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Abstract A graph is outer-1-planar if it can be drawn in the plane so that all vertices lie on the outer-face

and each edge crosses at most one another edge. It is known that every outer-1-planar graph is a planar partial

3-tree. In this paper, we conjecture that every planar graph G has a proper incidence (∆(G) + 2)-coloring and

confirm it for outer-1-planar graphs with maximum degree at least 8 or with girth at least 4. Specifically, we

prove that every outer-1-planar graph G has an incidence (∆(G)+3, 2)-coloring, and every outer-1-planar graph

G with maximum degree at least 8 or with girth at least 4 has an incidence (∆(G) + 2, 2)-coloring.
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1 Introduction

All graphs in this paper are simple and undirected. We denote by V (G), E(G), δ(G), and ∆(G)
the vertex set, edge set, minimum degree, and maximum degree of a graph G. The degree of a
vertex v in a graph G is denoted by dG(v), and we use d(v) instead if the graph G is clear from
the content. The girth of a non-acyclic graph G, denoted by g(G), is the minimum length of a
cycle in G. We refer the reads to [5] for other undefined but frequently used notations.

An incidence of G is a vertex-edge pair (v, e) with v ∈ V (G) and e ∈ E(G) such that v is
an end-vertex of e. Two incidences (u, e) and (v, f) are adjacent if (i) u = v, or (ii) e = f ,
or (iii) uv = e or uv = f . For a vertex u ∈ V (G), the incidences (u, uv) (resp (v, uv)) are
strong incidences (resp.weak incidences) of u, and the set of the strong (resp. weak) incidences
is denoted by Iu (resp.Au). A proper incidence k-coloring of a graph G is a coloring of the
incidences using k colors in such a way that every two adjacent incidences get distinct colors.
The minimum integer k such that G has a proper incidence k-coloring is the incidence chromatic
number of G, denoted by χi(G). An incidence (k, ℓ)-coloring of G is a proper incidence k-
coloring such that |Au| ≤ ℓ for each u ∈ V (G).

For a graph G, it is easy to see that χi(G) ≥ ∆(G) + 1, because we need at least ∆(G) + 1
colors to color the strong incidences and the weak incidences of a vertex of maximum degree.
For the upper bound, Brualdi and Quinn Massey[6] raised the following conjecture in 1993.

Conjecture 1.1 (Incidence Coloring Conjecture (ICC)). χi(G) ≤ ∆(G) + 2 holds for every
graph G.

ICC had been verified for graphs with maximum degree at most 3 by Maydanskyi[12].
However, ICC is not completely correct. In 1997, Guiduli[7] found an interesting relationship
between the incidence chromatic number and the directed star arboricity, and then used a
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result of Algor and Alon[1] to show that Paley graphs have incidence chromatic number at least
∆(G) + Ω(log∆(G)). More precisely, the following theorem is based on the results of [1, 7].

Theorem 1.2. If G is a Paley graph and k is an integer such that ∆(G) ≥ k2 · 22k−3, then

χi(G) > ∆(G) +
k

2
. (1.1)

Since Paley graphs on p vertices are (p − 1)/2-regular, where p shall satisfy the condition
that p ≡ 1 (mod 4) is a prime[1], Palay graphs on at least 13 vertices are not planar (note that
every planar graph contains a vertex of degree at most 5). To our best knowledge, all known
counterexamples to ICC are Paley graphs with large maximum degree (see Theorem 1.2), and
thus they are not planar. This makes us confident to make a weaker conjecture than ICC.

Conjecture 1.3 (Planar Incidence Coloring Conjecture (PICC)). χi(G) ≤ ∆(G) + 2 holds for
every planar graph G.

We review some known results concerning PICC. First of all, Hosseini Dolama, Sopena, and
Zhu[9] proved that every planar graph G is incidence (∆(G) + 7, 7)-colorable. Hence χi(G) ≤
∆(G) + 7 holds for every planar graph G. This upper bound was improved to ∆(G) + 5 by
Yang[16] in 2012.

Theorem 1.4[16]. χi(G) ≤ ∆(G) + 5 holds for every planar graph G.

For planar graphs with high girth, Hosseini Dolama and Sopena[8] proved that if G is a
planar graph with g(G) ≥ 6 and ∆(G) ≥ 5 then G has an incidence (∆(G) + 2, 2)-coloring.
Kardoš et al. [10] showed that if G is a graph with maximum average degree less than 3 and
∆(G) ≥ 4 then χi(G) ≤ ∆(G) + 2. Since planar graphs with g(G) ≥ 6 have maximum average
degree less than 3, combining the results of those two groups and the fact that ICC holds for
subcubic graphs[12], we conclude the following

Theorem 1.5. χi(G) ≤ ∆(G) + 2 holds for every planar graph G with girth at least 6.

