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a b s t r a c t

An IC-planar graph is a graph that can be drawn in the plane in such a way that each
edge is crossed at most once and each vertex is incident with at most one crossed edge.
In this paper, we show that every IC-planar graph can be colored with nine colors so that
for every non-isolate vertex there exists a color occurring odd times in its neighbors.

© 2024 Elsevier B.V. All rights are reserved, including those for text and datamining, AI
training, and similar technologies.

1. Introduction

A k-coloring of a graph G = (V , E) is a mapping c from its vertex set V to [k], where [k] denotes the set of integers
1, 2, . . . , k}. A coloring c is proper if adjacent vertices receive distinct colors under c . A proper coloring c is odd if for
very non-isolate vertex v there exists a color occurring odd times in its neighbors. The notion of odd coloring was
ntroduced in 2022 by Petruševski and Škrekovski [20], and this topic has attracted the interest of many research groups
ncluding [3,4,6–9,11,13,15,16,19,21,22].

A hypergraph is a generalization of a graph, where an edge can connect any number of vertices, instead of just two
ertices like in a traditional graph. In a hypergraph, each edge is called a hyperedge. In 2012, Cheilaris, Keszegh, and
álvölgyi [5] defined odd colorings for hypergraphs. Precisely, an odd coloring of a hypergraph H with k colors is a function
from its vertex set to [k], such that for each hyperedge of H there is a color that occurs an odd number of times on

he vertices of this hyperedge. Under this notion, an odd k-coloring of a 2-uniform hypergraph (i.e., a traditional graph)
s equivalent to its proper k-coloring, instead of its proper odd k-coloring, however, let us forget this confusion now.

Given a graph G = (V , E), the open neighborhood of a vertex v ∈ V is the set of its adjacent vertices in G, denoted by
G(v). We define a hypergraph H = (X, S) based on G such that X = V and S = {NG(v) | v ∈ V }. We call such a hypergraph
an open-neighborhood hypergraph of G, denoted by HON (G). In this sense, an odd coloring of HON (G) is equivalent to the

mproper odd coloring of G, i.e., a coloring of G, not necessarily proper, such that for every non-isolate vertex there exists
color occurring odd times in its neighbors.
In 2018, a relative notion with the improper odd coloring is given by Abel et al. [1]. A vertex coloring of a graph is open-

eighborhood conflict-free if for every non-isolated vertex there is a color appearing exactly once in its open neighborhood.
t is easy to see that every open-neighborhood conflict-free coloring is an improper odd coloring.

A minor of a graph G is a graph obtained from G by means of a sequence of vertex and edge deletions and edge
ontractions. A graph G is minor-k-colorable if every minor of G has a proper k-coloring. Huang, Guo, and Yuan [10] showed
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hat every minor-k-colorable connected graph is open-neighborhood conflict-free k-colorable for each integer k ≥ 2. Since
very minor of a planar graph is still planar, and thus it is 4-colorable by Four Color Theorem, the result of Huang, Guo,
nd Yuan implies that every planar graph is open-neighborhood conflict-free 4-colorable, and therefore is improperly odd
-colorable.
On graphs that are not minor-closed, the result of Huang, Guo, and Yuan cannot be applied. In view of this, we focus

n IC-planar graphs in this paper. A graph is IC-planar if it has an embedding in the plane in such a way that each edge is
rossed at most once and each vertex is incident with at most one crossed edge. The structures and colorings on IC-planar
raphs were extensively investigated by various of research groups, see [2,12,14,17,23] for example. In particular, Pan,
ang, and Liu [18] showed that IC-planar graphs are properly odd 10-colorable. Note that the class of IC-planar graphs

s not minor-closed. Actually, given any graph M , we can subdivide each edge sufficiently many times (i.e., replace each
dge with a sufficiently long path where each interior vertex has degree exactly two) so that the resulting graph G is
C-planar, but now G has an M-minor.

