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Abstract

For any given k-uniform list assignment L, a graph G is equitably
k-choosable, if and only if G is L-colorable and each color appears
on at most d |V (G)|

k
e vertices. A graph G is equitable k-colorable if G

has a proper vertex coloring with k colors such that the size of the
color classes differ by at most 1. In this paper, we prove that every
planar graph G without 6- and 7-cycles is equitably k-colorable and
equitably k-choosable where k ≥ max{∆(G), 6}.
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1 Introduction

The terminology and notation used but undefined in this paper can be
found in [1]. Let G = (V,E) be a graph. We use V (G), E(G), F (G), ∆(G)
and δ(G) to denote the vertex set, edge set, face set, maximum degree, and
minimum degree of G, respectively. Let dG(x) or simply d(x), denote the
degree of a vertex (face) x in G. A vertex (face) x is called a k-vertex (k-
face), k+-vertex (k+-face), k−-vertex or k−−-vertex, if d(x) = k, d(x) ≥
k, 2 ≤ d(x) ≤ k or 1 ≤ d(x) ≤ k. We use (d1, d2, · · · , dn) to denote a
face f if d1, d2, · · · , dn are the degree of vertices incident to the face f . Let
δ(f) denote the minimal degree of vertices incident to f . A graph G is
k-degenerate if every subgraph has a vertex of degree at most k.

A graph G = (V,E) is said to be equitably k-colorable if the vertex set
V (G) can be partitioned into k independent subsets V1, V2, · · · , Vk such
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that ||Vi| − |Vj || ≤ 1 (1 ≤ i, j ≤ k). The equitable chromatic number of
G, denoted by χe(G), is the smallest integer k such that G is equitably
k-colorable. The equitable chromatic threshold of G, denoted by χ∗

e(G), is
the smallest integer k such that G is equitably l-colorable (l ≥ k). It is
obvious that χe(G) ≤ χ∗

e(G) for any graph G. They might not be equal.
For example, if K2n+1,2n+1 (n is a positive integer) is a complete bipartite
graph, then χe(K2n+1,2n+1) = 2, χ∗

e(K2n+1,2n+1) = 2n + 2.
In many application of graph coloring, it is desirable that the color

classes are not too large. For example, when using a coloring model to
find an optimal final exam schedule, one would like to have approximately
equal number of final exams in each time slot because the whole exam pe-
riod should be as short as possible and the number of classrooms available
is limited. Recently, Pemmaraju [13] and Janson and Ruciński [6] used eq-
uitable colorings to derive deviation bounds for sums of dependent random
variables that exhibit limited dependence. In all of these applications, the
fewer colors we use, the better the deviation bound is. Equitable coloring
has a well-known property that restricts the size of each color class by its
definition.

In 1970, Hajnál and Szemerédi proved that χ∗
e(G) ≤ ∆(G) + 1 for any

graph G [5]. This bound is sharp as shows the example of K2n+1,2n+1.
In 1973, Meyer introduced the notion of equitable coloring and made the
following conjecture [11]:

Conjecture 1 If G is a connected graph which is neither a complete graph
nor odd cycle, then χe(G) ≤ ∆(G).

In 1994, Chen et al. put forth the following conjecture [2]:

Conjecture 2 For any connected graph G, if it is different from a com-
plete graph, a complete bipartite graph and an odd cycle, then χ∗

e(G) ≤
∆(G).

Chen et al. proved the conjecture for graphs with ∆(G) ≤ 3 or ∆(G) ≥
|V (G)|

2 or a tree [2, 3]. Yap and Zhang proved that the conjecture holds
for outer planar graphs and planar graphs with ∆(G) ≥ 13 [17, 18]. Lih
and Wu verified χ∗

e(G) ≤ ∆(G) for bipartite graphs other than a complete
bipartite graph [9]. Wang et al. proved the conjecture for line graphs [16].
It follows from [8] that the conjecture hold for d-degenerate graphs with
maximum degree ∆(G) ≥ 14d + 1.

For a graph G and a list assignment L assigned to each vertex v ∈ V (G)
a set L(v) of acceptable colors, a L-coloring of G is a proper vertex coloring
such that for every v ∈ V (G) the color on v belongs to L(v). A list
assignment L for G is k-uniform if |L(v)| = k for all v ∈ V (G). A graph
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G is equitably k-choosble if, for any k-uniform list assignment L, G is
L-colorable and each color appears on at most d |V (G)|

k e vertices.
In 2003, Kostochka, Pelsmajer and West investigated the equitable list

coloring of graphs. They proposed the following conjecture[7].

Conjecture 3 Every graph G is equitably k-choosable whenever k > ∆(G).

Conjecture 4 If G is a connected graph with maximum degree at least
3, then G is equitably ∆(G)-choosable, unless G is a complete graph or is
Kk,k for some odd k.

It has been proved that Conjecture 3 holds for graphs with ∆(G) ≤ 3
independently in [12, 14]. Kostochka, Pelsmajer and West proved that a
graph G is equitably k-choosable if either G 6= Kk+1,Kk,k (with k odd
in the later case) and k ≥ max{∆, |V (G)|

2 }, or G is a connected inteval
graph and k ≥ ∆(G) or G is a 2-degenerate graph and k ≥ max{∆(G), 5}
[7]. Pelsmajer proved that every graph is equitably k-choosable for any
k ≥ ∆(G)(∆(G)−1)

2 + 2 [12]. There are several results for planar graphs
without short cycles [10, 19].

In this paper, we show that every planar graph G without 6- and
7-cycles is equitably k-colorable and equitably k-choosable where k ≥
max{∆(G), 6}.

2 Planar graphs without 6- and 7-cycles

First let us introduce some important lemma.

Lemma 2.1 ([4]) Every planar graph without 6-cycles is 3-degenerate.

Corollary 2.2 If G is a planar graph without 6- and 7-cycles, then δ(G) ≤
3.

Lemma 2.3 ([5]) Every graph has an equitable k-coloring whenever k ≥
∆(G) + 1.

Lemma 2.4 ([19]) Let S = {v1, v2, · · · , vk} be a set of k different vertices
in G such that G − S has an equitable k-coloring, if |NG(vi) − S| ≤ k − i
for 1 ≤ i ≤ k, then G has an equitable k-coloring.

Lemma 2.5 ([12, 14]) Every graph G with maximum degree ∆(G) ≤ 3 is
equitably k-choosable whenever k ≥ ∆(G) + 1.
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Lemma 2.6 ([7]) Let G be a graph with a k-uniform list assignment L.
Let S = {v1, v2, · · · , vk}, where {v1, v2, · · · , vk} are distinct vertices in G.
If G−S has an equitable L-coloring and |NG(vi)−S| ≤ k− i for 1 ≤ i ≤ k,
then G has an equitable L-coloring.

Lemma 2.7 Let G be a connected planar graph with order at least 5 and
without 6- and 7-cycles, then G has at least one of the following structures
in Figure 1.