Kardoš et al. [10] also proved that χi(G) ≤ ∆(G)+2 if G is a planar graph with g(G) ≥ 5 and
∆(G) ≥ 8. Bonamy, Lévêque, and Pinlou[4] showed that if G is a planar graph with g(G) ≥ 14,
then G has an incidence (∆(G) + 1, 1)-coloring, and thus χi(G) = ∆(G) + 1.

Hosseini Dolama, Sopena, and Zhu[9] proved that every partial 2-tree G is incidence (∆(G)+
2, 2)-colorable and thus χi(G) ≤ ∆(G) + 2. Since series-parallel graphs are partial 2-trees and
outerplanar graphs is a subclass of series-parallel graphs, the following is immediate.

Theorem 1.6. χi(G) ≤ ∆(G) + 2 holds for every series-parallel (outerplanar) graph G.

Moreover, Shiu and Sun[13] observed (actually as a corollary of a result of Wang and Lih[15])
that if G is an outerplanar with g(G) ≥ 7, then G is incidence (∆(G) + 1, 1)-colorable.

A graph is outer-1-planar if it admits a drawing in the plane so that vertices lie on the
outer-face and each edge is crossed at most once. A graph is quasi-Hamiltonian if its every
block (i.e., maximal 2-connected component) is Hamiltonian. Zhang, Liu, and Wu[18] showed
that the intersection of the class of quasi-Hamiltonian outer-1-planar graphs and the class of
series-parallel graphs is exactly the class of outerplanar graphs, and Auer, et al.[2] showed
that outer 1-planar graphs are planar and partial 3-trees. Since every 3-degenerate graph G
is incidence (∆(G) + 4, 3)-colorable due to the result of Hosseini Dolama and Sopena[8], and
partial 3-trees are clearly 3-degenerate, we have the following.

Theorem 1.7. χi(G) ≤ ∆(G) + 4 holds for every outer-1-planar graph G.
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For other unmentioned results concerning the incidence coloring of graphs, a real-time online
survey contributed by Éric Sopena[14] is highly recommended.

The goal of this paper is to improve the upper bound for χi(G) in Theorem 1.7 to ∆(G)+3,
and confirm PICC for outer-1-planar graphs G with ∆(G) ≥ 8 or g(G) ≥ 4. Specifically, we
prove the following theorems.

Theorem 1.8. Every outer-1-planar graph G has an incidence (∆(G) + 3, 2)-coloring.

Theorem 1.9. Every outer-1-planar graph G with ∆(G) ≥ 8 has an incidence (∆(G) + 2, 2)-
coloring.

Theorem 1.10. Every outer-1-planar graph G with g(G) ≥ 4 has an incidence (∆(G) + 2, 2)-
coloring.

2 Reducible Configurations

Let ∆, p, q be positive integers and let G be a graph with ∆(G) ≤ ∆. For a partial proper
incidence (∆ + p)-coloring φ of G, φ(Iu) and φ(Au) denotes the set of colors that are used on
the strong incidences and the weak incidences of u under φ, respectively. While extending φ
to a proper incidence (∆ + p)-coloring of G, the set of colors that cannot be used by a being
colored incidence (u, uv) is therefore

Fφ(u, uv) = φ(Iu) ∪ φ(Au) ∪ φ(Iv). (2.1)

Formally, the set Fφ(u, uv) is called the forbidden set for (u, uv), and the set

Aφ(u, uv) = Cp \ Fφ(u, uv) (2.2)

is called the available set for (u, uv), where Cp denotes the set of colors {1, 2, · · · ,∆+ p}.
A configuration of G is (∆+ p, q)-reducible if it cannot occur in a minimal graph (in terms

of the sum of the size and the order) which is not incidence (∆ + p, q)-colorable.

Lemma 2.1. A vertex v of degree 1 is (∆ + p, 2)-reducible for every integer p ≥ 2.

Proof. If G is an incidence non-(∆ + p, 2)-colorable minimal graph, then G′ = G − {v} is
incidence (∆+ p, 2)-colorable. Let φ be an incidence (∆+ p, 2)-coloring of G′ and let u be the
neighbor of v. We extend φ to an incidence (∆ + p, 2)-coloring of G by coloring (u, uv) and
(v, uv) as follows.

First, since

|Fφ(u, uv)| ≤ |φ(Iu)|+ |φ(Au)|+ |φ(Iv)| ≤ (∆− 1) + 2 + 0 = ∆+ 1, (2.3)

we can color (u, uv) with a color in Cp \Fφ(u, uv). This extended coloring of G is still denoted
by φ and then we color (v, uv) with a color in Cp \ Fφ(v, uv) if |φ(Au)| = 1. This is possible
since Fφ(v, uv) = φ(Iu), which contains at most ∆ colors. On the other hand, if |φ(Au)| = 2,
then color (v, uv) with a color in φ(Au). This results in an incidence (∆ + p, 2)-coloring of G
as φ(Au) ∩ φ(Iu) = ∅.