The main result of this paper is as follows.

heorem 1.1. Every IC-planar graph has an improper odd 9-coloring. In other words, the hypergraph HON (G) has an odd
-coloring if G is IC-planar.

otations. Basic notations follow any standard textbook of graph theory so we only mention unusual ones. A k-, k+-, and
−-vertex (resp. face) of a plane is a vertex (resp. face) of degree k, at least k, and at most k, respectively. Given an IC-plane
raph G (i.e., an embedded IC-planar graph so that each vertex is incident with at most one crossed edge), we turn all
ts crossings into new vertices of degree 4, and the resulting graph is said to be the associated plane graph of G, denoted
y G∗. A vertex of G∗ is true if v ∈ V (G), and false otherwise. Observe that dG∗ (v) = dG(v) if v is true and dG∗ (v) = 4 if v

s false. A face of G∗ is false if it is incident with at least one false vertex, and true otherwise. For an odd (not necessarily
roper) coloring c of a subgraph H induced by S ⊆ V (G) and a vertex v ∈ V (G) (note that v may not be colored under c),
f there is an unique color, say α, that appears an odd number of times in NG(v), then we set co(v) = α, and otherwise
e set co(v) = 0.

. Reducibilities

Let G be a counterexample to Theorem 1.1 with the minimum number of vertices. We could assume that G is embedded
n a plane so that the number of crossings is as few as possible. For each f ∈ F (G∗), we denote nk(f ) to be the number
f true k-vertices incident with f . Since G is IC-planar, two false vertices are not adjacent in G∗ and any true vertex is
djacent to at most one false vertex in G∗.
A kt-face of G∗ is a k-face incident with exactly t 2-vertices. A true 4-vertex u is v-special if v is true and each face

ncident with uv in G∗ is either a 3-face or a 41-face. For each v ∈ V (G), sp(v) denotes the number of v-special vertices,
nd m′

3(v) denotes the number of 31-faces incident with v.

emma 2.1. G has no k-vertices with k = 1, 3, 5, 7.

roof. Suppose that G has a k-vertex v with NG(v) = {v1, v2, . . . , vk}. Since G′
= G − v has fewer vertices than G, G′ has

n improper odd 9-coloring c by the minimality of G. Color each vertex other than v in G with the same color in G′ and
color v with a color in [9] \ {co(v1), co(v2), . . . , co(vk)}. Since the degree of v is odd, the oddness of v is satisfied naturally.
ow, the improper odd 9-coloring of G′ can return back to G, a contradiction. □

emma 2.2. 8−-vertices are not adjacent in G.

roof. Suppose that two 8−-vertices u and v are adjacent. Let NG(u) = {v, u1, u2, . . . , ui−1} and NG(v) = {u, v1, v2, . . . ,

j−1}, where i, j ≤ 8. By the minimality of G, G′
= G−{u, v} has an improper odd 9-coloring c. Color each vertex other than

and v in G with the same color in G′, and then color u with a color in [9] \ {co(v), co(u1), co(u2), . . . , co(ui−1)} and v with
color in [9] \ {co(u), co(v1), co(v2), . . . , co(vi−1)}. This extends c to an improper odd 9-coloring of G, a contradiction. □

emma 2.3. For each face f of G∗, we have n2(f ) + n4(f ) ≤ ⌊
dG∗ (f )

2 ⌋.

roof. This is an immediate corollary of Lemma 2.2. □

emma 2.4. If uvw is a boundary path of some face of G∗, then at most one of u and w is v-special.

roof. Let f be the face of G∗ such that uvw is its boundary path. Suppose on the contrary that u and w are both v-special.
ince v-special vertices are 4-vertices by the definition, v is not a 2-vertex and thus f is neither a 3-face nor a 41-face by
emma 2.2. This contradicts the definition of v-special vertex. □
75
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emma 2.5. If u is v-special, then uv is not incident with a 31-face.

roof. Assume that uv is incident with a 3-face [vuw]. If this face is a 31-face, then w is a 2-vertex adjacent to the true
-vertex u, contradicting Lemma 2.2. □

Lemma 2.6. Any false 3-face f of G∗ is not incident with a 2-vertex.