Figure 1
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Figure 1
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Figure 1

Figure 2

6



Figure 2

Each configuration in Figure 1 and Figure 2 represents subgraphs for
which: (1)hollow vertices may be not distinct while solid vertices are dis-
tinct. (2)the degree of the solid vertex is fixed, and (3)except for special
pointed, the degree of a hollow vertex may be any integer from [d, ∆(G)],
where d is the number of edges incident to the hollow vertex in the config-
uration. (4) the order of the vertices on the boundary of a 4-face can be
exchanged if the vertices are not common vertices of the 4-face and other
face.
Proof. Let G be a minimal counterexample on the number of vertices.
Then G without 6- and 7-cycles does not contain H1 ∼ H67 in Figure 1.

For G contains no structures H1 ∼ H3, we can obtain the following
property.

Claim 1 Any two of (3, 3, 5+)-faces can not simultaneously appear in
G except that the structure G1 (in Figure 2).

We call a face a special face if it belongs to (3, 3, 5+)-faces. In the
following, we call a 3-vertex a special 3-vertex if it is incident to a special
face, otherwise, it is called a simple 3-vertex. For convenience, let n3(v),
m3(v) and m4(v) denote the number of simple 3-vertices adjacent to v, the
number of 3-faces incident to v and the number of 4-faces incident to v
for each v ∈ V (G) respectively. Let ni(f) denote the number of i-vertices
incident to f .

Since G contains no structures H4 and H5, we can conclude the following
properties.

Claim 2 For each v ∈ V (G) with d(v) ≥ 4, if v is adjacent to a 3-
vertex which is adjacent to two 3−−-vertices, then it is not adjacent to
other 3-vertex.

Claim 3 For any v ∈ V (G), v is adjacent to at most one simple 3-vertex
which is adjacent to other 3−−-vertex.

By Euler’s formula |V |−|E|+|F | = 2 and
∑

v∈V (G) d(v) =
∑

f∈F (G) d(f) =
2|E|, we have∑

v∈V (G)

(3d(v)− 10) +
∑

f∈F (G)

(2d(f)− 10) = −10(|V | − |E|+ |F |) = −20.

Define an initial charge function w on V (G) ∪ F (G) by setting w(v) =
3d(v) − 10 if v ∈ V (G) and w(f) = 2d(f) − 10 if f ∈ F (G), so that∑

x∈V (G)∪F (G) W (x) = −20.
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We divide the proof into the following four cases by Corollary 2.2.
Case 1 δ(G) = 3.
For G contains no structure H6. G has the following properties.
Claim 1.1 All 3-faces in G are (3, 3, 5+)-, (3, 4+, 4+)- or (4+, 4+, 4+)-

faces.
Now redistribute the charge according to the following discharging rules.
R1 Transfer charge 1 from each 5+-vertex to every adjacent simple 3-

vertex v which is adjacent to exactly two 3−−-vertices.
R2 Transfer charge 1

2 from each 4+-vertex to every adjacent simple
3-vertex v which is adjacent to exactly one 3−−-vertex.

R3 Transfer charge 1
3 from each 4+-vertex to every adjacent simple

3-vertex v which is not adjacent to any 3−−-vertex.
R4 Transfer charge 3

4 from each 8+-face f to every adjacent 3-face and
4-face via each common edge.

R5 If f is a 4-face incident to v, then v gives f charge 2
3 if d(v) ≥ 6.

R6 If f is a 3-face incident to a vertex v, then v gives f charge 3
2 if

d(v) = 4 and f is a (3−, 4, 4)-face, 5
6 if d(v) = 4 and f is a (3−, 4, 5+)-face,

2
3 if d(v) = 4 and f is a (4, 4, 4+)- or (4, 5, 5+)-face, 7

4 if d(v) = 5 and f is
a (3−, 3+, 5)-face, 7

6 if d(v) = 5 and f is an other face, 7
4 if d(v) = 6, 2 if

d(v) ≥ 7.
Let the new charge of each element x be w′(x) for each x ∈ V (G)∪F (G).

Particularly, we use w′
s denotes the total new charge of all the special 3-

vertices and all the special faces in G.
Case 1.1 δ(G) = 3 and there are at least two 3-vertices in G.
Now let us check the charge of each element x ∈ V (G) ∪ F (G).
Suppose d(v) = 3. Then w(v) = −1. Since G contains no structure

H7, v is adjacent to at least one 5+-vertex or is adjacent to at least two
4+-vertex. If v is a simple 3-vertex, we have w′(v) = −1 + 1 = 0 by R1,
w′(v) = −1+ 1

2 ×2 = 0 by R2 or w′(v) = −1+ 1
3 ×3 = 0 by R3. Otherwise,

we have w′(v) = w(v) = −1.
Suppose d(v) = 4. Then w(v) = 2 and m3(v) ≤ 3.
Case 1.1.1 m3(v) = 3, then n3(v) ≤ 1 for G contains no structure H8.

If m3(v) = 3, n3(v) = 1 and v is incident to two 3-faces each of which is
incident to the 3-vertex, then we have w′(v) ≥ 2 − 5

6 × 2 − 1
3 = 0 for G

contains no structures H9, H10 and by R6, R3. If m3(v) = 3, n3(v) = 1
and v is incident to only one 3-face which is incident to a 3-vertex, then we
have w′(v) ≥ 2− 5

6 −
1
2 = 2

3 > 0 for G contains no structures H11, H12 and
by R6, R2. If m3(v) = 3, n3(v) = 0, then we have w′(v) ≥ 2 − 2

3 × 3 = 0
by R6.

Case 1.1.2 m3(v) = 2, then n3(v) ≤ 1 for G contains no structure H8.
If m3(v) = 2, n3(v) = 1 and v is incident to two 3-faces each of which is
incident to the 3-vertex, then we have w′(v) ≥ 2 − 5

6 × 2 − 1
3 = 0 for G

contains no structure H13 and by R6, R3. If m3(v) = 2, n3(v) = 1 and v is
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incident to only one 3-face which is incident to the 3-vertex, then we have
w′(v) ≥ 2 − 5

6 −
2
3 −

1
2 = 0 for G contains no structures H14, H15 and by

R6, R2. If m3(v) = 2, n3(v) = 1 and v is not incident to any 3-face which
is incident to a 3-vertex, then we have w′(v) ≥ 2 − 2

3 × 2 − 1
2 = 1

6 > 0 for
G contains no structure H7 and by R6, R2. If m3(v) = 2, n3(v) = 0, then
we have w′(v) ≥ 2− 2

3 × 2 = 2
3 > 0 by R6.

Case 1.1.3 m3(v) = 1, then n3(v) ≤ 2 for G contains no structure H8.
If m3(v) = 1, n3(v) = 2, then we have w′(v) ≥ 2 − 2

3 −
1
2 −

1
3 = 1

2 > 0 for
G contains no structure H8 and by R6, R2, R3 and Claim 3. If m3(v) = 1,
n3(v) ≤ 1, then w′(v) ≥ 2− 3

2 −
1
2 = 0 by R6 and R2.

Case 1.1.4 m3(v) = 0, then n3(v) ≤ 4. So w′(v) ≥ 2− 1
2−

1
3×3 = 1

2 > 0
by R2, R3 and Claim 3.