Lemma 2.2. An edge uw with d(u) = 2 is

(1) (∆ + 2, 2)-reducible for ∆ ≥ γ if d(w) ≤ γ − 1, and

(2) (∆ + 3, 2)-reducible.
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Proof. We set p = 2 or p = 3 while proving (1) or (2), respectively, and then use an uniform
proof to prove both of them.

If G is an incidence non-(∆+ p, 2)-colorable minimal graph, then G′ = G−{u} is incidence
(∆ + p, 2)-colorable. Let φ be an incidence (∆ + p, 2)-coloring of G′ and let v be the neighbor
of u different from w. We extend φ to an incidence (∆+ p, 2)-coloring of G by coloring (v, uv),
(u, uv), (u, uw), and (w, uw) in such an ordering. In the following arguments, we always use φ
to indicate the extended coloring at every stage .

First, since

|Fφ(v, uv)| ≤ |φ(Iv)|+ |φ(Av)|+ |φ(Iu)| ≤ (∆− 1) + 2 + 0 = ∆+ 1, (2.4)

we can color (v, uv) with φ(v, uv) ∈ Cp \ Fφ(v, uv). Now we color (u, uv) as follows. Suppose
first that |φ(Av)| = 1. Since φ(Au) ⊆ φ(Iv),

|Fφ(u, uv)| ≤ |φ(Iu)|+ |φ(Iv)| ≤ 0 + ∆ = ∆. (2.5)

It follows that there are at least p ≥ 2 colors in Cp \ Fφ(u, uv), from which we can choose
one, say φ(u, uv), to color (u, uv) so that {φ(v, uv), φ(u, uv)} ̸= φ(Aw). If |φ(Av)| = 2, then
φ(Av) ∩ Fφ(u, uv) = ∅ and thus we can choose one color, say φ(u, uv), from φ(Av) to color
(u, uv) such that {φ(v, uv), φ(u, uv)} ≠ φ(Aw).

Now we color (u, uw). If |φ(Aw)| = 1, then color (u, uw) with φ(u, uw) ∈ Cp \ Fφ(u, uw).
This is possible since

|Fφ(u, uw)| ≤|φ(Iu)|+ |φ(Au)|+ |φ(Iw)| ≤ 1 + 1 + (d(w)− 1)

=d(w) + 1 ≤

{
∆, if p = 2,

∆+ 1, if p = 3
< ∆+ p. (2.6)

If |φ(Aw)| = 2, then

φ(Aw) \ Fφ(u, uw) = φ(Aw) \
(
{φ(v, uv), φ(u, uv)} ∪ φ(Iw)

)
= φ(Aw) \ {φ(v, uv), φ(u, uv)} ̸= ∅. (2.7)

Hence we can color (u, uw) with φ(u, uw) ∈ φ(Aw) \ Fφ(u, uw).
Finally, since φ(u, uw) ∈ φ(Iu) ∩ φ(Aw),

|Fφ(w, uw)| ≤|φ(Iw)|+ |φ(Aw)|+ |φ(Iu)| − 1 ≤ (d(w)− 1) + 2 + 2− 1

=d(w) + 2 ≤

{
∆+ 1, if p = 2,

∆+ 2 if p = 3
< ∆+ p. (2.8)

Hence we can complete an incidence (∆ + p, 2)-coloring of G by coloring (u, uw) with
φ(w, uw) ∈ Cp \ Fφ(w, uw).

Lemma 2.3. A cycle uxvyu with d(u) = d(v) = 2 is (∆ + p, 2)-reducible for every integer
p ≥ 2.

Proof. If G is an incidence non-(∆ + p, 2)-colorable minimal graph, then G′ = G − {u, v} is
incidence (∆+p, 2)-colorable. Let φ be an incidence (∆+p, 2)-coloring of G′. We aim to extend
φ to an incidence (∆ + p, 2)-coloring of G by coloring (u, ux), (u, uy), (v, vx), (v, vy), (x, ux),
(x, vx), (y, uy), and (y, vy) properly.

Since φ(Iu) = φ(Iv) = ∅, Fφ(x, ux) = Fφ(x, vx) = φ(Ix) ∪ φ(Ax) and Aφ(x, ux) =
Aφ(x, vx). It follows that |Fφ(x, ux)| ≤ (∆−2)+2 = ∆ and thus both Aφ(x, ux) and Aφ(x, vx)
have sizes at least (∆ + p)−∆ = p ≥ 2. By symmetry, Aφ(y, uy) and Aφ(y, vy) are same and
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they have sizes at least 2. Without loss of generality, assume Aφ(x, ux) = Aφ(x, vx) ⊇ {α1, α2}
and Aφ(y, uy) = Aφ(y, vy) ⊇ {β1, β2}.

