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Abstract. A graph G is equitably k-choosable if for any k-uniform list assignment L, G is
L-colorable and each color appears on at most d|V (G)|/ke vertices. A graph G is equitable k-
colorable if G has a proper vertex coloring with k colors such that the size of the color classes
differ by at most 1. In this paper, we prove that if G is a planar graph without 5- and 7-cycles,
then G is equitably k-choosable and equitably k-colorable where k ≥max{∆(G),7}.
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1. Introduction

The terminology and notation used but undefined in this paper can be found in [1]. Let
G = (V,E) be a graph. We use V (G), E(G), F(G), ∆(G) and δ (G) to denote the vertex set,
edge set, face set, maximum degree, and minimum degree of G, respectively. Let dG(x) or
simply d(x), denote the degree of a vertex (face) x in G. A vertex (face) x is called a k-vertex
(k- f ace), k+-vertex (k+- f ace), k−-vertex or k−−-vertex, if d(x) = k, d(x)≥ k, 2≤ d(x)≤ k,
or 1≤ d(x)≤ k. We use (d1,d2, · · · ,dn) to denote a face f if (d1,d2, · · · ,dn) are the degree
of vertices incident to the face f . Let δ ( f ) denote the minimal degree of vertices incident
to f . A graph G is 3-degenerate if every subgraph has a vertex of degree at most 3.

A proper k-coloring of a graph G is a mapping π from the vertex set V (G) to the set of
colors {1,2, · · · ,k} such that π(x) 6= π(y) for every edge xy ∈ E(G). A graph G is equitable
k-colorable if G has a proper k-coloring such that the size of the color classes differ by at
most 1. The equitable chromatic number of G, denoted by χe(G), is the smallest integer k
such that G is equitably k-colorable. The equitable chromatic threshold of G, denoted by
χ∗e (G), is the smallest integer k such that G is equitably l-colorable for all integers l ≥ k. It
is obvious that χe(G) ≤ χ∗e (G) for any graph G. They might not be equal. For example, if
K2n+1,2n+1 (n is a positive integer) is a complete bipartite graph, then χe(K2n+1,2n+1) = 2,
χ∗e (K2n+1,2n+1) = 2n+2.
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In 1970, Hajnál and Szemerédi proved that every graph has an equitable k-coloring when-
ever k ≥ ∆(G)+ 1 [4]. This bound is sharp as shows the example of K2n+1,2n+1. In 1973,
Meyer introduced the notion of equitable coloring and made the following conjecture [8].

Conjecture 1.1. If G is a connected graph which is neither a complete graph nor odd cycle,
then χe(G)≤ ∆(G).

In 1994, Chen et al. put forth the following conjecture [2].

Conjecture 1.2. For any connected graph G, if it is different from a complete graph, a
complete bipartite graph and an odd cycle, then χ∗e (G)≤ ∆(G).

Chen et al. proved the conjecture for graphs with ∆(G)≤ 3 or ∆(G)≥ (|V |/2) [2]. Yap
and Zhang proved that the conjecture holds for outer planar graphs and planar graphs with
∆(G) ≥ 13 [14, 15]. Lih and Wu verified the conjecture for bipartite graphs [6], and Chen
et al. verified it for tree [3]. Wang et al. proved the conjecture for line graphs [13], and
Kostochka et al. proved it for d-degenerate graphs with ∆(G)≥ 14d +1 [7].

For a graph G and a list assignment L assigned to each vertex v ∈ V (G) a set L(v) of
acceptable colors, a L-coloring of G is a proper vertex coloring such that for every v∈V (G)
the color on v belongs to L(v). A list assignment L for G is k-uni f orm if |L(v)| = k for all
v ∈V (G). A graph G is equitably k-choosable if, for any k-uniform list assignment L, G is
L-colorable and each color appears on at most d|V (G)|/ke vertices.

In 2003, Kostochka, Pelsmajer and West investigated the equitable list coloring of graphs.
They proposed the following conjecture [5].

Conjecture 1.3. Every graph G is equitably k-choosable whenever k > ∆(G).

Conjecture 1.4. If G is a connected graph with maximum degree at least 3, then G is
equitably ∆(G)-choosable, unless G is a complete graph or is Kk,k for some odd k.

It has been proved that Conjecture 1.3 holds for graphs with ∆(G) ≤ 3 independently
in [10, 11]. Kostochka, Pelsmajer and West proved that a graph G is equitably k-choosable
if either G 6= Kk+1,Kk,k (with k odd in the later case) and k ≥ max{∆, |V (G)|/2}, or G is a
connected inteval graph and k ≥ ∆(G) or G is a 2-degenerate graph and k ≥max{∆(G),5}
[5]. Pelsmajer proved that every graph is equitably k-choosable for any k ≥ (∆(G)(∆(G)−
1)/2)+2 [10]. There are several results for planar graphs without short cycles [9, 16].

In this paper, we prove that if G is a planar graph without 5- and 7-cycles, then G is
equitably k-colorable and equitably k-choosable where k ≥max{∆(G),7}.

2. Planar graphs without 5- and 7-cycles

First let us introduce some important lemma.

