor of a graph G is a graph obtained from G by means of a sequence of vertex and edge deletions and edge contractions. A graph G is minor- k-colorable if every minor of G has a proper k-coloring. Huang, Guo, and Yuan [10] showed

[^0]that every minor- k-colorable connected graph is open-neighborhood conflict-free k-colorable for each integer $k \geq 2$. Since every minor of a planar graph is still planar, and thus it is 4 -colorable by Four Color Theorem, the result of Huang, Guo, and Yuan implies that every planar graph is open-neighborhood conflict-free 4-colorable, and therefore is improperly odd 4-colorable.

On graphs that are not minor-closed, the result of Huang, Guo, and Yuan cannot be applied. In view of this, we focus on IC-planar graphs in this paper. A graph is IC-planar if it has an embedding in the plane in such a way that each edge is crossed at most once and each vertex is incident with at most one crossed edge. The structures and colorings on IC-planar graphs were extensively investigated by various of research groups, see [2,12,14,17,23] for example. In particular, Pan, Wang, and Liu [18] showed that IC-planar graphs are properly odd 10 -colorable. Note that the class of IC-planar graphs is not minor-closed. Actually, given any graph M, we can subdivide each edge sufficiently many times (i.e., replace each edge with a sufficiently long path where each interior vertex has degree exactly two) so that the resulting graph G is IC-planar, but now G has an M-minor.

The main result of this paper is as follows.
Theorem 1.1. Every IC-planar graph has an improper odd 9-coloring. In other words, the hypergraph $\mathcal{H}_{0 N}(G)$ has an odd 9 -coloring if G is IC-planar.

Notations. Basic notations follow any standard textbook of graph theory so we only mention unusual ones. A $k-, k^{+}$-, and k^{-}-vertex (resp.face) of a plane is a vertex (resp. face) of degree k, at least k, and at most k, respectively. Given an IC-plane graph G (i.e., an embedded IC-planar graph so that each vertex is incident with at most one crossed edge), we turn all its crossings into new vertices of degree 4, and the resulting graph is said to be the associated plane graph of G, denoted by G^{*}. A vertex of G^{*} is true if $v \in V(G)$, and false otherwise. Observe that $d_{G^{*}}(v)=d_{G}(v)$ if v is true and $d_{G^{*}}(v)=4$ if v is false. A face of G^{*} is false if it is incident with at least one false vertex, and true otherwise. For an odd (not necessarily proper) coloring c of a subgraph H induced by $S \subseteq V(G)$ and a vertex $v \in V(G)$ (note that v may not be colored under c), if there is an unique color, say α, that appears an odd number of times in $N_{G}(v)$, then we set $c_{o}(v)=\alpha$, and otherwise we set $c_{o}(v)=0$.

2. Reducibilities

Let G be a counterexample to Theorem 1.1 with the minimum number of vertices. We could assume that G is embedded in a plane so that the number of crossings is as few as possible. For each $f \in F\left(G^{*}\right)$, we denote $n_{k}(f)$ to be the number of true k-vertices incident with f. Since G is IC-planar, two false vertices are not adjacent in G^{*} and any true vertex is adjacent to at most one false vertex in G^{*}.

A k_{t}-face of G^{*} is a k-face incident with exactly $t 2$-vertices. A true 4 -vertex u is v-special if v is true and each face incident with $u v$ in G^{*} is either a 3-face or a 4_{1}-face. For each $v \in V(G), \operatorname{sp}(v)$ denotes the number of v-special vertices, and $m_{3}^{\prime}(v)$ denotes the number of 3_{1}-faces incident with v.

Lemma 2.1. G has no k-vertices with $k=1,3,5,7$.
Proof. Suppose that G has a k-vertex v with $N_{G}(v)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Since $G^{\prime}=G-v$ has fewer vertices than G, G^{\prime} has an improper odd 9 -coloring c by the minimality of G. Color each vertex other than v in G with the same color in G^{\prime} and color v with a color in [9]
{c, } c _ { o }) , c _ { o } (v _ { 2 }) , ··· , c _ { o } (v _ { k }) \} . Since the degree of v is odd, the oddness of v is satisfied naturally. Now, the improper odd 9 -coloring of G^{\prime} can return back to G, a contradiction.

Lemma 2.2. 8^{-}-vertices are not adjacent in G.

Proof. Suppose that two 8^{-}-vertices u and v are adjacent. Let $N_{G}(u)=\left\{v, u_{1}, u_{2}, \ldots, u_{i-1}\right\}$ and $N_{G}(v)=\left\{u, v_{1}, v_{2}, \ldots\right.$, $\left.v_{j-1}\right\}$, where $i, j \leq 8$. By the minimality of $G, G^{\prime}=G-\{u, v\}$ has an improper odd 9 -coloring c. Color each vertex other than u and v in G with the same color in G^{\prime}, and then color u with a color in $[9] \backslash\left\{c_{o}(v), c_{o}\left(u_{1}\right), c_{o}\left(u_{2}\right), \ldots, c_{o}\left(u_{i-1}\right)\right\}$ and v with a color in [9] $\backslash\left\{c_{0}(u), c_{o}\left(v_{1}\right), c_{o}\left(v_{2}\right), \ldots, c_{o}\left(v_{i-1}\right)\right\}$. This extends c to an improper odd 9 -coloring of G, a contradiction.