We extend φ to an incidence (∆+ p, 2)-coloring ϕ of G by coloring (x, ux), (x, vx), (y, uy),
and (y, vy) with α1, α2, β1, and β2. By symmetry, we assume |φ(Ax)| ≤ |φ(Ay)|.

Case 1. There are two distinct colors a, b such that φ(Ax) = φ(Ay) = {a, b}.
Since {a, b} ∩ {α1, α2, β1, β2} ⊆ (φ(Ax) ∩ (Aφ(x, ux)) ∪ (φ(Ay) ∩ Aφ(y, uy)) = ∅, we can

extend ϕ to an incidence (∆ + p, 2)-coloring of G by coloring (u, ux) and (v, vx) with a, and
(u, uy) and (v, vy) with b.

Case 2. There are three distinct colors a, b, c such that φ(Ax) = {a, c} and φ(Ay) = {b, c}.
Without loss of generality, assume a ̸= β1. Since {a, c} ∩ {α1, α2} ⊆ φ(Ax)∩Aφ(x, ux) = ∅

and {b, c}∩{β1, β2} ⊆ φ(Ay)∩Aφ(y, uy) = ∅, we can extend ϕ to a partial incidence (∆+p, 2)-
coloring ofG by coloring (v, vx) and (u, uy) with c, and (u, ux) with a. We now color (v, vy) with
b. If b ̸= α2, then we had already obtained an incidence (∆+p, 2)-coloring of G, and if otherwise,
then exchanging the colors of (x, ux) and (x, vx) also results in an incidence (∆+ p, 2)-coloring
of G (note that in such a case b ̸= α1 and c ̸= α2).

Case 3. There are four distinct colors a, b, c, d such that φ(Ax) = {a, c} and φ(Ay) = {b, d}.
Since {a, c}∩{α1, α2} ⊆ φ(Ax)∩Aφ(x, ux) = ∅ and {b, d}∩{β1, β2} ⊆ φ(Ay)∩Aφ(y, uy) = ∅,

we can extend ϕ to an incidence (∆ + p, 2)-coloring of G by coloring (u, ux) , (u, uy), (v, vx),
and (v, vy) with a color in {a, c}\{β1}, {b, d}\{α1}, {a, c}\{β2}, and {b, d}\{α2}, respectively.

Case 4. There are three distinct colors a, b, c such that φ(Ax) = {a} and φ(Ay) = {b, c}.
Without loss of generality, assume a ̸= β1 and b ̸= α1. Since {a} ∩ {α1, α2} ⊆ φ(Ax) ∩

Aφ(x, ux) = ∅ and {b, c} ∩ {β1, β2} ⊆ φ(Ay) ∩ Aφ(y, uy) = ∅, we can extend ϕ to a partial
incidence (∆ + p, 2)-coloring of G by coloring (u, uy) with b, (u, ux) with a, and (v, vy) with a
color in {b, c} \ {α2}. We now color (v, vx) with a. If a ̸= β2, then we had already obtained an
incidence (∆ + p, 2)-coloring of G. Hence we assume a = β2. It follows α2 ̸= β2, and thus we
recolor (v, vx) with α2 and erase the colors of (x, vx) and (v, vy). The current partial incidence
(∆ + p, 2)-coloring of G is denoted by ϕ′. Since α2 ∈ ϕ′(Ax) ∩ ϕ′(Iv) and α1 ∈ ϕ′(Ix),

|Fϕ′
(x, vx)| ≤ |ϕ′(Ix)|+ |ϕ′(Ax)|+ |ϕ′(Iv)| − 1 ≤ (∆− 1) + 2 + 1− 1 = ∆+ 1, (2.9)

and thus we can color (x, vx) with a color α3 ∈ Cp \ Fϕ′
(x, vx) that is different from both α1

and α2. If {b, c} ≠ {α2, α3}, then coloring (v, vy) with a color in {b, c} \ {α2, α3} results in an
incidence (∆ + p, 2)-coloring of G. On the other hand, if {b, c} = {α2, α3}, then exchange the
colors of (x, ux) and (x, vx), color (v, vy) with α3, and recolor (u, uy) with α2 if necessary. This
again gives an incidence (∆ + p, 2)-coloring of G.

Case 5. There are two distinct colors a, b such that φ(Ax) = {a} and φ(Ax) ∪ φ(Ay) ⊆
{a, b}.

Since

|Fφ(x, vx)| ≤ |φ(Ix)|+ |φ(Ax)|+ |φ(Iv)| ≤ (∆− 2) + 1 + 0 = ∆− 1, (2.10)

|Aφ(x, vx)| ≥ (∆ + p) − (∆ − 1) = p + 1 ≥ 3, which implies that there is a new color α3 such
that Aφ(x, vx) ⊇ {α1, α2, α3}. It follows that {a} ∩ {α1, α2, α3} ⊆ φ(Ax) ∩Aφ(x, ux) = ∅.