Lemma 2.1. [12] Every planar graph without 5-cycles is 3-degenerate.

Corollary 2.1. If G is a planar graph without 5- and 7-cycles, then δ (G)≤ 3.

Lemma 2.2. [4] Every graph has an equitable k-coloring whenever k ≥ ∆(G)+1.

Lemma 2.3. [16] Let S = {v1,v2, · · · ,vk} be a set of k different vertices in G such that G−S
has an equitable k-coloring. If |NG(vi)− S| ≤ k− i for 1 ≤ i ≤ k, then G has an equitable
k-coloring.
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Lemma 2.4. [10,11] Every graph G with maximum degree ∆(G)≤ 3 is equitably k-choosable
whenever k ≥ ∆(G)+1.

Lemma 2.5. [5] Let G be a graph with a k-uniform list assignment L. Let S = {v1,v2, · · · ,vk},
where {v1,v2, · · · ,vk} are distinct vertices in G. If G− S has an equitable L-coloring and
|NG(vi)−S| ≤ k− i for 1≤ i≤ k, then G has an equitable L-coloring.

Lemma 2.6. Let G be a connected planar graph with order at least 5 and without 5- and
7-cycles. Then G has at least one of the structures in Figure 1.

Proof. Let G be a minimal counterexample on the number of vertices. Then G without 5-
and 7-cycles does not contain H1 ∼ H43 in Figure 1.

For G contains no structures H1 ∼ H7, then G has the following properties.
Case 1. (3,3,5+)-face, (3,4,4)-face, (3,4,5)-face and (3,4,6)-face any two of which can
not simultaneously appear in G. Furthermore, if one of them appears, then it must occur
just once except that the structures G1 (in Figure 2) or G2 (in Figure 2).

We call a face a special f ace if it belongs to one of the following structures: (3,3,5+)-
faces, (3,4,4)-faces, (3,4,5)-faces, (3,4,6)-faces, G1 or G2. In the following, we call a
3-vertex a special 3-vertex if it is incident to a special face, otherwise, it is called a simple
3-vertex. For convenience, let n3(v) denote the number of simple 3-vertices adjacent to v
and fi(v) denote the number of i-faces incident to v for each v ∈ V (G). For f ∈ F(G), let
ni( f ) denote the number of i-vertices incident to f .

Since G contains no structure H8 and H11, we can conclude the following properties.
Case 2. For each v ∈V (G) with d(v)≥ 4, if v is adjacent to a 3-vertex which is adjacent to
two 3−−-vertices, then it is not adjacent to other 3-vertex.
Case 3. For each v ∈V (G) with d(v)≥ 4, if v is incident to a 3-face which is incident to a
3-vertex, then it is not adjacent to other simple 3-vertex which is adjacent to a 3−−-vertex.
Case 4. For each v ∈ V (G) with d(v) ≥ 4, if v is adjacent to a 3-vertex, then it is not inci-
dent to a 3-face which is incident to other simple 3-vertex with a 3−−-vertex as its adjacent
vertex.
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Figure 1

Figure 2

Remark: Each configuration in Figure 1 and Figure 2 represents subgraphs for which (1)
the vertices labeled xk,xk−1,xk−2,xk−3,xk−4 are distinct, (2) solid vertices have no incident
edges other than the ones shown, and (3) except for being specially pointed, the degree of a
hollow vertex might be an integer and in [d,∆(G)], where d is the number of edges incident
to the hollow vertex in the configuration, (4) the order of the vertices on the boundary of
each 4-face can be exchanged.

Case 5. For any v ∈V (G), v is adjacent to at most one simple 3-vertex which is adjacent to
other 3−−-vertex.

By Euler’s formula |V |−|E|+ |F |= 2 and ∑v∈V (G) d(v) = ∑ f∈F(G) d( f ) = 2|E|, we have

∑
v∈V (G)

(3d(v)−10)+ ∑
f∈F(G)

(2d( f )−10) =−10(|V |− |E|+ |F |) =−20.

Define an initial charge function w on V (G)∪ F(G) by setting w(v) = 3d(v)− 10 if
v ∈V (G) and w( f ) = 2d( f )−10 if f ∈ F(G), so that ∑x∈V (G)∪F(G)W (x) =−20.

Let the new charge of each element x be w′(x) for each x ∈ V (G)∪F(G). Particularly,
we use w′s denote the total new charge of all the special vertices and all the special faces in
G.

We divide the proof into the following four cases by Corollary 2.2.
Case 1. δ (G) = 3. For G contains no structures H12, H13, G has the following properties.
Case 1.1. All 3-faces in G are (3,3,5+)-, (3,4+,4+)- or (4+,4+,4+)-faces. 4-faces are
(3,3,5+,5+)-, (3,4+,4+,4+)- or (4+,4+,4+,4+)-faces.

Now redistribute the charge according to the following discharging rules.
R1 Transfer charge 1 from each 5+-vertex to every adjacent simple 3-vertex v which is

adjacent to exactly two 3-vertices.
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R2 Transfer charge (1/2) from each 4+-vertex to every adjacent simple 3-vertex v
which is adjacent to exactly one 3-vertex.