Proof. Let f = [uvw] be a false 3-face such that u is a 2-vertex and w is false. Redraw G by re-embedding u into the other
face incident with vw which is not f . This avoids forming the crossing w, and the resulting drawing has less crossings, a
contradiction to our assumption. □

Lemma 2.7. Any 31-face is not incident with a 9-vertex in G∗.

Proof. Let f = [uvw] be a 31-face such that v is a 9-vertex with neighbors u, w, v1, v2, v3, v4, v5, v6, v7, and u is a
-vertex. By the minimality of G, G′

= G−{u, v} has an improper odd 9-coloring c. Note that w is true by Lemma 2.6. We
olor v with α ∈ [9] \ {co(v1), co(v2), co(v3), co(v4), co(v5), c0(v6), c0(v7), c(w)} and denote the resulting coloring of G − u
till by c. Now we extend c to an improper odd 9-coloring of G by coloring u with a color in [9] \ {co(v), co(w)}. Note that
he oddness of u is satisfied as α ̸= c(w). □

emma 2.8. A 4-face is incident with at most one 2-vertex in G∗.

Proof. Suppose that [v1v2v3v4] is a 4-face incident with at least two 2-vertices. By Lemma 2.2, we may assume without
loss of generality that v1 and v3 are 2-vertices. If v2 or v4 is false, then we can rotate the 4-face on the axis of the line
segment connecting v1 and v3 to avoid at least one crossing while drawing this graph, a contradiction to our assumption.
Hence v2 and v4 are true. By the minimality of G, G′

= G − v1 has an improper odd 9-coloring c . Color each vertex other
than v1 in G with the same color in G′, and then color v1 with a color in [9] \ {co(v2), co(v4)}. Since c(v2) ̸= c(v4) as v3 is
a 2-vertex in G′, the oddness of v1 is satisfied. Now we obtain an improper odd 9-coloring of G, a contradiction. □

Lemma 2.9. For each 9+-vertex v of G∗, m′

3(v) ≤ dG∗ (v) − 9.

Proof. Let S be the set of 2-vertices such that for each u ∈ S, uv is incident with a 31-face [uvw], where w is represented
by γu. Let T = {γu | u ∈ S} and Y = NG(v) \ (S ∪ T ).

Suppose for a contradiction that m′

3(v) ≥ dG∗ (v) − 8. By the minimality of G, G − v has an improper odd 9-coloring c.
We erase the color of each vertex in S, and then color v with a color not in {c(x) | x ∈ T } ∪ {co(x) | x ∈ Y }, which has size
at most |T | + |Y | = dG∗ (v) − |S| ≤ dG∗ (v) − (dG∗ (v) − 8) = 8. Note that for each u ∈ S, co(u) = c(γu). Arbitrarily choose a
vertex s ∈ S, and color each vertex u ∈ S \ {s} with a color different from co(γu). Now we come to a coloring of G− s, still
denoted by c. Finally we complete an improper odd 9-coloring of G by coloring s with a color different from co(v) and
co(γs). □

3. Proof of Theorem 1.1

We apply a discharging argument on G∗ to accomplish the proof. We assign an initial charge µ(v) = dG∗ (v) − 6 to
each v ∈ V (G∗) and µ(f ) = 2dG∗ (f )− 6 to each f ∈ F (G∗). By Euler’s Formula, we have

∑
v∈V (G∗) µ(v)+

∑
f∈F (G∗) µ(f ) < 0.

In the following, we design appropriate discharging rules to redistribute the charges, obtaining a final charging function
µ∗ on V (G∗) ∪ F (G∗) such that µ∗(x) ≥ 0 for each x ∈ V (G∗) ∪ F (G∗). Since the total sum of charges is uncharged in the
discharging procedure, this is a contradiction implying Theorem 1.1.

The discharging rules are defined as follows.