If φ(Ay) = {a, b}, then {a, b} ∩ {β1, β2} ⊆ φ(Ay) ∩ Aφ(y, uy) = ∅. Assume b ̸∈ {αi, αj}
for some pair {i, j} ⊂ {1, 2, 3}. We can extend ϕ to an incidence (∆ + p, 2)-coloring of G by
coloring (u, ux) and (v, vx) with a, (u, uy) and (v, vy) with b, and then recoloring (x, xu) and
(x, xv) with αi and αj if necessary, respectively.

If φ(Ay) = {a} or φ(Ay) = {b}, then similarly, there is a new color β3 such that Aφ(y, vy) ⊇
{β1, β2, β3}. Without loss of generality, assume that αi ̸= βi for i = 1, 2, 3, a ̸∈ {βk, βl} for
some pair {k, l} ⊂ {1, 2, 3}, and b ̸∈ {αi, αj} for some pair {i, j} ⊂ {1, 2, 3}. Specifically, if
φ(Ay) = {a}, then {a} ∩ {β1, β2, β3} ⊆ φ(Ay)∩Aφ(y, uy) = ∅, and thus we can extend ϕ to an
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incidence (∆+p, 2)-coloring of G by coloring (u, ux), (u, uy), (v, vx), and (v, vy) with a, β1, α3,
and a, and then recoloring (y, uy) and (y, vy) with β2 and β3, respectively. If φ(Ay) = {b},
then {b} ∩ {β1, β2, β3} ⊆ φ(Ay) ∩ Aφ(y, uy) = ∅, and thus we can extend ϕ to an incidence
(∆ + p, 2)-coloring of G by coloring (u, ux) and (v, vx) with a, and (u, uy) and (v, vy) with b,
and then recoloring (x, ux), (x, vx), (y, uy), and (y, vy) with αi, αj , βk, and βl if necessary,
respectively.

Lemma 2.4. A cycle uxvyu with d(u) = d(v) = 3 and uv ∈ E(G) is

(1) (∆ + 2, 2)-reducible for ∆ ≥ 8 if d(y) ≤ 7, and

(2) (∆ + 3, 2)-reducible.

Proof. We set p = 2 or p = 3 while proving (1) or (2), respectively, and then use an uniform
proof to prove both of them.

If G is an incidence non-(∆+p, 2)-colorable minimal graph, then G′ = G−{u, v} is incidence
(∆+ p, 2)-colorable. Let φ be an incidence (∆+ p, 2)-coloring of G′. We aim to extend φ to an
incidence (∆ + p, 2)-coloring of G by coloring (u, ux), (u, uy), (v, vx), (v, vy), (x, ux), (x, vx),
(y, uy), (y, vy), (u, uv), and (v, uv) properly.

Since φ(Iu) = φ(Iv) = ∅, Fφ(x, ux) = Fφ(x, vx) = φ(Ix) ∪ φ(Ax) and Fφ(y, uy) =
Fφ(y, vy) = φ(Iy) ∪ φ(Ay). It follows that |Fφ(x, ux)| = |Fφ(x, vx)| ≤ (∆ − 2) + 2 = ∆
and Aφ(x, ux) = Aφ(x, vx) has size at least (∆ + p)−∆ = p ≥ 2. If p = 2, then |Fφ(y, uy)| =
|Fφ(y, vy)| ≤ 5+ 2 = 7 ≤ ∆− 1 (note that d(y) ≤ 7 and ∆ ≥ 8 in this case), and if p = 3, then
|Fφ(y, uy)| = |Fφ(y, vy)| ≤ (∆−2)+2 = ∆. Hence |Fφ(y, uy)| = |Fφ(y, vy)| ≤ ∆−3+p in each
case and thus Aφ(y, uy) = Aφ(y, vy) has size at least (∆+p)− (∆−3+p) = 3. Without loss of
generality, assume Aφ(x, ux) = Aφ(x, vx) ⊇ {α1, α2} and Aφ(y, uy) = Aφ(y, vy) ⊇ {β1, β2, β3}.

Case 1. {α1, α2} ⊂ {β1, β2, β3}, in which case we assume α1 = β1 and α2 = β2.
Subcase 1.1. There are colors a ∈ φ(Ax) and b ∈ φ(Ay) such that a ̸= b.
Since {a} ∩ {α1, α2} ⊆ φ(Ax)∩Aφ(x, ux) = ∅ and {b} ∩ {α1, α2} ⊆ φ(Ay)∩Aφ(y, uy) = ∅,

{a, b}∩{α1, α2} = ∅. Hence we can extend φ to an incidence (∆+p, 2)-coloring of G by coloring
(x, ux), (y, uy), and (v, uv) with α1, (x, vx), (y, vy), and (u, uv) with α2, (u, ux) and (v, vx)
with a, and (u, uy) and (v, vy) with b.