Suppose d(v) = 5. Then w′(v) = 5, m3(v) ≤ 3.
Case 1.2.1 m3(v) = 3, then n3(v) ≤ 1 for G contains no structures

H16 ∼ H22. If m3(v) = 3, n3(v) = 1 and v is incident to two 3-faces each
of which is incident to the 3-vertex, then w′(v) ≥ 5− 7

4 × 2− 7
6 −

1
3 = 0 by

R6 and R3. If m3(v) = 3, n3(v) = 1 and v is incident to only one 3-face
which is incident to the 3-vertex, then w′(v) ≥ 5− 7

4 −
7
6 × 2− 1

2 = 5
12 > 0

by R6 and R2. If m3(v) = 3, n3(v) = 1 and v is not incident to any 3-face
which is incident to a 3-vertex, then w′(v) ≥ 5− 7

6 × 3− 1 = 1
2 > 0 by R6

and R1. If m3(v) = 3, n3(v) = 0, then we have w′(v) ≥ 5− 7
6 × 3 = 3

2 > 0
by R6.

Case 1.2.2 m3(v) = 2, then n3(v) ≤ 4. So w′(v) ≥ 5− 7
4×2− 1

3×3− 1
2 =

0 by R6, R3, R2 and Claim 4.
Case 1.2.3 m3(v) ≤ 1, then n3(v) ≤ 5. So w′(v) > 5− 7

4 −
1
3 × 4− 1

2 =
17
12 > 0 by R6, R3, R2 and Claim 4.

Suppose d(v) = 6. Then w(v) = 8, m3(v) ≤ 4.
If m3(v) = 4, then m4(v) = 0, n3(v) ≤ 3 for G contains no structure

H23. So w′(v) ≥ 8 − 7
4 × 4 − 1

3 × 3 = 0 for G contains no structure
H24 and by R6, R3. If m3(v) = 3, then m4(v) ≤ 1, n3(v) ≤ 4. So
w′(v) ≥ 8− 7

4 ×3− 2
3 −

1
3 ×4 = 3

4 > 0 by R6, R5 and R3. If m3(v) = 2, then
m4(v) ≤ 2, n3(v) ≤ 5. We have w′(v) ≥ 8− 7

4×2− 2
3×2− 1

3×4− 1
2 = 4

3 > 0
by R6, R5, R3 and R2. If m3(v) ≤ 1, then m4(v) ≤ 6, n3(v) ≤ 6. We have
w′(v) > 8− 7

4 −
2
3 × 6− 1

3 × 5− 1
2 = 1

12 > 0 by R6, R5, R3 and R2.
Suppose d(v) = 7. Then w(v) = 11, m3(v) ≤ 5.
If m3(v) = 5, then m4(v) = 0, n3(v) ≤ 3 for G contains no structure

H23. We have w′(v) ≥ 11 − 2 × 5 − 1
3 × 3 = 0 for G contains no structure

H24 and by R6, R3. If m3(v) = 4, then m4(v) ≤ 1, n3(v) ≤ 4 for G
contains no structure H23. So w′(v) > 11− 2× 4− 2

3 −
1
3 × 3− 1

2 = 5
6 > 0

by R6, R5, R3 and R2. If m3(v) = 3, then m4(v) ≤ 2, n3(v) ≤ 5. So
w′(v) > 11− 2× 3− 2

3 × 2− 1
3 × 4− 1

2 = 11
6 > 0 by R6, R5, R3 and R2. If

m3(v) = 2, then m4(v) ≤ 2, n3(v) ≤ 6. So w′(v) > 11−2×2− 2
3×2− 1

3×6 =
11
3 > 0 by R6, R5 and R3. If m3(v) ≤ 1, then m4(v) ≤ 7, n3(v) ≤ 7. So
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w′(v) > 11− 2− 2
3 × 7− 1

3 × 7 = 2 > 0 by R6, R5 and R3.
Suppose d(v) = 8. Then w(v) = 14, m3(v) ≤ 6.
If m3(v) = 6, then m4(v) = 0, n3(v) ≤ 4 for G contains no structure

H23. So w′(v) ≥ 14− 2× 6− 1
3 × 3− 1

2 = 1
2 > 0 by R6, R3, R2 and Claim

3. If m3(v) = 5, then m4(v) = 0, n3(v) ≤ 4 for G contains no structure
H23. So w′(v) > 14 − 2 × 5 − 1

3 × 3 − 1
2 = 5

2 > 0 by R6, R3 and R2. If
m3(v) = 4, then m4(v) < 2, n3(v) ≤ 5 for G contains no structure H23. So
w′(v) > 14−2×4− 2

3×2− 1
3×5 = 3 > 0 by R6, R5, R3. If m3(v) = 3, then

m4(v) ≤ 2, n3(v) < 8. We have w′(v) > 14− 2× 3− 2
3 × 2− 1

3 × 8 = 4 > 0
by R6, R5, R3. If m3(v) ≤ 2, then m4(v) ≤ 8, n3(v) ≤ 8. We have
w′(v) > 14− 2× 2− 2

3 × 8− 1
3 × 8 = 2 > 0 by R6, R5, R3.

Suppose d(v) ≥ 9. Then w(v) = 3d(v) − 10. Since n3(v) ≤ m3(v) +
d(v)− 4

3m3(v), we have

n3(v) ≤ d(v)− 1
3
m3(v).

And since m4(v) ≤ d(v)− 4
3m3(v), we have w′(v) ≥ 3d(v)− 10− 2m3(v)−

2
3 ×m4(v)− 1

2 −
1
3 (n3(v)−1) ≥ 3d(v)−10−2m3(v)− 2

3 ×(d(v)− 4
3m3(v))−

1
2 −

1
3 (d(v) − 1

3m3(v) − 1) = 2d(v) − m3(v) − 61
6 by R6, R5, R2, R3 and

Claim 4. And since
m3(v) ≤ 3

4
d(v).

We have w′(v) ≥ 9
8d(v)− 61

6 ≥ 13
12 > 0.

Suppose d(f) = 3. Then w(f) = −4, n3(f) ≤ 2 by Claim 1.1.
Case 1.3.1 n3(f) = 2, then n4(f) = 0, f is a special face (3, 3, 5+)-face.
Case 1.3.1.1 f is not adjacent to any special 3-face, we have w′(f) ≥

−4 + 7
4 = − 9

4 by R6.
Case 1.3.1.2 f is adjacent to a special 3-faces, i.e. the cluster G1 in

Figure 2 for G contains no structures H2 and H3. If G1 is neither adjacent
to a 3-face nor adjacent to a 4-face, then we have w′(G1) ≥ −4 × 2 + 7

4 ×
2 + 3

4 × 4 = − 3
2 > by R6 and R4. If G1 is adjacent to a 3-face and not

adjacent to a 4-face, we consider cluster G2 in Figure 2 for G contains no
structure H25, we have w′(G2) ≥ −4× 3 + 2× 4 + 3

4 × 2 = − 5
2 by R6 and

R4. If G1 is adjacent to a 4-face and not adjacent to a 3-face, we consider
cluster G3 in Figure 2 for G contains no structure H26 and H27, we have
w′(G3) ≥ −4× 2− 2+2× 2+ 2

3 × 3+ 3
4 × 4 = −1 by R6, R5 and R4. If G1

is not only adjacent to a 3-face but also adjacent to a 4-face, we consider
cluster G4 in Figure 2 for G contains no structures H25 and H26, we have
w′(G4) ≥ −4× 3− 2 + 2× 4 + 2