R1. Every 4+-face f sends 2 to each of its incident 2-vertices, and 2dG∗ (f )−6−2n2(f )
n4(f )

to each of its adjacent true 4-vertices.

R2. Every 9+-vertices v sends 1 to each of its incident 31-faces, 1
2 to each v-special vertex, and dG∗ (v)−6−m′

3(v)−
1
2 sp(v)

to its adjacent false 4-vertex.

R3. Every 31-face sends 2 to its incident 2-vertex.

R4. Every false 4-vertex v with α(v) ≥ 2 and n4(v) > 0 sends α(v)−2
n4(v)

to each of its adjacent true 4-vertices, where α(v)
denotes the total amount of charges that v gets from its adjacent 9+-vertices by R2 and n4(v) denotes the number
of true 4-vertices adjacent to v.

emark 1. If f is a 4-face, then n2(f ) ≤ 1 by Lemma 2.8. If f is a 5+-face, then n2(f ) ≤ ⌊
dG∗ (f )

2 ⌋ by Lemma 2.2. In each case,
e have 2d ∗ (f ) − 6 − 2n (f ) ≥ 0. Hence R1 is valid.
G 2
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emark 2. If v is a 9+-vertex, then by Lemmas 2.4 and 2.5, we have dG∗ (v) ≥ 2sp(v) + m′

3(v). It follows

dG∗ (v) − 6 − m′

3(v) −
1
2
sp(v) ≥ dG∗ (v) − 6 − m′

3(v) −
1
4

(
dG∗ (v) − m′

3(v)
)

≥
3
4

(
dG∗ (v) − (dG∗ (v) − 9) − 8

)
> 0

by Lemma 2.9 and thus R2 is valid too.

We do not need consider k-vertices with k = 1, 3, 5, 7 by Lemma 2.1, and also we shall forget 6-vertices and 8-vertices
as they are not involved in the discharging rules and their initial charges are nonnegative.

Let v be a 2-vertex. Since the face incident with v is either a 4+-face or a 31-face, µ∗(v) = −4+2+2 = 0 by R1 and R3.
Let v be a true 4-vertex with neighbors v1, v2, v3, v4 lying in this ordering around v in G∗, and let f1, f2, f3, f4 be the

ace incident with the path v1vv2, v2vv3, v3vv4, v4vv1, respectively.
If fi is a 5+-face, then it sends

2dG∗ (fi) − 6 − 2n2(fi)
n4(fi)

≥
2dG∗ (fi) − 6 − 2⌊ dG∗ (fi)

2 ⌋ + 2n4(fi)
n4(fi)

≥ 2

o v by R1 and by Lemma 2.3.
If fi is a 40-face, then it sends 2×4−6

n4(fi)
≥ 1 to v by R1 as n4(fi) ≤ 2 by Lemma 2.2.

Hence, if some of f1, f2, f3.f4 is a 5+-face, or two of f1, f2, f3.f4 are 40-faces, then µ∗(v) ≥ −2 + 2 = 0. Next we assume
that each fi is a 4−-face. Note that each fi is incident with at most one 2-vertex by Lemma 2.2 and Lemma 2.8.

Assume first that each vi is true. By Lemma 2.2, each vi is a 9+-vertex. If v is incident with exactly one 40-face, say f1,
hen each of f2, f3, and f4 is either a 3-face or a 41-face, and therefore v is both v3-special and v4-special. It follows that
∗(v) ≥ −2+1+2×

1
2 = 0 by R1 and R2. If v is not incident with any 40-face, then each fi is either a 3-face or a 41-face,

and thus v is vi-special for each i ∈ [4]. This implies µ∗(v) ≥ −2 + 4 ×
1
2 = 0 by R2.

Assume now that v1 is false (note that only one of v1, v2, v3, v4 can be false). Let u ∈ NG(v) \ {v2, v3, v4}, i.e., uv is an
dge of G passing the crossing v1. Let w1w4 be an edge of G crossing uv such that wi is on fi with i = 1, 4.

ase 1. v is incident with exactly one 40-face.