Subcase 1.2. There is a color a such that φ(Ax) = φ(Ay) = {a}.
Since {a} ∩ {α1, α2} ⊆ φ(Ax) ∩ Aφ(x, ux) = ∅, we can extend φ to a partial incidence

(∆ + p, 2)-coloring ϕ of G by coloring (x, ux), (y, uy), and (v, uv) with α1, (x, vx), (y, vy),
and (u, uv) with α2, and (u, ux) and (v, vy) with a. Since ϕ(Iu) ∪ ϕ(Au) = {a, α1, α2} and
{α1, α2} ⊆ ϕ(Iy),

|Fϕ(u, uy)| ≤ |ϕ(Iu)|+ |ϕ(Au)|+ |ϕ(Iy)| − 2 ≤ 2 + 1 + d(y)− 2

= d(y) + 1 ≤

{
∆, if p = 2

∆+ 1, if p = 3
< ∆+ p, (2.11)

This implies that we can color (u, uy) with a color in Cp \ Fϕ(u, uy). Similarly, we can color
(v, vx) with a color in Cp \ Fϕ(v, vx), which is also nonempty, and then obtain an incidence
(∆ + p, 2)-coloring of G.

Case 2.
∣∣{α1, α2} ∩ {β1, β2, β3}

∣∣ = 1, in which case we assume α1 = β1.
Subcase 2.1. There are colors a ∈ φ(Ax) and b ∈ φ(Ay) such that a ̸= b.
Assume, without loss of generality, that a ̸= β2. Since a ̸∈ {α1, α2}, α1 = β1 ̸= b, and

β2 ̸∈ {α1, b}, we can extend φ to a partial incidence (∆ + p, 2)-coloring ϕ of G by coloring
(y, uy) and (v, uv) with α1, (u, ux) and (v, vx) with a, (u, uy) with b, and (u, uv) and (y, vy)
with β2. If α2 ̸= b, then we can complete an incidence (∆ + p, 2)-coloring of G by coloring
(x, ux) with α1, (x, vx) with α2, and (v, vy) with b. Hence we may assume α2 = b.
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If |φ(Ax)| = 1, then |Fφ(x, ux)| = |Fφ(x, vx)| ≤ (∆ − 2) + 1 = ∆ − 1 and Aφ(x, ux) =
Aφ(x, vx) has size at least (∆+ p)− (∆− 1) = p+ 1 ≥ 3. Hence there is a color α3 ̸∈ {α1, α2}
such that Aφ(x, ux) = Aφ(x, vx) ⊇ {α1, α3}. If {α1, α3} ⊂ {β1, β2, β3}, then we immediately
come back to Case 1, and if {α1, α3} ̸⊂ {β1, β2, β3}, then

∣∣{α1, α3}∩{β1, β2, β3}
∣∣ = 1, in which

case we may have α3 = b by the same arguments as the above paragraph. However, this is
impossible since α3 ̸= α2 = b. Hence we may assume |φ(Ax)| = 2.

If |φ(Ay)| = 1, then we first extend ϕ to a partial incidence (∆ + p, 2)-coloring ϕ′ of G by
coloring (x, ux) with α1 and (x, vx) with α2. Since α1 ∈ ϕ′(Iv)∩ϕ′(Iy) and β2 ∈ ϕ′(Av)∪ϕ′(Iy),

|Fϕ′
(v, vy)| ≤ |ϕ′(Iv)|+ |ϕ′(Av)|+ |ϕ′(Iy)| − 2 ≤ 2 + 2 + d(y)− 2

= d(y) + 2 ≤

{
∆+ 1, if p = 2,

∆+ 2, if p = 3
< ∆+ p, (2.12)

we can complete an incidence (∆ + p, 2)-coloring of G by coloring (v, vy) with a color in Cp \
Fϕ′

(v, vy) (note that ∆ ≥ 8 if p = 2). Hence we may assume |φ(Ay)| = 2.
If φ(Ay) ̸= {a, b}, then there is a color c ∈ φ(Ay) \ {a, b}. It is clear that coloring (x, ux)

with α1, (x, vx) with α2, and (v, vy) with c results in an incidence (∆ + p, 2)-coloring of G.
Note that c ̸∈ {a, β1, b, β2} = {a, α1, α2, β2}. Hence we may further assume φ(Ay) = {a, b}.