Lemma 2.3. For each face f of G^{*}, we have $n_{2}(f)+n_{4}(f) \leq\left\lfloor\frac{d_{G^{*}}(f)}{2}\right\rfloor$.
Proof. This is an immediate corollary of Lemma 2.2.
Lemma 2.4. If $u v w$ is a boundary path of some face of G^{*}, then at most one of u and w is v-special.
Proof. Let f be the face of G^{*} such that $u v w$ is its boundary path. Suppose on the contrary that u and w are both v-special. Since v-special vertices are 4 -vertices by the definition, v is not a 2 -vertex and thus f is neither a 3 -face nor a 4 -face by Lemma 2.2. This contradicts the definition of v-special vertex.

Lemma 2.5. If u is v-special, then $u v$ is not incident with a 3_{1}-face.
Proof. Assume that $u v$ is incident with a 3 -face [vuw]. If this face is a 3_{1}-face, then w is a 2 -vertex adjacent to the true 4-vertex u, contradicting Lemma 2.2.

Lemma 2.6. Any false 3-face f of G^{*} is not incident with a 2-vertex.
Proof. Let $f=[u v w]$ be a false 3-face such that u is a 2-vertex and w is false. Redraw G by re-embedding u into the other face incident with $v w$ which is not f. This avoids forming the crossing w, and the resulting drawing has less crossings, a contradiction to our assumption.

Lemma 2.7. Any 3_{1}-face is not incident with a 9-vertex in G^{*}.
Proof. Let $f=[u v w]$ be a 3_{1}-face such that v is a 9 -vertex with neighbors $u, w, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$, and u is a 2 -vertex. By the minimality of $G, G^{\prime}=G-\{u, v\}$ has an improper odd 9 -coloring c. Note that w is true by Lemma 2.6. We color v with $\alpha \in[9] \backslash\left\{c_{o}\left(v_{1}\right), c_{o}\left(v_{2}\right), c_{o}\left(v_{3}\right), c_{o}\left(v_{4}\right), c_{o}\left(v_{5}\right), c_{0}\left(v_{6}\right), c_{0}\left(v_{7}\right), c(w)\right\}$ and denote the resulting coloring of $G-u$ still by c. Now we extend c to an improper odd 9 -coloring of G by coloring u with a color in [9] $\backslash\left\{c_{o}(v), c_{0}(w)\right\}$. Note that the oddness of u is satisfied as $\alpha \neq c(w)$.

Lemma 2.8. A 4 -face is incident with at most one 2-vertex in G^{*}.
Proof. Suppose that $\left[v_{1} v_{2} v_{3} v_{4}\right.$] is a 4 -face incident with at least two 2 -vertices. By Lemma 2.2 , we may assume without loss of generality that v_{1} and v_{3} are 2 -vertices. If v_{2} or v_{4} is false, then we can rotate the 4 -face on the axis of the line segment connecting v_{1} and v_{3} to avoid at least one crossing while drawing this graph, a contradiction to our assumption. Hence v_{2} and v_{4} are true. By the minimality of $G, G^{\prime}=G-v_{1}$ has an improper odd 9 -coloring c. Color each vertex other than v_{1} in G with the same color in G^{\prime}, and then color v_{1} with a color in [9] $\backslash\left\{c_{0}\left(v_{2}\right), c_{o}\left(v_{4}\right)\right\}$. Since $c\left(v_{2}\right) \neq c\left(v_{4}\right)$ as v_{3} is a 2 -vertex in G^{\prime}, the oddness of v_{1} is satisfied. Now we obtain an improper odd 9 -coloring of G, a contradiction.

Lemma 2.9. For each 9^{+}-vertex v of $G^{*}, m_{3}^{\prime}(v) \leq d_{G^{*}}(v)-9$.
Proof. Let S be the set of 2-vertices such that for each $u \in S, u v$ is incident with a 3_{1}-face [uvw], where w is represented by γ_{u}. Let $T=\left\{\gamma_{u} \mid u \in S\right\}$ and $Y=N_{G}(v) \backslash(S \cup T)$.

Suppose for a contradiction that $m_{3}^{\prime}(v) \geq d_{G^{*}}(v)-8$. By the minimality of $G, G-v$ has an improper odd 9-coloring c. We erase the color of each vertex in S, and then color v with a color not in $\{c(x) \mid x \in T\} \cup\left\{c_{0}(x) \mid x \in Y\right\}$, which has size at most $|T|+|Y|=d_{G^{*}}(v)-|S| \leq d_{G^{*}}(v)-\left(d_{G^{*}}(v)-8\right)=8$. Note that for each $u \in S, c_{o}(u)=c\left(\gamma_{u}\right)$. Arbitrarily choose a vertex $s \in S$, and color each vertex $u \in S \backslash\{s\}$ with a color different from $c_{o}\left(\gamma_{u}\right)$. Now we come to a coloring of $G-s$, still denoted by c. Finally we complete an improper odd 9 -coloring of G by coloring s with a color different from $c_{o}(v)$ and $c_{o}\left(\gamma_{s}\right)$.

3. Proof of Theorem 1.1

We apply a discharging argument on G^{*} to accomplish the proof. We assign an initial charge $\mu(v)=d_{G^{*}}(v)-6$ to each $v \in V\left(G^{*}\right)$ and $\mu(f)=2 d_{G^{*}}(f)-6$ to each $f \in F\left(G^{*}\right)$. By Euler's Formula, we have $\sum_{v \in V\left(G^{*}\right)} \mu(v)+\sum_{f \in F\left(G^{*}\right)} \mu(f)<0$. In the following, we design appropriate discharging rules to redistribute the charges, obtaining a final charging function μ^{*} on $V\left(G^{*}\right) \cup F\left(G^{*}\right)$ such that $\mu^{*}(x) \geq 0$ for each $x \in V\left(G^{*}\right) \cup F\left(G^{*}\right)$. Since the total sum of charges is uncharged in the discharging procedure, this is a contradiction implying Theorem 1.1.