R3 Transfer charge (1/3) from each 4+-vertex to every adjacent simple 3-vertex v
which is not adjacent to any 3-vertex.

R4 Transfer charge (3/4) from each 8+-face f to every adjacent 3-face and 4-face via
each common edge.

R5 If f is a 4-face incident with a vertex v, then v gives f charge (2/3) if d(v) = 4 and
f is a (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or (3,4,5,5)-face, (1/2) if d(v) = 4 and
f is a (4,4,4,4+)-face, (1/3) if d(v) = 4 and f is an other 4-face, 1 if d(v) = 5
and f is a (3,3,5,5)- or (3,3,5,6)-face, (2/3) if d(v) = 5 and f is an other face, 1
if d(v) = 6, (4/3) if d(v) = 7+ and f is a (3,3,7+,5+)- or (3,4,7+,4+)-face, 1 if
d(v) = 7+ and f is an other 4-face.

R6 If f is a 3-face incident with a vertex v, then v gives f charge (3/4) if d(v) = 4,
(3/2) if d(v) = 5, (11/6) if d(v) = 6, (9/4) if d(v) = 7+ and f is a (3,7+,3+)-face,
2 if d(v) = 7+ and f is an other 3-face.

In the following, let’s check the charge of each element x for x ∈V (G)∪F(G). Suppose
d(v) = 3. Then w(v) = −1. Since G contains no structure H14, v is adjacent to at least
one 5+-vertex or is adjacent to at least two 4+-vertex. If v is a simple 3-vertex, we have
w′(v) =−1+1 = 0 by R1, w′(v) =−1+(1/2)×2 = 0 by R2 or w′(v) =−1+(1/3)×3 = 0
by R3. Otherwise, we have w′(v) = w(v) =−1.

Suppose d(v) = 4. Then w(v) = 2 and f3(v)≤ 2.
Case 1.1.1 If f3(v) = 2, then f4(v) = 0, n3(v)≤ 1 for G contains no 5-cycle and contains no
structure H15. We have w′(v) ≥ 2− (3/4)×2− (1/2) = 0 for G contains no configuration
H14 and by R6 and R2.
Case 1.1.2 f3(v) = 1, then f4(v)≤ 1. If f4(v) = 1, then n3(v)≤ 1 for G contains no structure
H15 and by Claim 1.1. We have w′(v)≥ 2− (3/4)− (2/3)− (1/2) = (1/12) > 0 by R6, R5
and R2. Otherwise, n3(v)≤ 2. So w′(v)≥ 2− (3/4)− (1/3)− (1/2) = (5/12) > 0 by R6,
R3 and R2.
Case 1.1.3 f3(v) = 0, then f4(v)≤ 4.
Case 1.1.3.1 f4(v) = 4.
Case 1.1.3.1.1 One of the 4-faces is a (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or (3,4,5,5)-face,
then n3(v)≤ 1 for G contains no structures H16 and H17. If n3(v) = 1, then the other 4-faces
are not (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)-, (3,4,5,5)- or (4,4,4,4+)-faces for G contains
no structures H18 ∼ H20. We have w′(v) ≥ 2− (2/3)− (1/3)× 3− (1/3) = 0 by R5 and
R3. Otherwise, i.e. n3(v) = 0, then there is at most two (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)-
or (3,4,5,5)-faces, and there are at least two 4-faces which are not (3,4,4,4)-, (3,4,4,5)-,
(3,4,4,6)-, (3,4,5,5)- or (4,4,4,4+)-faces for G contains no structures H18 ∼ H20. We
have w′(v)≥ 2− (2/3)×2− (1/3)×2 = 0 by R5.
Case 1.1.3.1.2 Each of the 4-faces is not a (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or (3,4,5,5)-
face, then n3(v) ≤ 2 by Claim 1.1. If n3(v) = 2, then we have w′(v) ≥ 2− (1/3)× 4−
(1/3)× 2 = 0 by R5 and R3. If n3(v) = 1, we have w′(v) ≥ 2− (1/2)× 2− (1/3)× 2−
(1/3) = 0 by R5 and R3. If n3(v) = 0, we have w′(v) = 2− (1/2)×4 = 0 by R5.
Case 1.1.3.2 f4(v) = 3.
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Case 1.1.3.2.1 One of the 4-faces is a (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or (3,4,5,5)-
face, then n3(v) ≤ 1 for G contains no structures H16 and H17. If n3(v) = 1, then the other
4-faces are not (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or (3,4,5,5)-faces for G contains no
structures H16 and H17. There is at most one (4,4,4,4+)-face in the other two 4-faces for G
contains no structures H18 ∼ H20 and there is at least one 4-face which is not a (3,4,4,4)-,
(3,4,4,5)-, (3,4,4,6)-, (3,4,5,5)- or (4,4,4,4+)-faces for G contains no structures H18 ∼
H20. We have w′(v)≥ 2− (2/3)− (1/2)− (1/3)− (1/2) = 0 by R5 and R2. Otherwise, i.e.
n3(v) = 0, then there is at most two (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or (3,4,5,5)-faces
and there is at least one 4-face which is not (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)-, (3,4,5,5)-
or (4,4,4,4+)-face for G contains no structures H18 ∼ H20. We have w′(v) ≥ 2− (2/3)×
2− (1/3) = (1/3) > 0 by R5.
Case 1.1.3.2.2 Each of the 4-faces is not a (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or (3,4,5,5)-
face, then n3(v) ≤ 2 by Claim 1.1. If n3(v) = 2, then we have w′(v) ≥ 2− (1/3)× 2−
(1/2)−(1/3)−(1/2) = 0 by R5, R3 and R2. If n3(v) = 1, we have w′(v)≥ 2−(1/2)×2−
(1/3)− (1/2) = (1/6) > 0 by R5 and R2. If n3(v) = 0, we have w′(v) = 2− (1/2)× 3 =
(1/2) > 0 by R5.
Case 1.1.3.3 f4(v) = 2.
Case 1.1.3.3.1 If one of the 4-faces is a (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or (3,4,5,5)-
face, then n3(v)≤ 1 for G contains no structures H16 and H17. We have w′(v)≥ 2− (2/3)−
(2/3)− (1/2) = (1/6) > 0 by R5 and R2.
Case 1.1.3.3.2 Each of the 4-faces is not a (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or (3,4,5,5)-
face, then n3(v)≤ 3. If n3(v) = 3, then we have w′(v)≥ 2−(1/3)×2−(1/3)×2−(1/2) =
(1/6) > 0 by R5, R3 and R2. If n3(v) = 2, then we have w′(v)≥ 2−(1/3)−(1/2)−(1/3)−
(1/2) = (1/3) > 0 by R5, R3 and R2. If n3(v) ≤ 1, then we have w′(v) ≥ 2− (1/2)× 2−
(1/2) = (1/2) > 0 by R5 and R2.
Case 1.1.3.4 f4(v) = 1. If one of the 4-faces is a (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or
(3,4,5,5)-face, then n3(v)≤ 1 for G contains no structures H16 and H17. We have w′(v)≥
2− (2/3)− (1/2) = (5/6) > 0 by R5 and R2. Otherwise, n3(v) ≤ 3. We have w′(v) >
2− (1/2)− (1/2)− (1/3)×2 = (1/3) > 0 by R5, R3 and R2.
Case 1.1.3.5 If f4(v) = 0, then n3(v)≤ 4, we have w′(v)≥ 2−(1/2)−(1/3)×3 = (1/2) > 0
by R2 and R3.