Since |φ(Ax)| = 2, there is a color c ∈ φ(Ax) such that c ̸∈ {a, b} (recall that b = α2 ∈
Aφ(x, xu) and thus b ̸∈ φ(Ax)). Since {α1, α2} ⊆ Aφ(x, xu) and φ(Ax) ∩ Aφ(x, xu) = ∅,
c ̸∈ {α1, α2}. We color (x, ux) with α1, (x, vx) with α2, (v, vy) with a, and recolor (v, vx) with
c. This gives an incidence (∆+ p, 2)-coloring of G provided c ̸= β2. Whereafter, if c = β2, then
c ̸= β3. Since β3 ̸= β1 = α1 and β3 ̸∈ φ(Ay) = {a, b}, recoloring (u, uv) and (y, vy) with β3

results in an incidence (∆ + p, 2)-coloring of G.
Subcase 2.2. There is a color a such that φ(Ax) = φ(Ay) = {a}.
Since {a}∩{α1, α2, β2} ⊆ φ(Ax)∩(Aφ(x, ux)∪Aφ(y, uy)) = ∅, we can extend φ to a partial

incidence (∆+p, 2)-coloring ϕ of G by coloring (x, ux), (y, uy), and (v, uv) with α1, (x, vx) and
(u, uv) with α2, (u, uy) and (v, vx) with a, and (y, vy) with β2.

Since ϕ(Iv) ∪ ϕ(Av) = {a, α1, α2, β2} and {α1, β2} ⊆ ϕ(Iy),

|Fϕ(v, vy)| ≤ |ϕ(Iv)|+ |ϕ(Av)|+ |ϕ(Iy)| − 2 ≤ 2 + 2 + d(y)− 2

= d(y) + 2 ≤

{
∆+ 1, if p = 2,

∆+ 2, if p = 3

< ∆+ p. (2.13)

Since ϕ(Iu) ∪ ϕ(Au) = {a, α1, α2} and {α1, α2} ⊆ ϕ(Ix),

|Fϕ(u, ux)| ≤ |ϕ(Iu)|+ |ϕ(Au)|+ |ϕ(Ix)| − 2 ≤ 2 + 1 +∆− 2 = ∆+ 1. (2.14)

Hence we can respectively color (v, vy) and (u, ux) with a color in Cp \ Fϕ(v, vy) and Cp \
Fϕ(u, ux), completing an incidence (∆ + p, 2)-coloring of G.

Case 3.
∣∣{α1, α2} ∩ {β1, β2, β3}

∣∣ = 0.
Subcase 3.1. There are colors a ∈ φ(Ax) and b ∈ φ(Ay) such that a ̸= b.
Assume, without loss of generality, that a ̸∈ {β1, β2} and b ̸= α1. Since {a, b}∩{α1, β1, β2} =

({a}∩{α1})∪ ({b}∩{β1, β2}) ⊆ (φ(Ax)∩Aφ(x, ux))∪ (φ(Ay)∩Aφ(y, uy)) = ∅, we can extend
φ to a partial incidence (∆+ p, 2)-coloring ϕ of G by coloring (x, ux) with α1, (x, vx) with α2,
(y, vy) and (u, uv) with β1, (y, uy) and (v, uv) with β2, (u, ux) and (v, vx) with a, and (u, uy)
with b. If α2 ̸= b, then we can obtain an incidence (∆+p, 2)-coloring ofG by coloring (v, vy) with
b. Hence we may assume α2 = b. Since ϕ(Iv) ∪ ϕ(Av) = {a, α2, β1, β2} and {β1, β2} ⊆ ϕ(Iy),

|Fϕ(v, vy)| ≤ |ϕ(Iv)|+ |ϕ(Av)|+ |ϕ(Iy)| − 2 ≤ 2 + 2 + d(y)− 2
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= d(y) + 2 ≤

{
∆+ 1, if p = 2,

∆+ 2, if p = 3

< ∆+ p. (2.15)

So it is possible to color (v, vy) with a color in Cp\Fϕ(v, vy) to complete an incidence (∆+p, 2)-
coloring of G.

Subcase 3.2. There is a color a such that φ(Ax) = φ(Ay) = {a}.
Since φ(Iu) = φ(Iv) = ∅, Fφ(x, ux) = Fφ(x, vx) = φ(Ix) ∪ φ(Ax). It follows that

|Fφ(x, ux)| = |Fφ(x, vx)| ≤ (∆ − 2) + 1 = ∆ − 1 and Aφ(x, ux) = Aφ(x, vx) has size at
least (∆ + p) − (∆ − 1) = p + 1 ≥ 3. Assume Aφ(x, ux) = Aφ(x, vx) ⊇ {α1, α2, α3}, and
assume further, without loss of generality, that α3 ̸= β2. Since {a} ∩ {α1, α2, α3, β1, β2, β3} ⊆
(φ(Ax) ∩ (Aφ(x, ux)) ∪ (φ(Ay) ∩ Aφ(y, uy)) = ∅, we can extend φ to an incidence (∆ + p, 2)-
coloring of G by coloring (x, ux) and (v, uv) with α1, (x, vx) with α2, (v, vx) with α3, (y, uy)
with β1, (y, vy) and (u, uv) with β2, (u, ux) and (v, vy) with a, and (u, uy) with β3.