The discharging rules are defined as follows.
R1. Every 4^{+}-face f sends 2 to each of its incident 2 -vertices, and $\frac{2 d_{G^{*}}(f)-6-2 n_{2}(f)}{n_{4}(f)}$ to each of its adjacent true 4-vertices.
R2. Every 9^{+}-vertices v sends 1 to each of its incident 3_{1}-faces, $\frac{1}{2}$ to each v-special vertex, and $d_{G^{*}}(v)-6-m_{3}^{\prime}(v)-\frac{1}{2} \operatorname{sp}(v)$ to its adjacent false 4 -vertex.

R3. Every 3_{1}-face sends 2 to its incident 2-vertex.
R4. Every false 4-vertex v with $\alpha(v) \geq 2$ and $n_{4}(v)>0$ sends $\frac{\alpha(v)-2}{n_{4}(v)}$ to each of its adjacent true 4 -vertices, where $\alpha(v)$ denotes the total amount of charges that v gets from its adjacent 9^{+}-vertices by $\mathbf{R 2}$ and $n_{4}(v)$ denotes the number of true 4 -vertices adjacent to v.

Remark 1. If f is a 4 -face, then $n_{2}(f) \leq 1$ by Lemma 2.8. If f is a 5^{+}-face, then $n_{2}(f) \leq\left\lfloor\frac{d_{G^{*}}(f)}{2}\right\rfloor$ by Lemma 2.2. In each case, we have $2 d_{G^{*}}(f)-6-2 n_{2}(f) \geq 0$. Hence R1 is valid.

Remark 2. If v is a 9^{+}-vertex, then by Lemmas 2.4 and 2.5 , we have $d_{G^{*}}(v) \geq 2 \operatorname{sp}(v)+m_{3}^{\prime}(v)$. It follows

$$
\begin{aligned}
d_{G^{*}}(v)-6-m_{3}^{\prime}(v)-\frac{1}{2} \operatorname{sp}(v) & \geq d_{G^{*}}(v)-6-m_{3}^{\prime}(v)-\frac{1}{4}\left(d_{G^{*}}(v)-m_{3}^{\prime}(v)\right) \\
& \geq \frac{3}{4}\left(d_{G^{*}}(v)-\left(d_{G^{*}}(v)-9\right)-8\right) \\
& >0
\end{aligned}
$$

by Lemma 2.9 and thus $\mathbf{R 2}$ is valid too.
We do not need consider k-vertices with $k=1,3,5,7$ by Lemma 2.1 , and also we shall forget 6 -vertices and 8 -vertices as they are not involved in the discharging rules and their initial charges are nonnegative.

Let v be a 2 -vertex. Since the face incident with v is either a 4^{+}-face or a 3_{1}-face, $\mu^{*}(v)=-4+2+2=0$ by R1 and R3.
Let v be a true 4 -vertex with neighbors $v_{1}, v_{2}, v_{3}, v_{4}$ lying in this ordering around v in G^{*}, and let $f_{1}, f_{2}, f_{3}, f_{4}$ be the face incident with the path $v_{1} v v_{2}, v_{2} v v_{3}, v_{3} v v_{4}, v_{4} v v_{1}$, respectively.

If f_{i} is a 5^{+}-face, then it sends

$$
\frac{2 d_{G^{*}}\left(f_{i}\right)-6-2 n_{2}\left(f_{i}\right)}{n_{4}\left(f_{i}\right)} \geq \frac{2 d_{G^{*}}\left(f_{i}\right)-6-2\left\lfloor\frac{d_{C^{*}}\left(f_{i}\right)}{2}\right\rfloor+2 n_{4}\left(f_{i}\right)}{n_{4}\left(f_{i}\right)} \geq 2
$$

to v by $\mathbf{R 1}$ and by Lemma 2.3.
If f_{i} is a 4_{0}-face, then it sends $\frac{2 \times 4-6}{n_{4}\left(f_{i}\right.} \geq 1$ to v by R1 as $n_{4}\left(f_{i}\right) \leq 2$ by Lemma 2.2.
Hence, if some of $f_{1}, f_{2}, f_{3} . f_{4}$ is a 5^{+}-face, or two of $f_{1}, f_{2}, f_{3} . f_{4}$ are 4_{0}-faces, then $\mu^{*}(v) \geq-2+2=0$. Next we assume that each f_{i} is a 4^{-}-face. Note that each f_{i} is incident with at most one 2 -vertex by Lemma 2.2 and Lemma 2.8.

Assume first that each v_{i} is true. By Lemma 2.2, each v_{i} is a 9^{+}-vertex. If v is incident with exactly one 4_{0}-face, say f_{1}, then each of f_{2}, f_{3}, and f_{4} is either a 3 -face or a 4_{1}-face, and therefore v is both v_{3}-special and v_{4}-special. It follows that $\mu^{*}(v) \geq-2+1+2 \times \frac{1}{2}=0$ by R1 and R2. If v is not incident with any 4_{0}-face, then each f_{i} is either a 3 -face or a 41 -face, and thus v is v_{i}-special for each $i \in[4]$. This implies $\mu^{*}(v) \geq-2+4 \times \frac{1}{2}=0$ by $\mathbf{R 2}$.

Assume now that v_{1} is false (note that only one of $v_{1}, v_{2}, v_{3}, v_{4}$ can be false). Let $u \in N_{G}(v) \backslash\left\{v_{2}, v_{3}, v_{4}\right\}$, i.e., $u v$ is an edge of G passing the crossing v_{1}. Let $w_{1} w_{4}$ be an edge of G crossing $u v$ such that w_{i} is on f_{i} with $i=1,4$.