Suppose d(v) = 5. Then w′(v) = 5, m3(v)≤ 3.
Case 1.2.1 If f3(v) = 3, then f4(v) = 0, n3(v)≤ 1 for G contains no structures H21 ∼ H23.
So w′(v)≥ 5− (3/2)×3− (1/2) = 0 by R6 and R2.
Case 1.2.2 If f3(v) = 2, then f4(v) ≤ 1, n3(v) ≤ 2 for G contains no structure H24. So
w′(v)≥ 5− (3/2)×2−1− (1/3)− (1/2) = (1/6) > 0 by R6, R5, R3 and R2.
Case 1.2.3 If f3(v) = 1, then f4(v) ≤ 2, n3(v) ≤ 3 for G contains no structure H24. So
w′(v)≥ 5− (3/2)−1×2− (1/2)− (1/3)×2 = (1/3) > 0 by R6, R5, R2 and R3.
Case 1.2.4 f3(v) = 0, then f4(v) ≤ 5. If one of the 4-faces is a (3,3,5,5)- or (3,3,5,6)-
face, then n3(v) ≤ 2 for G contains no structure H25. So w′(v) ≥ 5− 1× 3− (2/3)× 2−
(1/3)− (1/2) = (1/6) > 0 by R5, R3 and R2. Otherwise, n3(v) ≤ 5, we have w′(v) ≥
5− (2/3)×5− (1/3)×5 = 0 by R5 and R3.

Suppose d(v) = 6. Then w(v) = 8, f3(v)≤ 4.
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Case 1.3.1 If f3(v) = 4, then f4(v) = 0, n3(v) ≤ 2 for G contains no structure H21. So
w′(v)≥ 8− (11/6)×4− (1/3)×2 = 0 by R6, R3 and Claim 4.
Case 1.3.2 If f3(v) = 3, then f4(v) = 0, n3(v)≤ 4. So w′(v)≥ 8− (11/6)×3− (1/3)×3−
(1/2) = 1 > 0 by R6, R3 and R2.
Case 1.3.3 If f3(v) = 2, then f4(v) ≤ 2, n3(v) ≤ 5, So w′(v) ≥ 8− (11/6)× 2− 1× 2−
(1/3)×4− (1/2) = (1/2) > 0 by R6, R5, R3 and R2.
Case 1.3.4 If f3(v) = 1, then f4(v)≤ 3, n3(v)≤ 5. So w′(v)≥ 8− (11/6)−1×3− (1/3)×
4− (1/2) = (4/3) > 0 by R6, R5, R3 and R2.
Case 1.3.5 f3(v) = 0, then f4(v)≤ 6. If f4(v) = 6, then n3(v)≤ 3 for G contains no structure
H25. So w′(v) ≥ 8−1×6− (1/3)×2− (1/2) = (5/6) > 0 by R5, R3 and R2. Otherwise,
n3(v)≤ 6, we have w′(v) > 8−1×5− (1/3)×5− (1/2) = (5/6) > 0 by R5, R3 and R2.