3 × 3 + 3
4 × 2 = − 5

2 R6, R5 and R4.
Case 1.3.2 n3(f) = 1 and f is a (3, 4, 4)-, (3, 4, 5)-face, then f is not

adjacent to any 3-face for G contains no structures H13, H14 and H28. So
w′(f) ≥ −4+ 3

2 ×2+ 3
4 ×2 = 1

2 > 0 or w′(f) ≥ −4+ 5
6 + 7

4 + 3
4 ×2 = 1

12 > 0
by R5 and R4.
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Case 1.3.3 n3(f) = 1 and f is a (3, 4, 6)-face. For G contains no
structure H29, f is adjacent to at most two 3-faces. If f is not adjacent
to any 3-face, then f is adjacent to at most one 4-face for G contains no
7-cycle. We have w′(f) ≥ −4 + 5

6 + 7
4 + 3

4 × 2 = 1
12 > 0 by R6, R4. If f is

adjacent to a 3-face, then f is not adjacent to any 4-face for G contains no
structures H27 and H30. We have w′(f) ≥ −4 + 5

6 + 7
4 + 3

4 × 2 = 1
12 > 0

by R6, R4. If f is adjacent to two 3-faces, i.e. G5 and G6 in Figure
2 for G contains no structures H29, H31 and H32. For G contains no
6-cycle, G5 and G6 are not adjacent to any 4-face or 5-face. We have
w′(G5) ≥ −4 × 3 + 7

4 + 5
6 × 2 + 7

4 × 3 + 3
4 × 5 = 5

12 > 0, w′(G6) ≥
−4× 3 + 7

4 + 7
4 × 3 + 7

4 + 5
6 + 3

4 × 5 = 4
3 > 0 by R6 and R4.

Case 1.3.4 n3(f) = 1, f is a (3, 4, 7+)-face. For G contains no structure
H29, f is adjacent to at most two 3-faces.

Case 1.3.4.1 f is not adjacent to any 3-face, we have w′(f) ≥ −4+ 5
6 +

2 + 3
4 × 2 = 1

3 > 0 by R6 and R4.
Case 1.3.4.2 f is a (3, 4, 7+)-face and is adjacent to one 3-face. If f is not

adjacent to any 4-face, then we have w′(f) ≥ −4+ 5
6 +2+ 3

4 ×2 = 1
3 > 0 by

R6 and R4. Otherwise, we consider G7 and G8 (in Figure 2) for G contains
no structures H26, H27, H33 and H34. We have w′(G7) ≥ −4×2−2+ 5

6×2+
2×2+ 2

3×3+ 3
4×4 = 2

3 > 0, w′(G8) ≥ −4×2−2+ 5
6 +2×3+ 2

3 + 3
4×4 = 1

2 > 0
by R6 and R4.

Case 1.3.4.3 f is a (3, 4, 7+)-face and adjacent to two 3-faces, then we
need to consider the following three structures G20, G21 in Figure 2 for G
contains no structures H29, H31 and H32. We have w′(G9) ≥ −4× 3 + 7

4 ×
2+2×2+ 5

6×2+ 3
4×5 = 11

12 > 0, w′(G10) ≥ −4×3+ 7
4×2+2×3+ 5

6 + 3
4×5 =

25
12 > 0 by R6 and R4.

Case 1.3.5 n3(f) = 1, f is a (3, 5, 5+)- or (3, 6, 6+)-face. If f is adjacent
to at most two 3-faces, we have w′(f) ≥ −4 + 7

4 × 2 + 3
4 = 1

4 > 0 by R6
and R4. If f is adjacent to three 3-faces i.e. G11 and G12 in Figure 2 for G
contains no structures H35 and H36, then w′(G11) ≥ −4×4+ 7

4×4+2×3+
7
6 ×2+ 3

4 ×4 = 7
3 > 0, w′(G12) ≥ −4×4+ 7

4 ×5+2×3+ 7
6 + 3

4 ×4 = 35
12 > 0,

by R6 and R4.
Case 1.3.6 n3(f) = 1, f is a (3, 7+, 7+)-face, we have w′(f) ≥ −4+2×

2 = 0 by R6.
Case 1.3.7 n3(f) = 0, f is a (4, 4, 4)-face, then f is not adjacent to

any 3-face for G does not contain structure H37. If f is not adjacent to
any 4-face, then we have w′(f) = −4 + 2

3 × 3 + 3
4 × 3 = 1

4 > 0 by R6
and R4. Otherwise, we consider G13 for G contains no structure H38, so
w′(G13) ≥ −4− 2 + 2

3 × 3 + 2
3 × 2 + 3

4 × 5 = 13
12 > 0 by R6, R5 and R4.

Case 1.3.8 n3(f) = 0, f is a (4, 4, 5)- or (4, 4, 6)-face. If f is adjacent to
at most one 3-face, we have w′(f) ≥ −4 + 2

3 × 2 + 7
6 + 3

4 × 2 = 0 by R6 and
R4. If f is adjacent to two 3-faces i.e. G14, G15 and G16 in Figure 2 for G
contains no structures H39, H40 and H41, we have w′(G14) ≥ −4×3+ 7

4×2+
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7
6×3+ 2

3×4+ 3
4×5 = 17

12 > 0, w′(G15) ≥ −4×3+ 7
4×2+ 7

4×3+ 2
3×2+ 3

4×5 =
11
6 > 0, w′(G16) ≥ −4× 3 + 7

4 × 2 + 7
4 × 2 + 2

3 × 4 + 3
4 × 5 = 17

12 > 0 by R6
and R4.

Case 1.3.9 n3(f) = 0, f is a (4, 4, 7+)-face, then we have w′(f) ≥
−4 + 2

3 × 2 + 2 + 3
4 = 1

12 > 0 by R6 and R4.
Case 1.3.10 n3(f) = 0, f is a (4, 5, 5)-face. If f is adjacent to at most

one 3-face, we have w′(f) ≥ −4+ 7
6 × 2+ 2

3 + 3
4 × 2 = 1

2 > 0 by R6 and R4.
If f is adjacent to two 3-faces i.e. G17 or G18 in Figure 2 for G contains no
structures H42 and H43. We have w′(G17) ≥ −4×3+ 7

4 ×2+ 2
3 ×3+ 7

6 ×4+
3
4 ×5 = 23

12 > 0, or w′(G18) ≥ −4×3+ 7
4 ×2+ 7

6 ×5+ 2
3 ×2+ 3

4 ×5 = 29
12 > 0

by R6 and R4.
Case 1.3.11 n3(f) = 0, f is a (4, 5, 6+)- or (4, 6+, 6+)-face, then we

have w′(f) ≥ −4 + 7
6 + 7

4 + 2
3 + 3

4 = 1
3 > 0 by R6 and R4.

Case 1.3.12 n3(f) = 0, f is a (5+, 5+, 5+)-face, then we have w′(f) ≥
−4 + 7

6 × 3 + 3
4 = 1

4 > 0 by R6 and R4.
Suppose d(f) = 4. Then w(f) = −2. If f is not adjacent to any 3-face,

then all faces which are adjacent to f are 8+-faces for G contains no 6-
and 7-cycles. So w′(f) ≥ −2 + 3

4 × 4 = 1 > 0 by R4. If f is adjacent to
only one 3-face, then other faces which are adjacent to f are 8+-faces for
G contains no 6- and 7-cycles. So w′(f) ≥ −2 + 3

4 × 3 = 1
4 > 0 by R4.