Case 1. v is incident with exactly one 4_{0}-face.
By symmetry we consider two cases.
Suppose first that f_{1} is a 4_{0}-face. This implies that f_{2} and f_{3} are 4_{1}-faces or 3 -faces. If $n_{4}\left(f_{1}\right) \leq 1$, then f_{1} sends $2 \times 4-6=2$ to v by R1, and thus $\mu^{*}(v) \geq-2+2=0$. Hence we assume $n_{4}\left(f_{1}\right) \geq 2$. This implies that $n_{4}\left(f_{1}\right)=2, w_{1}$ is a true 4 -vertex, and w_{4} is a 9^{+}-vertex by Lemma 2.2. Therefore, f_{4} cannot be a 4_{1}-face, and thus it must be a 3 -face. It follows that v is both v_{3}-special and v_{4}-special. Hence $\mu^{*}(v) \geq-2+\frac{2 \times 4-6}{2}+2 \times \frac{1}{2}=0$ by $\mathbf{R 1}$ and $\mathbf{R 2}$.

Suppose now that f_{2} is a 4_{0}-face, denoted by $\left[v v_{2} w_{2} v_{3}\right]$. By R1, f_{2} sends $\frac{2 \times 4-6}{n_{4}\left(f_{2}\right)} \geq 1$ to v as $n_{4}\left(f_{2}\right) \leq 2$. By Lemma 2.2, f_{1} and f_{4} cannot simultaneously be 4_{1}-faces, as otherwise w_{1} and w_{4} are two adjacent 2 -vertices in G. Let f_{i}^{\prime} with $i=1,4$ be an face sharing the common edge $v_{1} w_{i}$ with f_{i}. Let w_{i} with $i=2,3$ be a vertex on f_{i} such that $v_{i} w_{i} \in E(G)$. Note that it may happen that $w_{3}=v_{4}$. In what follows, we consider three subcases.

Case 1.1. f_{1} is a 3 -face and f_{4} is a 4_{1}-face.
In this case, $w_{1}=v_{2}$ and w_{4} is a 2 -vertex. Now we calculate $\alpha\left(v_{1}\right)$.
Let u_{1}^{\prime} be a vertex on f_{1}^{\prime} such that $u_{1}^{\prime} v_{2} \in E(G)$. If u_{1}^{\prime} is a true 4 -vertex, then $u_{1}^{\prime} \neq u$ and thus f_{1}^{\prime} is not a 3 -face, furthermore, f_{1}^{\prime} is not a 4_{1}-face as u and v_{2} are 9^{+}-vertices. It follows that u_{1}^{\prime} is not v_{2}-special. Since f_{2} is assumed to be a 4_{0}-face, v and w_{2} are not v_{2}-special. Therefore, $u_{1}^{\prime}, v_{1}, v, w_{2}$ are four consecutive neighbors of v_{2} in G^{*} that are not v_{2}-special. Since $f_{1}^{\prime}, f_{1}, f_{2}$ are not 3_{1}-faces by Lemma 2.6, by counting faces around v_{2}, we have, by Lemmas 2.4 and 2.5 , that

$$
d_{G^{*}}\left(v_{2}\right) \geq 3+2 \operatorname{sp}\left(v_{2}\right)+m_{3}^{\prime}\left(v_{2}\right)
$$

Hence v_{2} sends to v_{1}

$$
\begin{aligned}
d_{G^{*}}\left(v_{2}\right)-6-m_{3}^{\prime}\left(v_{2}\right)-\frac{1}{2} \operatorname{sp}\left(v_{2}\right) & \geq d_{G^{*}}\left(v_{2}\right)-6-m_{3}^{\prime}\left(v_{2}\right)-\frac{1}{4}\left(d_{G^{*}}\left(v_{2}\right)-3-m_{3}^{\prime}\left(v_{2}\right)\right) \\
& =\frac{3}{4}\left(d_{G^{*}}\left(v_{2}\right)-7-m_{3}^{\prime}\left(v_{2}\right)\right) \\
& \geq \frac{3}{4}\left(d_{G^{*}}\left(v_{2}\right)-7-\left(d_{G^{*}}\left(v_{2}\right)-9\right)\right) \\
& =\frac{3}{2}
\end{aligned}
$$

by $\mathbf{R 2}$ and Lemma 2.9.

Let x_{i} with $i=1,4$ be a vertex on f_{i}^{\prime} such that $u x_{i} \in E(G)$. If x_{1} is a true 4 -vertex, then $x_{1} \neq v_{2}$ and thus f_{1}^{\prime} is not a 3 -face, furthermore, f_{1}^{\prime} is not a 4_{1}-face. This implies that x_{1} is not u-special. If x_{4} is a true 4 -vertex, then $x_{4} \neq w_{4}$ and thus f_{4}^{\prime} is not a 3 -face, furthermore, f_{4}^{\prime} is not a 4_{1}-face as $x_{4} w_{4} \notin E(G)$. This implies that x_{4} is not u-special. Therefore, x_{1}, v_{1}, x_{4} are three consecutive neighbors of u in G^{*} that are not u-special. Since f_{1}^{\prime} and f_{4}^{\prime} are not 3_{1}-faces by Lemma 2.6, by counting faces around u, we have, by Lemmas 2.4 and 2.5 , that