By symmetry we consider two cases.
Suppose first that f1 is a 40-face. This implies that f2 and f3 are 41-faces or 3-faces. If n4(f1) ≤ 1, then f1 sends

× 4 − 6 = 2 to v by R1, and thus µ∗(v) ≥ −2 + 2 = 0. Hence we assume n4(f1) ≥ 2. This implies that n4(f1) = 2, w1
s a true 4-vertex, and w4 is a 9+-vertex by Lemma 2.2. Therefore, f4 cannot be a 41-face, and thus it must be a 3-face. It
ollows that v is both v3-special and v4-special. Hence µ∗(v) ≥ −2 +

2×4−6
2 + 2 ×

1
2 = 0 by R1 and R2.

Suppose now that f2 is a 40-face, denoted by [vv2w2v3]. By R1, f2 sends 2×4−6
n4(f2)

≥ 1 to v as n4(f2) ≤ 2. By Lemma 2.2,
1 and f4 cannot simultaneously be 41-faces, as otherwise w1 and w4 are two adjacent 2-vertices in G. Let f ′

i with i = 1, 4
e an face sharing the common edge v1wi with fi. Let wi with i = 2, 3 be a vertex on fi such that viwi ∈ E(G). Note that

it may happen that w3 = v4. In what follows, we consider three subcases.

Case 1.1. f1 is a 3-face and f4 is a 41-face.

In this case, w1 = v2 and w4 is a 2-vertex. Now we calculate α(v1).
Let u′

1 be a vertex on f ′

1 such that u′

1v2 ∈ E(G). If u′

1 is a true 4-vertex, then u′

1 ̸= u and thus f ′

1 is not a 3-face,
urthermore, f ′

1 is not a 41-face as u and v2 are 9+-vertices. It follows that u′

1 is not v2-special. Since f2 is assumed to
e a 40-face, v and w2 are not v2-special . Therefore, u′

1, v1, v, w2 are four consecutive neighbors of v2 in G∗ that are not
2-special. Since f ′

1, f1, f2 are not 31-faces by Lemma 2.6, by counting faces around v2, we have, by Lemmas 2.4 and 2.5, that

dG∗ (v2) ≥ 3 + 2sp(v2) + m′

3(v2).

ence v2 sends to v1

dG∗ (v2) − 6 − m′

3(v2) −
1
2
sp(v2) ≥ dG∗ (v2) − 6 − m′

3(v2) −
1
4

(
dG∗ (v2) − 3 − m′

3(v2)
)

=
3
4

(
dG∗ (v2) − 7 − m′

3(v2)
)

≥
3
4

(
dG∗ (v2) − 7 −

(
dG∗ (v2) − 9

))
=

3
2

by R2 and Lemma 2.9.
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Let xi with i = 1, 4 be a vertex on f ′

i such that uxi ∈ E(G). If x1 is a true 4-vertex, then x1 ̸= v2 and thus f ′

1 is not a
3-face, furthermore, f ′

1 is not a 41-face. This implies that x1 is not u-special. If x4 is a true 4-vertex, then x4 ̸= w4 and
thus f ′

4 is not a 3-face, furthermore, f ′

4 is not a 41-face as x4w4 ̸∈ E(G). This implies that x4 is not u-special. Therefore,
1, v1, x4 are three consecutive neighbors of u in G∗ that are not u-special. Since f ′

1 and f ′

4 are not 31-faces by Lemma 2.6,
y counting faces around u, we have, by Lemmas 2.4 and 2.5, that

dG∗ (u) ≥ 2 + 2sp(u) + m′

3(u).

ence u sends to v1

dG∗ (u) − 6 − m′

3(u) −
1
2
sp(u) ≥ dG∗ (u) − 6 − m′

3(u) −
1
4

(
dG∗ (u) − 2 − m′

3(u)
)

=
3
4

(
dG∗ (u) −

22
3

− m′

3(u)
)

≥
3
4

(
dG∗ (u) −

22
3

−
(
dG∗ (u) − 9

))
=

5
4

by R2 and Lemma 2.9. This implies α(v1) ≥
3
2 +

5
4 =

11
4 . Since in this case v is the only true 4-vertex adjacent to v1, v1

ives v at least 11
4 − 2 =

3
4 by R4.