If f is adjacent to two 3-face, then f is adjacent to at least one 6+-vertex
and other adjacent faces are 8+-faces for G contains no structure H44 and
contains no 6- and 7-cycles. So w′(f) ≥ −2+ 2

3 + 3
4 × 2 = 1

6 > 0 by R5 and
R4..

Suppose d(f) = 5. Then w′(f) = w(f) = 0.
Suppose d(f) ≥ 8. Then w′(f) ≥ w(f)− 3

4×d(f) = 2d(f)−10− 3
4d(f) =

5
4d(f)− 10 ≥ 5

4 × 8− 10 = 0 by R4.
From the above discussion, If there is at least two 3-vertices in G,

we can obtain that if x is neither a special 3-vertex nor a special face,
then w′(x) ≥ 0 for each x ∈ V (G) ∪ F (G). Furthermore, we have w′

s ≥
−1 × 2 − min{− 5

2 ,− 9
4 ,− 3

2 ,−1} = − 9
2 by Claim 2. So we can obtain∑

x∈V (G)∪F (G) w′(x) ≥ −9
2 > −20, a contradiction.

Case 1.2 δ(G) = 3 and there is only one 3-vertex in G.
There is no special 3-face and special 3-vertex in G. The discussion is

similar to Case 1.1, it is clear that we only need to check the charge of
3-face in Case 1.3.3 and Case 1.3.4 of Case 1.1, i.e. (3, 4, 6)- and (3, 4, 7+)-
faces such that they are adjacent to two 3-faces each of which is incident
to the 3-vertex. For G contains no structure H25, we only consider the
structure G19, w′(G19) ≥ −4 × 2 + 2 × 2 = −4 by R6. So we can obtain∑

x∈V (G)∪F (G) w′(x) ≥ −4 > −20, a contradiction.
Case 2 δ(G) = 2 and there are at most two 2-vertices in G.
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The discharging rules are the same as Case 1 except for the two cases.
(1). A 4-face have a common 2-vertex with a 3-face, (2). Two 4-faces have
a common 2-vertex. Under these situation, transfer charge from its com-
mon incident vertices to only the 3-face in the first situation and transfer
charge from its common incident vertices to only one of them in the second
situation. Clearly, we can guarantee the new charge of each vertex of G
is larger than or equal to zero. For convenience, let w′

t1 (w′
t2) denote the

total new charge of one 2-vertex (two 2-vertices) and the faces which are
incident to the 2-vertex (the two 2-vertices).

Case 2.1 There exists one 2-vertex in G.
Case 2.1.1 The 2-vertex is incident to at most one 3-face and one 4-face

simultaneously. Furthermore, for G contains no structure H45 and H46, we
can obtain that the 3-face and 4-face is (2, 3, 7+)- and (2, 3, 6+, 7+) respec-
tively; the 3-face and 4-face is (2, 4+, 7+)- and (2, 4+, 6+, 7+) respectively;
the 3-face and 4-face is (2, 5+, 5+)- and (2, 3+, 5+, 5+)-face respectively. So
w′

t1 ≥ −4 − 4 − 2 + 2 + 2
3 = − 22

3 , w′
t1 ≥ −3 − 2 − 2 + 2 + 5

6 + 2
3 = − 13

2 ,
w′

t1 ≥ −3− 2− 2 + 7
4 × 2 = − 13

2 by R6 and R4.
Case 2.1.2 The 2-vertex is incident a 3-face and not incident to a 4-face,

then the 3-face is (2, 3+, 5+)- or (2, 4+, 4+)-face for G contains no structure
H6. We have w′(t1) ≥ −4− 4 + 7

4 = − 25
4 or w′(t1) ≥ −4− 4 + 3

2 × 2 = −5
by R6.

Case 2.1.3 The 2-vertex is incident a 4-face and not incident to a 3-
face, we consider the situation such that the 2-vertex is a common vertex of
two 4-faces, then the two 4-faces are adjacent to at least two 8+-face for G
contains no 6- and 7-cycles. We have w′

(t1) ≥ −2− 2− 4 + 3
4 × 2 = − 13

2 by
R4. We can obtain that w′

t1 ≥ min{− 22
3 ,− 13

2 ,− 25
4 ,−5, } i.e. w′

t1 ≥ −22
3 , so∑

x∈V (G)∪F (G) w′(x) ≥ −9
2 +w′

t1 ≥ −22
3 − 9

2 = − 81
6 > −20, a contradiction.

Case 2.2 There exist two 2-vertices in G.
Case 2.2.1 The two 2-vertices are incident to a same 3-face, then f is a

(2, 2, 5+)-face for G contains no structure H7. So w′
t2 ≥ −2×4−4+ 7

6 = − 65
6

by R6.
Case 2.2.2 Two 2-vertices are incident to a same 4-face. If each 2-

vertex is incident to another 4-face, we have w′
t2 ≥ −4× 2− 2× 3 = −14.

If one of the two 2-vertices is incident to another 3-face, the other 2-vertex
is incident to another 4-face, then the 3-face which is incident to the 2-
vertex is a (2, 5+, 5+)-face for G contains no structure H46. We have w′

t2 ≥
−4× 3− 2× 2 + 7

4 × 2 = − 25
2 by R6.

Case 2.2.3 Two 2-vertices are not incident to a same face, from the
discussion in Case 2.1, we have w′

t2 ≥ − 22
3 × 2 = − 44

3 . Clearly, we have
w′

t2 ≥ −44
3 in the rest cases. From the above discussion, we have w′

t2 ≥ −44
3 .

So
∑

x∈V (G)∪F (G) w′(x) ≥ −9
2 −

44
3 = − 115

6 > −20, a contradiction.
Case 3 There are at least three 2-vertices in G.
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For G contains no structures H47 ∼ H54. G has the following properties.
Claim 3.1 Any vertex v is adjacent to at most one 2-vertex.
Claim 3.2 Two 2-vertices are not adjacent to each other.
Claim 3.3 For each v ∈ V (G) with d(v) ≥ 4, if v is adjacent to a

2-vertex, then it is not incident to a 3-face which is incident to a 3-vertex.
Claim 3.4 If v is adjacent to a 3-vertex, then it is not incident to a

3-face which is incident to a 2-vertex.
Claim 3.5 If a vertex v is adjacent to a 2-vertex, then it is not adjacent

to a 3-vertex which is adjacent to other 3−−-vertex.
Claim 3.6 3-faces in G which is incident to a 2-vertex are (2, 6+, 6+)-

faces.
Claim 3.7 4-faces which is incident to 2-vertices in G are (2, 3, 6+, 6+)-,

(2, 4, 6+, 6+)- or (2, 5+, 5+, 5+)-faces.
Claim 3.8 There is at most one 2-vertex which is adjacent to a k-vertex

(3 ≤ k ≤ 4)in G.
We call a 2-vertex a special 2-vertex if it is adjacent to a k-vertex

(3 ≤ k ≤ 4), otherwise a simple 2-vertex. Let n2(v) denote the number
of simple 2-vertices adjacent to v. We call a 4-face a simple 4-face if it is
incident to a 2-vertex. We use m′

4(v) denote the number of simple 4-faces
which is incident to v for each v ∈ V (G).