Suppose d(v) = 7. Then w(v) = 11, f3(v)≤ 4.
Case 1.4.1 If f3(v) = 4, then f4(v) = 0, n3(v)≤ 5. So w′(v)≥ 11− (9/4)×4− (1/3)×5 =
(1/3) > 0 by R6, R3 and Claim 3.
Case 1.4.2 If f3(v) = 3, then f4(v) ≤ 1, n3(v) ≤ 5. So w′(v) ≥ 11− (9/4)× 3− (4/3)−
(1/3)×5 = (5/4) > 0 by R6, R4, R3 and Claim 3.
Case 1.4.3 If f3(v) = 2, then f4(v)≤ 3, n3(v)≤ 6. So w′(v)≥ 11− (9/4)×2− (4/3)×3−
(1/3)×6 = (1/2) > 0 by R6, R4, R3, Claim 3 and Claim 4.
Case 1.4.4 If f3(v) = 1, then f4(v) ≤ 4, n3(v) ≤ 6. So w′(v) ≥ 11− (9/4)− (4/3)× 4−
(1/3)×6 = (17/12) > 0 by R6, R4, R3 and Claim 4.
Case 1.4.5 f3(v) = 0, then f4(v)≤ 7. If f4(v) = 7, then n3(v)≤ 3 for G contains no struc-
ture H25. So w′(v) ≥ 11− (4/3)× 7− (1/3)× 2− (1/2) = (1/2) > 0 by R5, R3 and R2.
Otherwise, n3(v)≤ 7. We have w′(v) > 11− (4/3)×6− (1/3)×6− (1/2) = (1/2) > 0 by
R5, R3 and R2.

Suppose d(v)≥ 8. Then w(v) = 3d(v)−10. Since n3(v)≤ f3(v)+d(v)−(3/2) f3(v), we
have n3(v)≤ d(v)−(1/2) f3(v). From f3(v)≤ (2/3)×(d(v)− f4(v)), we have (4/3) f4(v)≤
(4/3)d(v)−2 f3(v). So w′(v)≥ 3d(v)−10−(9/4) f3(v)−(4/3) f4(v)−(1/2)−(1/3)(n3(v)−
1)≥ 3d(v)−10− (9/4) f3(v)− ((4/3)d(v)−2 f3(v))− (1/2)− (1/3)(d(v)− (1/2) f3(v)−
1) = (4/3)d(v)− (1/12) f3(v)− (61/6) by R6, R5, R2 and R3. Since f3(v) ≤ (2/3)d(v),
we obtain w′(v)≥ (23/18)d(v)− (61/6)≥ (1/18) > 0.

Suppose d( f ) = 3. Then w( f ) =−4, n3( f )≤ 2 by Claim 1.1.
Case 1.5.1 n3( f ) = 2, then n4( f ) = 0, f is a special face (3,3,5+)-face. If f is not adjacent
to any special 3-face, we have w′( f )≥−4+(3/2)+(3/4)×2 =−1 by R6 and R4. If f is
adjacent to a special 3-faces, we consider the cluster G1 and G3 (Figure 2) for G contains
no structure H27 and by Claim 1, then w′(G1)≥−4×2+(11/6)×2+(3/4)×4 =−(4/3)
by R6 and R4, w′(G3)≥−4×3+(9/4)×4+(3/4)×3 =−(3/4) by R6 and R4.
Case 1.5.2 n3( f ) = 1 and n4( f ) = 1, then f is a special face (3,4,k)-face (4 ≤ k ≤ 6) or a
(3,4,7+)-face. If f is a special face (3,4,k)-face (4 ≤ k ≤ 6) and f is not adjacent to any
special 3-face, we have w′( f ) ≥ −4 + (3/4)× 2 + (3/4)× 2 = −1 by R4 and R6. If the
special face f is adjacent to a special 3-face, we consider the cluster G2 (Figure 2), then
w′(G2)≥−4×2+(11/6)×2+(3/4)×4+(3/4)×2 = (1/6) > 0 by R6 and R4. If f is a
(3,4,7+)-face and adjacent to at most one 3-face, we have w′( f ) ≥ −4 +(3/4)+ (9/4)+
(3/4)×2 = (1/2) > 0 by R6 and R4. If f is a (3,4,7+)-face and adjacent to two 3-faces i.e.
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G4 (Figure 2), we have w′(G4) =−4×3+(3/4)×2+(9/4)×4+(3/4)×3 = (3/4) > 0
by R6 and R4.
Case 1.5.3 n3( f ) = 1 and n4( f ) = 0. If f is a (3,5,5)-face, then f is adjacent to at most one
3-face for G contains no structure H28. So w′( f )≥−4+(3/2)×2+(3/4)×2 = (1/2) > 0
by R6 and R4. If f is a (3,5+,6+)-face, then f is adjacent to at most two 3-faces, we have
w′( f )≥−4+(11/6)+(3/2)+(3/4) = (1/12) > 0 by R6 and R4.
Case 1.5.4 n3( f ) = 0. If f is a (4,4,4)-face, then f is not adjacent to any 3-face for G
does not contain structure H29. So w′( f ) = −4 + (3/4)× 3 + (3/4)× 3 = (1/2) > 0 by
R6 and R4. If f is a (4+,4+,5+)-face, then f is adjacent to at most one 3-face, we have
w′( f )≥−4+(3/4)×2+1+(3/4)×2 = 0 by R6 and R4.