Since f4 is a 41-face, f3 is a 3-face or 41-face, and v4 is a 9+-vertex, we conclude that v is v4-special. This implies that
4 sends 1

2 to v by R2. Hence µ∗(v) ≥ −2 +
3
4 +

1
2 + 1 > 0 as f2 sends at least 1 to v.

Case 1.2. f1 is a 41-face and f4 is a 3-face.

In this case, w1 is a 2-vertex and w4 = v4. Now we calculate α(v1).
Let u′

4 be a vertex on f ′

4 such that u′

4v4 ∈ E(G). If u′

4 is a true 4-vertex, then u′

4 ̸= u and thus f ′

4 is not a 3-face,
furthermore, f ′

4 is not a 41-face as u and v4 are 9+-vertices. It follows that u′

4 is not v4-special. Therefore, v1 and u′

4 are
wo consecutive neighbors of v4 in G∗ that are not v4-special. Since f ′

4 is not a 31-face by Lemma 2.6, by counting faces
round v4, we have, by Lemmas 2.4 and 2.5, that

dG∗ (v4) ≥ 1 + 2sp(v4) + m′

3(v4).

ence v4 sends to v1

dG∗ (v4) − 6 − m′

3(v4) −
1
2
sp(v4) ≥ dG∗ (v4) − 6 − m′

3(v4) −
1
4

(
dG∗ (v4) − 1 − m′

3(v2)
)

=
3
4

(
dG∗ (v4) − m′

3(v4) −
23
3

)
≥

3
4

(
dG∗ (v4) − (dG∗ (v4) − 9) −

23
3

)
= 1

by R2 and Lemma 2.9.
Let xi with i = 1, 4 be a vertex on f ′

i such that uxi ∈ E(G). If x1 is a true 4-vertex, then x1 ̸= w1 and thus f ′

1 is not
a 3-face, furthermore, f ′

1 is not a 41-face as x1w1 ̸∈ E(G). This implies that x1 is not u-special. If x4 is a true 4-vertex,
then x4 ̸= v4 and thus f ′

4 is not a 3-face, furthermore, f ′

4 is not a 41-face. This implies that x4 is not u-special. Therefore,
x1, v1, x4 are three consecutive neighbors of u in G∗ that are not u-special. Since f ′

1 and f ′

4 are not 31-faces by Lemma 2.6,
by counting faces around u, we have, by Lemmas 2.4 and 2.5, that

dG∗ (u) ≥ 2 + 2sp(u) + m′

3(u).

If m′

3(u) = dG∗ (u) − 9, then the above inequality implies sp(u) ≤ 3. So u sends v1 at least dG∗ (u) − 6 − m′

3(u) −
1
2 sp(u) ≥

G∗ (u) − 6 − (dG∗ (u) − 9) −
1
2 × 3 =

3
2 by R2. If m′

3(u) ≤ dG∗ (u) − 10, then u sends to v1

dG∗ (u) − 6 − m′

3(u) −
1
2
sp(u) ≥ dG∗ (u) − 6 − m′

3(u) −
1
4

(
dG∗ (u) − 2 − m′

3(u)
)

=
3
4

(
dG∗ (u) − m′

3(u) −
22
3

)
≥

3
4

(
dG∗ (u) − (dG∗ (u) − 10) −

22
3

)

= 2

78



P. Chen and X. Zhang Discrete Applied Mathematics 357 (2024) 74–80

b
i

v

v

a

f
n
b

H

d

y R2 and Lemma 2.9. Therefore, v1 gets at least min{
3
2 , 2} =

3
2 from u, and thus α(v1) ≥

3
2 + 1 =

5
2 . Since in this case v

s the only true 4-vertex adjacent to v1, v1 gives v at least 5
2 − 2 =

1
2 by R4.