Now redistribute the charge according to the following discharging rules.
R1′, R2′, R3′ and R4′ are the same as R1, R2, R3 and R4 in Case 1.
R5′ is the same as R5 except that d(v) = 5 and f is a simple 4-face.

Transfer charge 2
3 from each 5-vertex to every incident simple 4-face.

R6′ If f is a 3-face incident to a vertex v, then v gives f charge 3
2 if

d(v) = 4 and f is a (3, 4, 4)-face, 5
6 if d(v) = 4 and f is a (3, 4, 5+)-face, 2

3
if d(v) = 4 and f is an other face, 7

4 if d(v) = 5 and f is a (3, 3+, 5)-face, 7
6

if d(v) = 5 and f is a (4, 4, 5)- or (4, 5, 5+)- or (5, 5, 5+)-face, 2
3 if d(v) = 5

and f is a (5, 6+, 6+)-face, 2 if d(v) = 6 and f is a (2, 6, 6+)-face, 7
4 if

d(v) = 6 and f is a (3, 3+, 6)-face, 3
2 if d(v) = 6 and f is a (4, 4, 6)- or

(4, 5, 6)-face, 4
3 if d(v) = 6 and f is an other face, 2 if d(v) = 7 and f is

a (2, 7, 6+)- or (3, 3+, 7)-, or (4, 4, 7)-face, 7
4 if d(v) = 7 and f is an other

face, 2 if d(v) ≥ 8.
R7′ Transfer charge 2 from each 5+-vertex to every adjacent 2-vertex.
For any face f ∈ F (G), if d(f) = 5, d(f) ≥ 8, the discussion is similar

to the corresponding situation in Case 1. For any vertex v ∈ V (G), if
d(v) = 3, the discussion is also similar to the corresponding situation in
Case 1. In the following, we discuss the rest cases.

Suppose d(v) = 2, then w′(v) = −4. Except the special 2-vertex, we
have w′(v) = −4 + 2× 2 = 0 by R7′.

Suppose d(v) = 4. Then w(v) = 2 and m3(v) ≤ 3.
First, we focus on the situation n2(v) = 0. If m3(v) = 3, then n3(v) = 0

for G contains no structures H55 and H56. We have w′(v) ≥ 2 − 2
3 × 3 =
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0 by R6′. If m3(v) ≤ 2, then the following discussion is similar to the
corresponding situation in Case 1.

In the following, we focus on the situation n2(v) = 1. By Claim 3.6,
we have m3(v) ≤ 2. If m3(v) = 2, then n3(v) = 0 by Claim 3.3. We have
w′(v) ≥ 2− 2

3 × 2 = 2
3 > 0 by R6′. If m3(v) = 1, then n3(v) ≤ 1 by Claim

3.3. We have w′(v) ≥ 2− 2
3 −

1
3 = 1

2 > 0 by R6′, R3′, Claim 3.3 and Claim
3.5. If m3(v) = 0, then n3(v) ≤ 3. So w′(v) ≥ 2 − 1

3 × 3 = 1 > 0 by R3′

and Claim 3.5.
Suppose d(v) = 5. Then w(v) = 5, m3(v) ≤ 3. If n2(v) = 0, then

the discussion is similar to the corresponding situation in Case 1. In the
following, we focus on the situation n2(v) = 1.

Case 3.1.1 m3(v) = 3, then m′
4(v) = 0, n3(v) = 0 by Claim 3.3. We

have w′(v) ≥ 5− 7
6 × 2− 2

3 − 2 = 0 for G contains no structures H57, H58

and by R6′, R7′.
Case 3.1.2 m3(v) = 2, then m′

4(v) ≤ 1. If m′
4(v) = 1, then n3(v) = 0

by Claim 3.3, Claim 3.6 and Claim 3.7. So w′(v) ≥ 5− 7
6 × 2− 2

3 − 2 = 0
by R6′, R5′ and R7′. If m′

4(v) = 0, then n3(v) ≤ 1 by Claim 3.3. So
w′(v) ≥ 5− 7

6 × 2− 1
3 − 2 = 1

3 > 0 by Claim 3.5 and by R6′, R3′, R7′.
Case 3.1.3 m3(v) = 1, then m′

4(v) ≤ 2. If m′
4(v) = 2, then n3(v) = 0

by Claim 3.3 and Claim 3.7. So w′(v) ≥ 5 − 7
6 − 2

3 × 2 − 2 = 1
2 > 0

by R6′, R5′ and R7′. If m′
4(v) ≤ 1, then n3(v) ≤ 2 by Claim 3.3. So

w′(v) > 5− 7
6 −

2
3 −

1
3 × 2− 2 = 1

2 > 0 by Claim 3.5 and by R6′, R5′, R3′

and R7′.
Case 3.1.4 m3(v) = 0, then m′

4(v) ≤ 2, n3(v) ≤ 4. We have w′(v) >
5− 2

3 × 2− 1
3 × 4− 2 = 1

3 > 0 by Claim 3.5 and by R5′, R3′, R7′.
Suppose d(v) = 6. Then w(v) = 8, m3(v) ≤ 4. If n2(v) = 0, then

the discussion is similar to the corresponding situation in Case 1. In the
following, we focus on the situation n2(v) = 1.

If m3(v) = 4, then m4(v) = 0, n3(v) = 0 by Claim 3.4. So w′(v) ≥
8 − 2 − 4

3 × 3 − 2 = 0 for G contains no structures H59, H60 and by R6′

and R7′. If m3(v) = 3, then m4(v) ≤ 1, n3(v) ≤ 1. We have w′(v) >
8− 2− 3

2 × 2− 2
3 − 2− 1

3 = 0 by R6′, R5′, R7′ and R3′. If m3(v) = 2, then
m4(v) ≤ 2, n3(v) ≤ 2. We have w′(v) > 8−2− 3

2−
2
3×2−2− 1

3×2 = 1
2 > 0 by

R6′, R5′, R7′ and R3′. If m3(v) = 1, then m4(v) ≤ 3, n3(v) ≤ 3 by Claim
3.3. So w′(v) > 8−2− 2

3×3−2− 1
3×3 = 1 > 0 by R6′, R5′, R7′ and R3′. If

m3(v) = 0, then m4(v) < 6, n3(v) ≤ 5. So w′(v) > 8− 2
3 ×6− 1

3 ×6−2 = 0
by R5′, R3′ and R7′.

Suppose d(v) = 7. Then w(v) = 11, m3(v) ≤ 5. If n2(v) = 0, then
the discussion is similar to the corresponding situation in Case 1. In the
following, we focus on the situation n2(v) = 1.