$$
d_{G^{*}}(u) \geq 2+2 \operatorname{sp}(u)+m_{3}^{\prime}(u) .
$$

Hence u sends to v_{1}

$$
\begin{aligned}
d_{G^{*}}(u)-6-m_{3}^{\prime}(u)-\frac{1}{2} \operatorname{sp}(u) & \geq d_{G^{*}}(u)-6-m_{3}^{\prime}(u)-\frac{1}{4}\left(d_{G^{*}}(u)-2-m_{3}^{\prime}(u)\right) \\
& =\frac{3}{4}\left(d_{G^{*}}(u)-\frac{22}{3}-m_{3}^{\prime}(u)\right) \\
& \geq \frac{3}{4}\left(d_{G^{*}}(u)-\frac{22}{3}-\left(d_{G^{*}}(u)-9\right)\right) \\
& =\frac{5}{4}
\end{aligned}
$$

by $\mathbf{R 2}$ and Lemma 2.9. This implies $\alpha\left(v_{1}\right) \geq \frac{3}{2}+\frac{5}{4}=\frac{11}{4}$. Since in this case v is the only true 4 -vertex adjacent to v_{1}, v_{1} gives v at least $\frac{11}{4}-2=\frac{3}{4}$ by R4.

Since f_{4} is a 4_{1}-face, f_{3} is a 3 -face or 4_{1}-face, and v_{4} is a 9^{+}-vertex, we conclude that v is v_{4}-special. This implies that v_{4} sends $\frac{1}{2}$ to v by R2. Hence $\mu^{*}(v) \geq-2+\frac{3}{4}+\frac{1}{2}+1>0$ as f_{2} sends at least 1 to v.

Case 1.2. f_{1} is a 4_{1}-face and f_{4} is a 3-face.
In this case, w_{1} is a 2 -vertex and $w_{4}=v_{4}$. Now we calculate $\alpha\left(v_{1}\right)$.
Let u_{4}^{\prime} be a vertex on f_{4}^{\prime} such that $u_{4}^{\prime} v_{4} \in E(G)$. If u_{4}^{\prime} is a true 4 -vertex, then $u_{4}^{\prime} \neq u$ and thus f_{4}^{\prime} is not a 3 -face, furthermore, f_{4}^{\prime} is not a 4_{1}-face as u and v_{4} are 9^{+}-vertices. It follows that u_{4}^{\prime} is not v_{4}-special. Therefore, v_{1} and u_{4}^{\prime} are two consecutive neighbors of v_{4} in G^{*} that are not v_{4}-special. Since f_{4}^{\prime} is not a 3_{1}-face by Lemma 2.6 , by counting faces around v_{4}, we have, by Lemmas 2.4 and 2.5 , that

$$
d_{G^{*}}\left(v_{4}\right) \geq 1+2 \operatorname{sp}\left(v_{4}\right)+m_{3}^{\prime}\left(v_{4}\right) .
$$

Hence v_{4} sends to v_{1}

$$
\begin{aligned}
d_{G^{*}}\left(v_{4}\right)-6-m_{3}^{\prime}\left(v_{4}\right)-\frac{1}{2} \operatorname{sp}\left(v_{4}\right) & \geq d_{G^{*}}\left(v_{4}\right)-6-m_{3}^{\prime}\left(v_{4}\right)-\frac{1}{4}\left(d_{G^{*}}\left(v_{4}\right)-1-m_{3}^{\prime}\left(v_{2}\right)\right) \\
& =\frac{3}{4}\left(d_{G^{*}}\left(v_{4}\right)-m_{3}^{\prime}\left(v_{4}\right)-\frac{23}{3}\right) \\
& \geq \frac{3}{4}\left(d_{G^{*}}\left(v_{4}\right)-\left(d_{G^{*}}\left(v_{4}\right)-9\right)-\frac{23}{3}\right) \\
& =1
\end{aligned}
$$

by $\mathbf{R 2}$ and Lemma 2.9.
Let x_{i} with $i=1,4$ be a vertex on f_{i}^{\prime} such that $u x_{i} \in E(G)$. If x_{1} is a true 4 -vertex, then $x_{1} \neq w_{1}$ and thus f_{1}^{\prime} is not a 3 -face, furthermore, f_{1}^{\prime} is not a 4 -face as $x_{1} w_{1} \notin E(G)$. This implies that x_{1} is not u-special. If x_{4} is a true 4 -vertex, then $x_{4} \neq v_{4}$ and thus f_{4}^{\prime} is not a 3 -face, furthermore, f_{4}^{\prime} is not a 4_{1}-face. This implies that x_{4} is not u-special. Therefore, x_{1}, v_{1}, x_{4} are three consecutive neighbors of u in G^{*} that are not u-special. Since f_{1}^{\prime} and f_{4}^{\prime} are not 3_{1}-faces by Lemma 2.6, by counting faces around u, we have, by Lemmas 2.4 and 2.5 , that

$$
d_{G^{*}}(u) \geq 2+2 \operatorname{sp}(u)+m_{3}^{\prime}(u) .
$$

If $m_{3}^{\prime}(u)=d_{G^{*}}(u)-9$, then the above inequality implies $\mathrm{sp}(u) \leq 3$. So u sends v_{1} at least $d_{G^{*}}(u)-6-m_{3}^{\prime}(u)-\frac{1}{2} \operatorname{sp}(u) \geq$ $d_{G^{*}}(u)-6-\left(d_{G^{*}}(u)-9\right)-\frac{1}{2} \times 3=\frac{3}{2}$ by R2. If $m_{3}^{\prime}(u) \leq d_{G^{*}}(u)-10$, then u sends to v_{1}

$$
\begin{aligned}
d_{G^{*}}(u)-6-m_{3}^{\prime}(u)-\frac{1}{2} \operatorname{sp}(u) & \geq d_{G^{*}}(u)-6-m_{3}^{\prime}(u)-\frac{1}{4}\left(d_{G^{*}}(u)-2-m_{3}^{\prime}(u)\right) \\
& =\frac{3}{4}\left(d_{G^{*}}(u)-m_{3}^{\prime}(u)-\frac{22}{3}\right) \\
& \geq \frac{3}{4}\left(d_{G^{*}}(u)-\left(d_{G^{*}}(u)-10\right)-\frac{22}{3}\right) \\
& =2
\end{aligned}
$$

by $\mathbf{R 2}$ and Lemma 2.9. Therefore, v_{1} gets at least $\min \left\{\frac{3}{2}, 2\right\}=\frac{3}{2}$ from u, and thus $\alpha\left(v_{1}\right) \geq \frac{3}{2}+1=\frac{5}{2}$. Since in this case v is the only true 4 -vertex adjacent to v_{1}, v_{1} gives v at least $\frac{5}{2}-2=\frac{1}{2}$ by R4.