3 Proofs of the Main Theorems

Before proving Theorem 1.8, Theorem 1.9, and Theorem 1.10, we import some interesting
structural lemmas for outer-1-planar graphs. The following two lemmas are direct corollaries
of [17].

Lemma 3.1[17]. Every outer-1-planar graph G contains

(a3.1) a vertex v of degree at most 2, or

(b3.1) a cycle uxvyu with d(u) = d(v) = 3 and uv ∈ E(G).

Lemma 3.2[17]. Every outer-1-planar graph G with g(G) ≥ 4 contains

(a3.2) a vertex v of degree 1, or

(b3.2) an edge uv with d(u) = d(v) = 2, or

(c3.2) a cycle uxvyu with d(u) = d(v) = 2.

Recently, Li and Zhang[11] improved Lemma 3.1 to the following.

Lemma 3.3[11]. Every outer-1-planar graph G contains

(a3.3) a vertex v of degree 1, or

(b3.3) an edge uv with d(u) = 2 and d(v) ≤ 5, or

(c3.3) a cycle uxvyu with d(u) = d(v) = 2, or

(d3.3) a cycle uxvyu with d(u) = d(v) = 3, uv ∈ E(G), and d(y) ≤ 7.

Instead of proving Theorem 1.8, Theorem 1.9, and Theorem 1.10 directly, we prove slightly
stronger results as follows.

Theorem 3.4. Every outer-1-planar graph G with ∆(G) ≤ ∆ has an incidence (∆ + 3, 2)-
coloring.

Proof. Suppose, for a contradiction, that there is an incidence non-(∆+3, 2)-colorable minimal
(in terms of |V (G)| + |E(G)|) outer-1-planar graph G with ∆(G) ≤ ∆. By Lemma 3.1, G
contains (as an outer-1-planar graph) the configuration (a3.1) or (b3.1). However, (a3.1) is
(∆+3, 2)-reducible by Lemma 2.1 and (2) of Lemma 2.2, and (b3.1) is (∆+3, 2)-reducible by
(2) of Lemma 2.4, a contradiction.
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Theorem 3.5. Every outer-1-planar graph G with ∆(G) ≤ ∆ and ∆ ≥ 8 has an incidence
(∆ + 2, 2)-coloring.

Proof. Suppose, for a contradiction, that there is an incidence non-(∆+2, 2)-colorable minimal
(in terms of |V (G)| + |E(G)|) outer-1-planar graph G with ∆(G) ≤ ∆. By Lemma 3.3, G
contains at least one configuration among (a3.3), (b3.3), (c3.3), and (d3.3). However, (a3.3),
(b3.3), (c3.3), and (d3.3) are respectively (∆ + 2, 2)-reducible by Lemma 2.1, (1) of Lemma
2.2, Lemma 2.3, and (1) of Lemma 2.4, a contradiction.

Theorem 3.6. Every outer-1-planar graph G with g(G) ≥ 4 and ∆(G) ≤ ∆ has an incidence
(∆ + 2, 2)-coloring.

Proof. If ∆ ≤ 2, then the result is trivial, since every cycle is incidence (4, 2)-colorable and every
path is incidence (3, 2)-colorable. So we assume ∆ ≥ 3. Suppose, for a contradiction, that there
is an incidence non-(∆ + 2, 2)-colorable minimal (in terms of |V (G)| + |E(G)|) outer-1-planar
graph G with ∆(G) ≤ ∆. By Lemma 3.2, G contains at least one configuration among (a3.2),
(b3.2), and (c3.2). However, (a3.2), (b3.2), and (c3.2) are respectively (∆ + 2, 2)-reducible
by Lemma 2.1, (1) of Lemma 2.2, and Lemma 2.3, a contradiction.
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[14] Sopena, É. www.labri.fr/perso/sopena/TheIncidenceColoringPage.
[15] Wang, W.F., Lih, K.W. Labeling planar graphs with conditions on girth and distance two. SIAM J.

Discrete Math., 17(2): 264–275 (2003)
[16] Yang, D. Fractional incidence coloring and star arboricity of graphs. Ars Combin., 105: 213–224 (2012)
[17] Zhang, X. List total coloring of pseudo-outerplanar graphs. Discrete Math., 313: 2297–2306 (2013)
[18] Zhang, X., Liu, G., Wu, J.L. Edge covering pseudo-outerplanar graphs with forests. Discrete Math., 312:

2788–2799 (2012)


	Introduction
	Reducible Configurations
	Proofs of the Main Theorems