If m3(v) = 5, then m4(v) = 0, n3(v) = 0. So w′(v) = 11−2− 7
4×4−2 = 0

for G contains no structure H59, H61 and by R6′, R7′. If m3(v) = 4, then
m4(v) ≤ 1, n3(v) = 0. So w′(v) > 11 − 2 × 4 − 2

3 − 2 = 1
3 > 0 by
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R6′, R5′ and R7′. If m3(v) = 3, then m4(v) ≤ 2, n3(v) ≤ 2. So w′(v) >
11−2×3− 2

3×2−2− 1
3×2 = 1 > 0 by R6′, R5′, R7′, R3′. If m3(v) = 2, then

m4(v) ≤ 3, n3(v) ≤ 6, we have w′(v) > 11−2×2− 2
3 ×3−2− 1

3 ×6 = 1 > 0
by R6′, R5′, R7′ and R3′. If m3(v) ≤ 1, then m4(v) < 7, n3(v) ≤ 6, we
have w′(v) > 11− 2− 2

3 × 7− 2− 1
3 × 6 = 1

3 > 0 by R6′, R5′, R7′ and R3′.
Suppose d(v) ≥ 8. Then w(v) = 3d(v) − 10. If n2(v) = 0, then the

discussion is similar to the corresponding situation in Case 1. In the
following, we focus on the situation n2(v) = 1. By Claim 3.3 and Claim
3.4, we have n3(v) ≤ d(v) − 4

3m3(v) − 1, m4(v) ≤ d(v) − 4
3m3(v). So

w′(v) ≥ 3d(v)−10−2m3(v)− 2
3m4(v)−2− 1

3n3(v) ≥ 3d(v)−10−2m3(v)−
2
3 × (d(v)− 4

3m3(v))− 2− 1
3 (d(v)− 4

3m3(v)− 1) = 2d(v)− 2
3m3(v)− 35

3 by
R6′, R5′, R7′ and R3′. Since

m3(v) ≤ 3
4
d(v).

We obtain w′(v) ≥ 3
2d(v)− 35

3 ≥ 1
3 > 0.

Suppose d(f) = 3. Then w(f) = −4 and n2(f) ≤ 1.
Case 3.2.1 n2(f) = 1, then f is a (2, 6+, 6+)-face by Claim 3.6. So

w′(f) ≥ −4 + 2× 2 = 0 by R6′.
Case 3.2.2 n2(f) = 0, n3(f) = 2, then n4(f) = 0, f is a special face

(3, 3, 5+)-face. The discussion is similar to the corresponding situation in
Case 1.

Case 3.2.3 n3(f) = 1 and f is a (3, 4, 4)-, (3, 4, 5)-face. The discussion
is similar to the corresponding situation in Case 1.

Case 3.2.4 n3(f) = 1 and f is a (3, 4, 6)-face. For G contains no
structures H62 ∼ H64, f is not adjacent to any 3-face, then w′(f) ≥ −4 +
5
6 + 5

3 + 3
4 × 2 = 0 by R6′ and R4′.

Case 3.2.5 n3(f) = 1, f is a (3, 4, 7+)-face. For G contains no structure
H42, f is adjacent to at most two 3-faces. If f is adjacent to at most one
3-faces, the following discussion is similar to the corresponding situation
in Case 1. If f is adjacent to two 3-faces, then we need to consider the
following two structures G9, G10 in Figure 2 for G contains no structures
H29, H31 and H32. We have w′(G9) ≥ −4×3+ 7

4 + 4
3 + 7

4 +2+ 5
6×2+ 3

4×5 =
1
4 > 0, w′(G10) ≥ −4× 3 + 7

4 + 4
3 + 2× 2 + 7

4 + 5
6 + 3

4 × 5 = 17
12 > 0 by R6′

and R4′.
Case 3.2.6 n3(f) = 1, f is a (3, 5, 5+)- or (3, 6, 6+)-face. If f is ad-

jacent to at most two 3-faces, the following discussion is similar to the
corresponding situation in Case 1. If f is adjacent to three 3-faces i.e.
G11 and G12 in Figure 2 for G contains no structures H35 and H36, then
w′(G11) ≥ −4 × 4 + 7

4 × 4 + 2 × 2 + 7
4 + 2

3 × 2 + 3
4 × 4 = 13

12 > 0,
w′(G12) ≥ −4 × 4 + 7

4 × 4 + 2 × 2 + 7
4 + 4

3 + 2
3 + 3

4 × 4 = 7
4 > 0, by

R6 and R4.
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Case 3.2.7 n3(f) = 1, f is a (3, 7+, 7+)-face, the following discussion is
similar to the corresponding situation in Case 1.

Case 3.2.8 n3(f) = 0, f is a (4, 4, 4)-face, the following discussion is
similar to the corresponding situation in Case 1.

Case 3.2.9 n3(f) = 0, f is a (4, 4, 5)- or (4, 4, 6)-face. If f is adjacent to
at most one 3-face, the following discussion is similar to the corresponding
situation in Case 1. If f is adjacent to two 3-faces i.e. G14, G15 and
G16 in Figure 2 for G contains no structures H39 ∼ and H41, we have
w′(G14) ≥ −4 × 3 + 3

2 × 2 + 7
6 × 3 + 2

3 × 4 + 3
4 × 5 = 11

12 > 0, w′(G15) ≥
−4× 3 + 4

3 × 2 + 4
3 × 2 + 3

2 + 2
3 × 4 + 3

4 × 5 = 5
4 > 0, w′(G16) ≥ −4× 3 +

3
2 + 4

3 × 2 + 3
2 + 2

3 × 5 + 3
4 × 5 = 3

4 > 0 by R6′ and R4′.
Case 3.2.10 n3(f) = 0, f is a (4, 4, 7+)-face, the following discussion is

similar to the corresponding situation in Case 1.
Case 3.2.11 n3(f) = 0, f is a (4, 5, 5)-face. If f is adjacent to at most

one 3-face, the following discussion is similar to the corresponding situation
in Case 1. If f is adjacent to two 3-faces i.e. G17 or G18 in Figure 2 for G
contains no structures H42 and H43. We have w′(G17) ≥ −4×3+ 3

2×2+ 2
3×

3+ 7
6×4+ 3

4×5 = 17
12 > 0, or w′(G18) ≥ −4×3+ 3

2 + 7
6×5+ 4

3 + 2
3×2+ 3

4×5 =
7
4 > 0 by R6′ and R4′.

Case 3.2.12 n3(f) = 0, f is a (4, 5, 6+)- or (4, 6+, 6+)-face, then we have
w′(f) ≥ −4+ 7

6 + 3
2 + 2

3 + 3
4 = 1

12 > 0 or w′(f) ≥ −4+ 2
3 + 4

3×2+ 3
4 = 1

12 > 0
by R6′ and R4′.

Case 3.2.13 n3(f) = 0, f is a (5, 5, 5+)-face, then we have w′(f) ≥
−4 + 7

6 × 3 + 3
4 = 1

4 > 0 by R6′ and R4′.
Case 3.2.14 n3(f) = 0, f is a (5+, 6+, 6+)-face, then we have w′(v) ≥

−4 + 2
3 + 4

3 × 2 + 3
4 = 1

12 > 0 by R6′ and R4′.
Suppose d(f) = 4. Then w(f) = −2, n2(f) ≥ 1 by Claim 3.7. If n2(f) =

1, then f is a (2, 3, 6+, 6+)-, (2, 4, 6+, 6+)- or (2, 5+, 5+, 5+)-face by Claim
3.7. Any 4-face which is incident to a 2-vertex is adjacent to at least one 8+-
face for G contains no 6- and 7-cycles. So w′(f) ≥ −2+ 3

4 + 2
3 ×2 = 1

12 > 0
by R4′ and R5′. If n2(f) = 0, then the discussion is similar to the situation
when d(f) = 4 in Case 1.