Since f_{4} is a 3 -face, f_{3} is a 3 -face or 4_{1}-face, and v_{4} is a 9^{+}-vertex, we conclude that v is v_{4}-special. This implies that v_{4} sends $\frac{1}{2}$ to v by R2. Hence $\mu^{*}(v) \geq-2+\frac{1}{2}+1+\frac{1}{2} \geq 0$ as f_{2} sends at least 1 to v.

Case 1.3. f_{1} and f_{4} are both 3 -faces.
Using same arguments as what we had done in Case 1.1 and Case 1.2, we conclude that v_{2} and v_{4} sends to v_{1} at least $\frac{3}{2}$ and 1 to v_{1}, respectively. This implies that $\alpha\left(v_{1}\right) \geq \frac{3}{2}+1=\frac{5}{2}$. In this case, v is the only true 4 -vertex adjacent to v_{1}. So v_{1} sends at least $\frac{5}{2}-2=\frac{1}{2}$ to v by R4. Since f_{4} is a 3-face and f_{3} is a 3-face or 4_{1}-face, we conclude that v is v_{4}-special, and thus v_{4} sends $\frac{1}{2}$ to v by R2. Hence $\mu^{*}(v) \geq-2+\frac{1}{2}+1+\frac{1}{2}=0$ as f_{2} sends at least 1 to v.

Case 2. v is incident only with 3 -face or 4_{1}-face.
In this case, v is a v_{i}-special for each $i \in\{2,3,4\}$. So each v_{i} sends $\frac{1}{2}$ to v by $\mathbf{R 2}$. In the following, we show that v_{1} would send at least $\frac{1}{2}$ to v, and thus $\mu^{*}(v) \geq-2+4 \times \frac{1}{2}=0$.

By Lemma 2.2, f_{1} and f_{4} cannot simultaneously be 4_{1}-faces, as otherwise w_{1} and w_{4} are two adjacent 2 -vertices in G. Let f_{i}^{\prime} with $i=1,4$ be an face sharing the common edge $v_{1} w_{i}$ with f_{i}. Let w_{i} with $i=2,3$ be a vertex on f_{i} such that $v_{i} w_{i} \in E(G)$. Note that it may happen that $w_{2}=v_{3}$ or $w_{3}=v_{4}$. By symmetry, we distinguish two subcases.

Case 2.1. f_{1} is a 3-face and f_{4} is a 4_{1}-face.
In this case, w_{4} is a 2-vertex and $w_{1}=v_{2}$. Since v is the unique true 4 -vertex adjacent to v_{1}, by $\mathbf{R 4}$, it is sufficient to show that $\alpha\left(v_{1}\right) \geq 2+\frac{1}{2}=\frac{5}{2}$.

Let u_{1}^{\prime} be a vertex on f_{1}^{\prime} such that $u_{1}^{\prime} v_{2} \in E(G)$. If u_{1}^{\prime} is a true 4-vertex, then $u_{1}^{\prime} \neq u$ and thus f_{1}^{\prime} is not a 3-face, furthermore, f_{1}^{\prime} is not a 4_{1}-face as u and v_{2} are 9^{+}-vertices. So u_{1}^{\prime} is not v_{2}-special, and thus v_{1} and u_{1}^{\prime} are two consecutive neighbors of v_{2} that are not v_{2}-special. Clearly, f_{1}^{\prime} is not a 3_{1}-face by Lemma 2.6. By counting faces around v_{2}, we have, by Lemmas 2.4 and 2.5 , that

$$
d_{G^{*}}\left(v_{2}\right) \geq 1+2 \operatorname{sp}\left(v_{2}\right)+m_{3}^{\prime}\left(v_{2}\right)
$$

Hence v_{2} sends to v_{1}

$$
\begin{aligned}
d_{G^{*}}\left(v_{2}\right)-6-m_{3}^{\prime}\left(v_{2}\right)-\frac{1}{2} \operatorname{sp}\left(v_{2}\right) & \geq d_{G^{*}}\left(v_{2}\right)-6-m_{3}^{\prime}\left(v_{2}\right)-\frac{1}{4}\left(d_{G^{*}}\left(v_{2}\right)-1-m_{3}^{\prime}\left(v_{2}\right)\right) \\
& =\frac{3}{4}\left(d_{G^{*}}\left(v_{2}\right)-m_{3}^{\prime}\left(v_{2}\right)-\frac{23}{3}\right) \\
& \geq \frac{3}{4}\left(d_{G^{*}}\left(v_{2}\right)-\left(d_{G^{*}}\left(v_{2}\right)-9\right)-\frac{23}{3}\right) \\
& =1
\end{aligned}
$$