Since f4 is a 3-face, f3 is a 3-face or 41-face, and v4 is a 9+-vertex, we conclude that v is v4-special. This implies that
4 sends 1

2 to v by R2. Hence µ∗(v) ≥ −2 +
1
2 + 1 +

1
2 ≥ 0 as f2 sends at least 1 to v.

Case 1.3. f1 and f4 are both 3-faces.

Using same arguments as what we had done in Case 1.1 and Case 1.2, we conclude that v2 and v4 sends to v1 at least
3
2 and 1 to v1, respectively. This implies that α(v1) ≥

3
2 +1 =

5
2 . In this case, v is the only true 4-vertex adjacent to v1. So

1 sends at least 5
2 − 2 =

1
2 to v by R4. Since f4 is a 3-face and f3 is a 3-face or 41-face, we conclude that v is v4-special,

nd thus v4 sends 1
2 to v by R2. Hence µ∗(v) ≥ −2 +

1
2 + 1 +

1
2 = 0 as f2 sends at least 1 to v.

Case 2. v is incident only with 3-face or 41-face.

In this case, v is a vi-special for each i ∈ {2, 3, 4}. So each vi sends 1
2 to v by R2. In the following, we show that v1

would send at least 1
2 to v, and thus µ∗(v) ≥ −2 + 4 ×

1
2 = 0.

By Lemma 2.2, f1 and f4 cannot simultaneously be 41-faces, as otherwise w1 and w4 are two adjacent 2-vertices in G.
Let f ′

i with i = 1, 4 be an face sharing the common edge v1wi with fi. Let wi with i = 2, 3 be a vertex on fi such that
viwi ∈ E(G). Note that it may happen that w2 = v3 or w3 = v4. By symmetry, we distinguish two subcases.

Case 2.1. f1 is a 3-face and f4 is a 41-face.

In this case, w4 is a 2-vertex and w1 = v2. Since v is the unique true 4-vertex adjacent to v1, by R4, it is sufficient to
show that α(v1) ≥ 2 +

1
2 =

5
2 .

Let u′

1 be a vertex on f ′

1 such that u′

1v2 ∈ E(G). If u′

1 is a true 4-vertex, then u′

1 ̸= u and thus f ′

1 is not a 3-face,
urthermore, f ′

1 is not a 41-face as u and v2 are 9+-vertices. So u′

1 is not v2-special, and thus v1 and u′

1 are two consecutive
eighbors of v2 that are not v2-special. Clearly, f ′

1 is not a 31-face by Lemma 2.6. By counting faces around v2, we have,
y Lemmas 2.4 and 2.5, that

dG∗ (v2) ≥ 1 + 2sp(v2) + m′

3(v2).

ence v2 sends to v1

dG∗ (v2) − 6 − m′

3(v2) −
1
2
sp(v2) ≥ dG∗ (v2) − 6 − m′

3(v2) −
1
4

(
dG∗ (v2) − 1 − m′

3(v2)
)

=
3
4

(
dG∗ (v2) − m′

3(v2) −
23
3

)
≥

3
4

(
dG∗ (v2) − (dG∗ (v2) − 9) −

23
3

)
= 1

by R2 and Lemma 2.9.
Let xi with i = 1, 4 be a vertex on f ′

i such that uxi ∈ E(G). If x1 is a true 4-vertex, then x1 ̸= v2 and thus f ′

1 is not
a 3-face, furthermore, f ′

1 is not a 41-face as u and v2 are 9+-vertices. This implies that x1 is not u-special. If x4 is a true
4-vertex, then x4 ̸= w4 and thus f ′

4 is not a 3-face, furthermore, f ′

4 is not a 41-face as x4w4 ̸∈ E(G). This implies that x4
is not u-special. Therefore, x1, v1, x4 are three consecutive neighbors of u that are not u-special. Since f ′

1 and f ′

4 are not
31-faces by Lemma 2.6, by counting faces around u, we have, by Lemmas 2.4 and 2.5, that

dG∗ (u) ≥ 2 + 2sp(u) + m′

3(u).