Suppose d( f ) = 4. Then w( f ) =−2 and n3( f )≤ 2 by Claim 1.1.
Case 1.6.1 n3( f ) = 2, then f is a (3,3,5+,5+)-face. If f is a (3,3,5,5)- or (3,3,5,6)-face,
then we have w′( f ) ≥ −2 + 1× 2 = 0 by R5. Otherwise, we have w′( f ) ≥ −2 +(2/3)+
(4/3) = 0 by R5.
Case 1.6.2 n3( f ) = 1 and n4( f ) = 2, then f is a (3,4,4,4+)-face. If f is a (3,4,4,4)-,
(3,4,4,5)- or (3,4,4,6)-face, then we have w′( f )≥−2+(2/3)×3 = 0 by R5. Otherwise,
we have w′( f )≥−2+(1/3)×2+(4/3) = 0 by R5.
Case 1.6.3 n3( f ) = 1 and n4( f ) = 1, then f is a (3,4,5+,5+)-face. If f is a (3,4,5,5)-face,
then we have w′( f )≥−2+(2/3)×3 = 0 by R5. Otherwise, we have w′( f )≥−2+(1/3)+
(2/3)+1 = 0 by R5.
Case 1.6.4: If n3( f ) = 1 and n4( f ) = 0, then f is a (3,5+,5+,5+)-face, we have w′( f ) ≥
−2+(2/3)×3 = 0 by R5.
Case 1.6.5 If n3( f ) = 0, then f is a (4+,4+,4+,4+)-face, we have w′( f )≥−2+(1/2)×4 =
0 by R5.

Suppose d( f ) = 6. Then w′( f ) = w( f ) = 2 > 0.
Suppose d( f )≥ 8. Then w′( f )≥w( f )−(3/4)d( f )= 2d( f )−10−(3/4)d( f )= (5/4)d( f )−

10≥ 0 by R4.
From the above discussion, we can obtain that w′(x)≥ 0 for each x ∈V (G)∪F(G) and

x is neither a special 3-vertex nor a special face. Furthermore, we have w′s ≥min{−1×2−
(4/3),−1×2− (3/4),−1×2−1}=−1×2− (4/3) =−(10/3) >−4 by Claim 1. So we
can obtain ∑x∈V (G)∪F(G) w′(x)≥−4 >−20, a contradiction.

Case 2. δ (G) = 2 and there are at most two 2-vertices in G.
The discharging rules and the discussion are the same as Case 1 except for the two cases.

(1) A 4-face have a common 2-vertex with a 3-face. (2) Two 4-faces have a common 2-
vertex. Under these situation, transfer charge from its common incident vertices to only the
3-face in the first situation and transfer charge from its common incident vertices to only one
of them in the second situation. Clearly, we can guarantee the new charge of each vertex of
G is larger than or equal to zero. For convenience, let w′t1 (w′t2) denote the total new charge
of one 2-vertex (two 2-vertices) and the faces which are incident to the 2-vertex (the two
2-vertices).
Case 2.1. There exists one 2-vertex in G. For the 2-vertex is incident to at most one 3-face
and one 4-face simultaneously. Furthermore, for G contains no structures H13 and H30, we
can obtain that the 3-face and 4-face is (2,3,7+)- and (2,3,5+,7+) respectively; the 3-face
and 4-face is (2,4,7+)- and (2,4,4+,7+) respectively; the 3-face and 4-face is (2,5+,5+)-
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and (2,3+,5+,5+)-face respectively. So w′t1 ≥ −4− 2− 4 + (9/4) + (2/3) = −(85/12),
w′t1 ≥−4−2−4+(9/4)+(3/4)+(1/3) =−(20/3), w′t1 ≥−4−2−4+(3/2)×2 =−7
by R6 and R5. If the 2-vertex is incident a 3-face and not incident to a 4-face, then the
3-face is (2,3,5+)- or (2,4+,4+)-face for G contains no structure H12. We have w′t1 ≥
−4− 4 + (3/2) = −(13/2) or w′t1 ≥ −4− 4 + (3/4)× 2 = −(13/2) by R6. If the 2-
vertex is incident a 4-face and not incident to a 3-face, we consider the situation such
that the 2-vertex is a common vertex of two 4-faces, then the 4-face is a (2,3,5+,5+)-
or (2,4+,4+,4+)-face for G contains no structure H13. We have w′t1 ≥ −4− 2− 2 +
(2/3)× 2 = −(20/3) or w′t1 ≥ −4− 2− 2 + (1/3)× 4 = −(20/3). We can obtain that
w′t1 ≥ min{−(85/12),−(20/3),−7} = −(85/12), so ∑x∈V (G)∪F(G) w′(x) ≥ −4 + w′t1 ≥
−4− (85/12) =−(133/12) >−20, a contradiction.
Case 2.2. There exist two 2-vertices in G.
Case 2.2.1 The two 2-vertices are incident to a same 3-face, then f is a (2,2,5+)-face for G
contains no structure H12. So w′t2 ≥−4×3+1 =−11 by R6.
Case 2.2.2 Two 2-vertices are incident to a same 4-face, then the 4-face is a (2,2,5+,5+)-
face for G contains no structure H13. If each 2-vertex is incident to another 4-face, we have
w′t2 ≥ −2− 2− 2− 4− 4 + (2/3)× 2 = −(38/3) by R5. If one of the two 2-vertices is
incident to another 3-face, the other 2-vertex is incident to another 4-face, we have w′t2 ≥
−2×2−4×3+(3/2)×2 =−13 by R6.
Case 2.2.3 If the two 2-vertices are not incident to a same face, from the discussion in Case
2.1, we have w′t2 ≥−(85/12)×2 =−(85/6) >−15. Clearly, we have w′t2 ≥−15 in the rest
cases. From the above discussion, we have w′t2 ≥ min{−11,−(38/3),−13,−15} = −15.
So ∑x∈V (G)∪F(G) w′(x)≥−4−15 =−19 >−20, a contradiction.