by $\mathbf{R 2}$ and Lemma 2.9.
Let x_{i} with $i=1,4$ be a vertex on f_{i}^{\prime} such that $u x_{i} \in E(G)$. If x_{1} is a true 4 -vertex, then $x_{1} \neq v_{2}$ and thus f_{1}^{\prime} is not a 3 -face, furthermore, f_{1}^{\prime} is not a 4_{1}-face as u and v_{2} are 9^{+}-vertices. This implies that x_{1} is not u-special. If x_{4} is a true 4 -vertex, then $x_{4} \neq w_{4}$ and thus f_{4}^{\prime} is not a 3 -face, furthermore, f_{4}^{\prime} is not a 4_{1}-face as $x_{4} w_{4} \notin E(G)$. This implies that x_{4} is not u-special. Therefore, x_{1}, v_{1}, x_{4} are three consecutive neighbors of u that are not u-special. Since f_{1}^{\prime} and f_{4}^{\prime} are not 3_{1}-faces by Lemma 2.6 , by counting faces around u, we have, by Lemmas 2.4 and 2.5 , that

$$
d_{G^{*}}(u) \geq 2+2 \operatorname{sp}(u)+m_{3}^{\prime}(u) .
$$

If $m_{3}^{\prime}(u)=d_{G^{*}}(u)-9$, then the above inequality implies $\operatorname{sp}(u) \leq 3$. So u sends v_{1} at least $d_{G^{*}}(u)-6-m_{3}^{\prime}(u)-\frac{1}{2} \operatorname{sp}(u) \geq$ $d_{G^{*}}(u)-6-\left(d_{G^{*}}(u)-9\right)-\frac{1}{2} \times 3=\frac{3}{2}$ by R2. If $m_{3}^{\prime}(u) \leq d_{G^{*}}(u)-10$, then

$$
\begin{aligned}
d_{G^{*}}(u)-6-m_{3}^{\prime}(u)-\frac{1}{2} \operatorname{sp}(u) & \geq d_{G^{*}}(u)-6-m_{3}^{\prime}(u)-\frac{1}{4}\left(d_{G^{*}}(u)-2-m_{3}^{\prime}(u)\right) \\
& =\frac{3}{4}\left(d_{G^{*}}(u)-m_{3}^{\prime}(u)-\frac{22}{3}\right) \\
& \geq \frac{3}{4}\left(d_{G^{*}}(u)-\left(d_{G^{*}}(u)-10\right)-\frac{22}{3}\right) \\
& =2
\end{aligned}
$$

by R2 and Lemma 2.9. Thus v_{1} gets at least $\min \left\{\frac{3}{2}, 2\right\}=\frac{3}{2}$ from u. This implies $\alpha\left(v_{1}\right) \geq 1+\frac{3}{2}=\frac{5}{2}$, as desired.

Case 2.2. f_{1} and f_{4} are both 3-faces.
With same or symmetry arguments as above, we conclude that each of v_{2} and v_{4} sends at least 1 to v_{1}. Similarly, we can show that u sends at least $\frac{3}{2}$ to v_{1}. This implies $\alpha\left(v_{1}\right) \geq 1+1+\frac{3}{2}=\frac{7}{2}>\frac{5}{2}$, as desired.

Let v be a false 4 -vertex such that $v_{1}, v_{2}, v_{3}, v_{4}$ are all its neighbors lying in this ordering. By Lemma 2.2, v is adjacent to at least two 9^{+}-vertices. Assume, without loss generality, that v_{1} and v_{2} are 9^{+}-vertices. Let f_{1} be the face incident with the path $v_{1} v v_{2}$ and let x_{1} be a vertex on f_{1} such that $x_{1} v_{1} \in E(G)$. Note that it may happen that $x_{1}=v_{2}$.

If x_{1} is a true 4 -vertex, then $x_{1} \neq v_{2}$ and thus f_{1} is not a 3 -face, furthermore, f_{1} is not a 4_{1}-face as v_{1} and v_{2} are 9^{+}-vertices. This implies that x_{1} is not v_{1}-special. Therefore, x_{1} and v are two consecutive neighbors of v_{1} that are not v_{1}-special. Since f_{1} is clearly not 3_{1}-face by Lemma 2.6, by counting faces around v_{1}, we have, by Lemmas 2.4 and 2.5 , that

$$
d_{G^{*}}\left(v_{1}\right) \geq 1+2 \operatorname{sp}\left(v_{1}\right)+m_{3}^{\prime}\left(v_{1}\right)
$$

Hence v_{1} sends to v

$$
\begin{aligned}
d_{G^{*}}\left(v_{1}\right)-6-m_{3}^{\prime}\left(v_{1}\right)-\frac{1}{2} \operatorname{sp}\left(v_{1}\right) & \geq d_{G^{*}}\left(v_{1}\right)-6-m_{3}^{\prime}\left(v_{1}\right)-\frac{1}{4}\left(d_{G^{*}}\left(v_{1}\right)-1-m_{3}^{\prime}\left(v_{1}\right)\right) \\
& \geq \frac{3}{4}\left(d_{G^{*}}\left(v_{1}\right)-\left(d_{G^{*}}\left(v_{1}\right)-9\right)-\frac{23}{3}\right) \\
& =1
\end{aligned}
$$

by $\mathbf{R 2}$ and Lemma 2.9. By the same reason, we can also show that v_{2} sends at least 1 to v. Hence $\mu^{*}(v) \geq-2+1 \times 2=0$. Let v be a 9^{+}-vertex. By $\mathbf{R 2}$ and Remark 2, it is immediate that $\mu^{*}(v) \geq d_{G^{*}}(v)-6-m_{3}^{\prime}(v)-\frac{1}{2} \operatorname{sp}(v)-\left(d_{G^{*}}(v)-6-\right.$ $\left.m_{3}^{\prime}(v)-\frac{1}{2} \operatorname{sp}(v)\right)=0$.