If m′

3(u) = dG∗ (u)−9, then the above inequality implies sp(u) ≤ 3. So u sends v1 at least dG∗ (u)−6−m′

3(u)−
1
2 sp(u) ≥

G∗ (u) − 6 − (dG∗ (u) − 9) −
1
2 × 3 =

3
2 by R2. If m′

3(u) ≤ dG∗ (u) − 10, then

dG∗ (u) − 6 − m′

3(u) −
1
2
sp(u) ≥ dG∗ (u) − 6 − m′

3(u) −
1
4

(
dG∗ (u) − 2 − m′

3(u)
)

=
3
4

(
dG∗ (u) − m′

3(u) −
22
3

)
≥

3
4

(
dG∗ (u) − (dG∗ (u) − 10) −

22
3

)
= 2

by R2 and Lemma 2.9. Thus v gets at least min{
3 , 2} =

3 from u. This implies α(v ) ≥ 1 +
3

=
5 , as desired.
1 2 2 1 2 2
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C

c

t
w

µ

D

R

ase 2.2. f1 and f4 are both 3-faces.

With same or symmetry arguments as above, we conclude that each of v2 and v4 sends at least 1 to v1. Similarly, we
an show that u sends at least 3

2 to v1. This implies α(v1) ≥ 1 + 1 +
3
2 =

7
2 > 5

2 , as desired.
Let v be a false 4-vertex such that v1, v2, v3, v4 are all its neighbors lying in this ordering. By Lemma 2.2, v is adjacent

o at least two 9+-vertices. Assume, without loss generality, that v1 and v2 are 9+-vertices. Let f1 be the face incident
ith the path v1vv2 and let x1 be a vertex on f1 such that x1v1 ∈ E(G). Note that it may happen that x1 = v2.
If x1 is a true 4-vertex, then x1 ̸= v2 and thus f1 is not a 3-face, furthermore, f1 is not a 41-face as v1 and v2 are

9+-vertices. This implies that x1 is not v1-special. Therefore, x1 and v are two consecutive neighbors of v1 that are not
v1-special. Since f1 is clearly not 31-face by Lemma 2.6, by counting faces around v1, we have, by Lemmas 2.4 and 2.5,
that

dG∗ (v1) ≥ 1 + 2sp(v1) + m′

3(v1).

Hence v1 sends to v

dG∗ (v1) − 6 − m′

3(v1) −
1
2
sp(v1) ≥ dG∗ (v1) − 6 − m′

3(v1) −
1
4

(
dG∗ (v1) − 1 − m′

3(v1)
)

≥
3
4

(
dG∗ (v1) − (dG∗ (v1) − 9) −

23
3

)
= 1

by R2 and Lemma 2.9. By the same reason, we can also show that v2 sends at least 1 to v. Hence µ∗(v) ≥ −2+1×2 = 0.
Let v be a 9+-vertex. By R2 and Remark 2, it is immediate that µ∗(v) ≥ dG∗ (v) − 6 − m′

3(v) −
1
2 sp(v) − (dG∗ (v) − 6 −

m′

3(v) −
1
2 sp(v)) = 0.

Let f be a 3-face. If f is a 31-face, then f is incident with two 10+-vertices by Lemmas 2.2 and 2.7, and thus
∗(f ) = 2 × 3 − 6 + 2 × 1 − 2 = 0 by R2 and R3. If f is not 31-face, then it is not involved in the discharging rules and

thus µ∗(f ) = 2 × 3 − 6 = 0.
Let f be a 4+-face. By R1 and Remark 1, we have µ∗(f ) ≥ 2dG∗ (f ) − 6 − 2n2(f ) −

2dG∗ (f )−6−2n2(f )
n4(f )

× n4(f ) = 0.
Therefore, the final charge of every vertex and face of G∗ is non-negative. This completes the proof.
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