Case 3. δ (G) = 2 and there are at least three 2-vertices in G.
For G contains no structures H31 ∼ H38. G has the following properties:

Case 3.1. Any vertex v is adjacent to at most one 2-vertex.
Case 3.2. Two 2-vertices are not adjacent to each other.
Case 3.3. For each v ∈ V (G) with d(v) ≥ 4, if v is adjacent to a 2-vertex, then it is not
incident to a 3-face which is incident to a 3-vertex.
Case 3.4. If v is adjacent to a 3-vertex, then it is not incident to a 3-face which is incident
to a 2-vertex.
Case 3.5. 3-faces in G which is incident to a 2-vertex are (2,6+,6+)-faces.
Case 3.6. If a vertex v is adjacent to a 2-vertex, then it is not adjacent to a 3-vertex which is
adjacent to other 3-vertex.
Case 3.7. 4-faces which is incident to a 2-vertex in G are (2,3,7+,7+)-, (2,4,7+,7+)-,
(2,5,7+,7+)- or (2,6+,6+,6+)-faces.
Case 3.8. There is at most one 2-vertex which is adjacent to a k-vertex (3≤ k ≤ 4) in G.

We call a 2-vertex a special 2-vertex if it is adjacent to a k-vertex (3≤ k ≤ 4), otherwise
a simple 2-vertex. Let n2(v) denote the number of simple 2-vertices adjacent to v.

Now redistribute the charge according to the following discharging rules:
R1′, R2′, R3′ and R4′ are the same as R1, R2, R3, R4 in Case 1.



Equitable Coloring and Equitable Choosability of Planar Graphs 907

R5′ is the same as R5 except for the situation when d(v)= 4 and the 4-face is a (2,4,7+,7+)-
face; d(v)= 5 and the 4-face is a (2,5,7+,7+)-face; d(v)= 6 and the 4-face is a (2,6,6+,6+)-
face. Transfer charge 0 from v to the (2,4,7+,7+)-face if d(v) = 4 in R5′. Transfer charge
0 from v to the (2,5,7+,7+)-faces if d(v) = 5 in R5′. Transfer charge (2/3) from v to the
(2,6,6+,6+)-faces if d(v) = 6 in R5′.

R6′ is the same as R6 except for the situation when d(v) = 6 and the 3-face is a (2,6,6+)-
or (4+,4+,6)-face. Transfer charge 2 from v to the (2,6,6+)-faces if d(v) = 6 in R6′.
Transfer charge 1 from v to the (4+,4+,6)-faces if d(v) = 6 in R6′.

R7′. Transfer 2 from each 5+-vertex to every adjacent 2-vertex.
For any face f ∈F(G), if d( f ) = 6, d( f )≥ 8, the discussion is same as the corresponding

situation in Case 1. For any vertex v ∈ V (G), if d(v) = 3, then the discussion is also same
as the corresponding situation in Case 1. In the following, we discuss the rest cases.

Suppose d(v) = 2. Then w′(v) = −4. Except the special 2-vertex, we have w′(v) =
−4+2×2 = 0 by R7′.