From the above discussion, we can obtain that w′(x) ≥ 0 for each
x ∈ V (G) ∪ F (G) and x is none of a special 3-vertex, a special 2-vertex
and a special face. Furthermore, we have w′

s ≥ − 9
2 − 4 = − 17

2 by Claim 1
and Claim 3.8. From the above discussion, we have

∑
x∈V (G)∪F (G) w′(x) ≥

− 17
2 > −20, a contradiction.
Case 4 δ(G) = 1.
Case 4.1 There is one 1-vertex and at most two 2-vertices in G.
When d(v) = 1, then w(v) = −7. If there is one 1-vertex in G, then

3-faces in G are (3−, 5+, 5+)-faces or (4+, 4+, 4+)-faces for G contains no
structure H65 and the 4-faces which are incident to a 2-vertex in G are
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(2, 5+, 5+, 5+)-faces for G contains no structure H66. Now there are not
special 3-vertices and special faces in G. The discharging rules are the
same as Case 1 except for the two cases. (1). A 4-face have a common
2-vertex with a 3-face. (2). Two 4-faces have a common 2-vertex. Un-
der these situation, transfer charge from its common incident vertices to
only the 3-face in the first situation and transfer charge from its common
incident vertices to only one of them in the second situation. Clearly, we
can guarantee the new charge of each vertex of G is larger than or equal
to zero. For convenience, let w′

t1 (w′
t2) denote the total new charge of one

2-vertex (two 2-vertices) and the faces which are incident to the 2-vertex
(the two 2-vertices).

Case 4.1.1 There is one 2-vertex in G. If the 2-vertex is incident to
at most one 3-face and one 4-face simultaneously. Furthermore, the 3-face
and 4-face is (2, 5+, 5+)- and (2, 5+, 5+, 5+)-face respectively. So w′

t1 ≥
−4−2−4+ 7

4 ×2+ 3
4 = − 23

4 > −6 by R6 and R4. If the 2-vertex is incident
a 3-face and not incident to a 4-face, then the 3-face is (2, 5+, 5+)-face. We
have w′

t1 ≥ −4− 4 + 7
4 × 2 = − 9

2 > −6 by R6. If the 2-vertex is incident a
4-face and not incident to a 3-face, we consider the situation such that the 2-
vertex is a common vertex of two 4-faces, then the 4-face is a (2, 5+, 5+, 5+)-
face. We have w′

t1 ≥ −4−2−2+ 3
4 ×3 = − 23

4 > −6 by R4. We can obtain
that w′

t1 ≥ −6, so
∑

x∈V (G)∪F (G) w′(x) ≥ −7+w′
t1 ≥ −7−6 = −13 > −20,

a contradiction.
Case 4.1.2 There are two 2-vertices in G.
For two 2-vertices are not incident to a same 3- or 4-face, from the dis-

cussion in Case 4.1.1, we have w′
t2 ≥ −6×2 = −12. So

∑
x∈V (G)∪F (G) w′(x) ≥

−7− 12 = −19 > −20, a contradiction.
Case 4.2 There is one 1-vertex and at least three 2-vertices in G.
For G contains no structure H65, the 3-faces in G are (3−, 5+, 5+)-

faces or (4+, 4+, 4+)-faces. Now there are not special 3-vertices and special
faces in G. The discussion is same as the situation in Case 3, we have∑

x∈V (G)∪F (G) w′(x) ≥ −7− 4 = −11 > −20, a contradiction.
Case 4.3 There are at least two 1-vertices in G.
If there are two 1-vertices in G, then there is neither 2-vertex nor other

1-vertex in G for G contains no structure H67. Furthermore, any 3-face in
G is (3, 5+, 5+)- or (4+, 4+, 4+)-face for G contains no structure H65. Note
that there are neither special 3-vertices nor special faces in G now. And
the following discussion is the same as the situation in Case 1. These imply
that

∑
x∈V (G)∪F (G) w′(x) ≥ −7× 2 = −14 > −20, a contradiction.

In the following, let us give the proof of the main theorems.

Theorem 2.8 If G is a planar graph without 6- and 7-cycles and k ≥
max{6,∆(G)}, then G is equitably k-colorable.
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Proof. Let G be a counterexample with fewest vertices. If each com-
ponent of G has at most 4 vertices, then ∆(G) ≤ 3. So G is equi-
tably k-colorable by Lemma 2.3. Otherwise, there is at least one com-
ponent with at least five vertices. By Lemma 2.7, G has one of the
structures H1 ∼ H67, taking one and the vertices are labeled as they
are in Figure 1. If there are vertices labeled repeatedly, then we take
the larger (xi is larger than xi−1). In the following, we show how to
find S in Lemma 2.4. If G has one of H2, H6, H48 and H67, then let
S′ = {xk, xk−1, xk−2, x1}. If G has one of H3, H8, H10, H12 ∼ H15, H17,
H18, H21, H25, H28, H37, H39, H45 ∼ H47, H51, H65 and H66, then let
S′ = {xk, xk−1, xk−2, x2, x1}. If G has one of H9, H11, H16, H19, H20,
H22 ∼ H24, H26, H27, H29 ∼ H36, H44, H49, H50, H55 ∼ H59, H61,
then let S′ = {xk, xk−1, xk−2, x3, x2, x1}. If G has H7, then let S′ =
{xk, xk−1, xk−2, xk−3, x1}. If G has one of H1, H4, H5, H38, H40 ∼ H43,
H52, H53, H60, H62 ∼ H64, then let S′ = {xk, xk−1, xk−2, xk−3, x2, x1}.
If G has H54, then let S′ = {xk, xk−1, · · · , xk−4, x1}. By Lemma 2.1, G
is 3-degenerate, then we can find the remaining unspecified positions in S
from highest to lowest indices by choosing a vertex with minimum degree
in the graph obtained from G by deleting the vertices already being chosen
for S at each step. By the minimality of |V (G)| and k ≥ ∆(G) ≥ ∆(G−S),
G−S is equitably k-colorable. So G is also equitably k-colorable by Lemma
2.4.

Corollary 2.9 Let G be a planar graph without 6- and 7-cycles. If ∆(G) ≥
6, then χe(G) ≤ ∆(G).

Corollary 2.10 Let G be a planar graph without 6- and 7-cycles. If ∆(G) ≥
6, then χ∗

e(G) ≤ ∆(G).

Theorem 2.11 If G is a planar graph without 6- and 7-cycles and k ≥
max{6,∆(G)}, then G is equitably k-choosable.

Proof. Let G be a counterexample with fewest vertices. If each com-
ponent of G has at most 4 vertices, then ∆(G) ≤ 3. So G is equitably
k-choosable by Lemma 2.5. Otherwise, the proof is similar to the proof of
Theorem 2.8 by Lemma 2.6 and Lemma 2.7.

Corollary 2.12 Let G be a planar graph without 6- and 7-cycles. If ∆(G) ≥
6, then G is equitable ∆(G)-choosable.
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