Let f be a 3 -face. If f is a 3_{1}-face, then f is incident with two 10^{+}-vertices by Lemmas 2.2 and 2.7 , and thus $\mu^{*}(f)=2 \times 3-6+2 \times 1-2=0$ by $\mathbf{R} \mathbf{2}$ and $\mathbf{R} 3$. If f is not 3_{1}-face, then it is not involved in the discharging rules and thus $\mu^{*}(f)=2 \times 3-6=0$.

Let f be a 4^{+}-face. By R1 and Remark 1 , we have $\mu^{*}(f) \geq 2 d_{G^{*}}(f)-6-2 n_{2}(f)-\frac{2 d_{C^{*}}(f)-6-2 n_{2}(f)}{n_{4}(f)} \times n_{4}(f)=0$.
Therefore, the final charge of every vertex and face of G^{*} is non-negative. This completes the proof.

Data availability

No data was used for the research described in the article.

References

[1] Z. Abel, V. Alvarez, E.D. Demaine, S.P. Fekete, A. Gour, A. Hesterberg, P. Keldenich, C. Scheffer, Conflict-free coloring of graphs, SIAM J. Discrete Math. 32 (4) (2018) 2675-2702.
[2] F.J. Brandenburg, W. Didimo, W.S. Evans, P. Kindermann, G. Liotta, F. Montecchiani, Recognizing and drawing IC-planar graphs, Theoret. Comput. Sci. 636 (2016) 1-16.
[3] Y. Caro, M. Petruševski, R. Škrekovski, Remarks on odd colorings of graphs, Discrete Appl. Math. 321 (2022) 392-401.
[4] Y. Caro, M. Petruševski, R. Škrekovski, Remarks on proper conflict-free colorings of graphs, Discrete Math. 346 (2) (2023) 113221.
[5] P. Cheilaris, B. Keszegh, D. Pálvölgyi, Unique-maximum and conflict-free coloring for hypergraphs and tree graphs, in: M. Bieliková, G. Friedrich, G. Gottlob, S. Katzenbeisser, G. Turán (Eds.), SOFSEM 2012: Theory and Practice of Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 190-201.
[6] E.-K. Cho, I. Choi, H. Kwon, B. Park, Odd coloring of sparse graphs and planar graphs, Discrete Math. 346 (5) (2023) 113305.
[7] D.W. Cranston, Odd colorings of sparse graphs, 2022, arXiv e-prints arXiv:2201.01455.
[8] D.W. Cranston, M. Lafferty, Z.-X. Song, A note on odd colorings of 1-planar graphs, Discrete Appl. Math. 330 (2023) $112-117$.
[9] T. Dai, Q. Ouyang, F. Pirot, New bounds for odd colourings of graphs, 2023, ArXiv arXiv:2306.01341.
[10] F. Huang, S. Guo, J. Yuan, A short note on open-neighborhood conflict-free colorings of graphs, SIAM J. Discrete Math. 34 (3) (2020) $2009-2015$.
[11] M. Kamyczura, J. Przybyło, On conflict-free proper colourings of graphs without small degree vertices, Discrete Math. 347 (1) (2024) 6, Id/No 113712.
[12] J. Liu, X. Hu, D. Zhang, J. Kong, The linear 2-arboricity of IC-planar graphs, Discrete Appl. Math. 338 (2023) 1-7.
[13] R. Liu, W. Wang, G. Yu, 1-planar graphs are odd 13-colorable, Discrete Math. 346 (8) (2023) 113423.
[14] Z. Liu, C. Xu, Adjacent vertex distinguishing edge coloring of IC-planar graphs, J. Comb. Optim. 43 (4) (2022) 710-726.
[15] Z. Miao, L. Sun, Z. Tu, X. Yu, On odd colorings of planar graphs, Discrete Math. 347 (1) (2024) 113706.
[16] B. Niu, X. Zhang, An improvement of the bound on the odd chromatic number of 1-planar graphs, in: Q. Ni, W. Wu (Eds.), Algorithmic Aspects in Information and Management, Springer International Publishing, Cham, 2022, pp. 388-393.
[17] B. Niu, X. Zhang, Y. Gao, Equitable partition of plane graphs with independent crossings into induced forests, Discrete Math. 343 (5) (2020) 8, Id/No 111792.
[18] C. Pan, W. Wang, R. Liu, IC-planar graphs are odd-10-colorable, Appl. Math. Comput. 451 (2023) 8, Id/No 128020.
[19] J. Petr, J. Portier, The odd chromatic number of a planar graph is at most 8, Graphs Combin. 39 (2) (2023).
[20] M. Petruševski, R. Škrekovski, Colorings with neighborhood parity condition, Discrete Appl. Math. 321 (2022) 385-391.
[21] M. Qi, X. Zhang, Odd coloring of two subclasses of planar graphs, 2022, arXiv e-prints arXiv:2205.09317.
[22] F. Tian, Y. Yin, The odd chromatic number of a toroidal graph is at most 9, Inform. Process. Lett. 182 (2023) 106384.
[23] W. Yang, Y. Wang, W. Wang, K.-W. Lih, IC-planar graphs are 6-choosable, SIAM J. Discrete Math. 35 (3) (2021) 1729-1745.

[^0]: \star Supported in part by the Fundamental Research Funds for the Central Universities, China (No.ZYTS24076) and the Natural Science Basic Research Program of Shaanxi, China (Nos. 2023-JC-YB-001, 2023-JC-YB-054).

 * Corresponding author.

 E-mail address: xzhang@xidian.edu.cn (X. Zhang).