Suppose d(v) = 4. Then w(v) = 2, f3(v) ≤ 2. If n2(v) = 0, then the discussion is sim-
ilar to the corresponding situation in Case 1. In the following, we focus on the situation
n2(v) = 1.
Case 3.1.1 If f3(v) = 2, then f4(v) = 0, the discussion is similar to the corresponding situ-
ation in Case 1.
Case 3.1.2 If f3(v) = 1, then f4(v)≤ 1, n3(v)≤ 1 by Claim 3.3, we have w′(v) > 2−(3/4)−
(1/2) = (3/4) > 0 by R6′, R5′, R2′.
Case 3.1.3 f3(v) = 0, then f4(v)≤ 4, there are at most two 4-faces which are not incident to
the 2-vertex and each of the 4-face is not a (3,4,4,4)-, (3,4,4,5)-, (3,4,4,6)- or (3,4,5,5)-
face for G contains no structures H18 and H19. If one of the 4-face is a (4,4,4,4+)-face, then
n3(v) ≤ 1, we have w′(v) > 2− (1/2)× 2− (1/2) = (1/2) > 0 by R5 and R2. Otherwise,
n3(v)≤ 3, we have w′(v)≥ 2−(1/3)×2−(1/3)×2−(1/2) = (1/6) > 0 by R5, R3 and R2.

Suppose d(v) = 5. Then w(v) = 5, f3(v) ≤ 3. If n2(v) = 0, then the discussion is sim-
ilar to the corresponding situation in Case 1. In the following, we focus on the situation
n2(v) = 1.
Case 3.2.1 If f3(v) = 3, then f4(v) = 0, n2(v) = 0 by Claim 3.5. The discussion is similar
to the corresponding situation in Case 1.
Case 3.2.2 If f3(v) = 2, then f4(v) ≤ 1, n3(v) = 0 for G contains no structure H39. So
w′(v)≥ 5− (3/2)×2−2 = 0 by R6′, R5′ and R7′.
Case 3.2.3 If f3(v) = 1, then f4(v)≤ 2, n3(v)≤ 2 by Claim 3.3. For G contains no structure
H25, v is not incident to a (3,3,5,5)- or (3,3,5,6)-face. So w′(v) > 5− (3/2)− (2/3)−
(1/3)×2−2 = (1/6) > 0 by R6′, R5′, R3′ and R7′.
Case 3.2.4 f3(v) = 0, then f4(v)≤ 5. For G contains no structure H25, v is not incident to a
(3,3,5,5)- or (3,3,5,6)-face. There are at most three 4-faces which are not incident to the
2-vertex. If there are three 4-faces which are not incident to the 2-vertex, then n3(v)≤ 2 for
G contains no structure H67. We have w′(v)≥ 5− (2/3)×3− (1/3)×2−2 = (1/3) > 0 by
R5′, R3′ and R2′. Otherwise, n3(v) ≤ 4, we have w′(v) > 5− (2/3)× 2− (1/3)× 4− 2 =
(1/3) > 0 by R5′, R3′ and R2′.
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Suppose d(v) = 6. Then w(v) = 8, f3(v) ≤ 4. If n2(v) = 0, then the discussion is sim-
ilar to the corresponding situation in Case 1. In the following, we focus on the situation
n2(v) = 1.
Case 3.3.1 If f3(v) = 4, then f4(v) = 0, n3(v) = 0 by Claim 3.4, we have w′(v) ≥ 8− 1×
3−2−2 = 1 > 0 by R6′ and R7′.
Case 3.3.2 If f3(v) = 3, then f4(v)≤ 1, n3(v) = 0 by Claim 3.3 and Claim 3.4. So w′(v) >
8−1×2−2−1−2 = 1 > 0 by R6′, R5′ and R7′.
Case 3.3.3 f3(v) = 2, then f4(v) ≤ 3. If one of the 3-faces is incident to the 2-vertex,
then n3(v) = 0 by Claim 3.4, we have w′(v) ≥ 8− 2− 1− 1× 3− 2 = 0 by R6′, R5′ and
R7′. Otherwise, n3(v)≤ 2, f4(v)≤ 2, we have w′(v) > 8−1−1−1×2− (1/3)×2−2 =
(4/3) > 0 by R6′, R5′, R3′ and R7′.
Case 3.3.4 f3(v) = 1, then f4(v)≤ 4. If the 3-face is incident to the 2-vertex, then n3(v) = 0.
So w′(v)≥ 8−2−1×4−2 = 0 by R6′, R5′ and R7′. Otherwise, n3(v)≤ 3, f4(v)≤ 3, we
have w′(v) > 8−1−1×3− (1/3)×3−2 = 1 > 0 by R6′, R5′, R3′ and R7′.
Case 3.3.5 f3(v) = 0, then f4(v) ≤ 6. If f4(v) = 6, then n3(v) ≤ 2 by Claim 3.7 and for
G contains no structure H25. So w′(v) ≥ 8− (2/3)×2−1×4− (1/3)×2−2 = 0 by R5′,
R3′ and R7′. If f4(v) = 5, then n3(v)≤ 2 by Claim 3.7 and for G contains no structure H25.
So w′(v)≥ 8− (2/3)−1×4− (1/3)×2−2 = (2/3) > 0 by R5′, R3′ and R7′. Otherwise,
f4(v)≤ 4, n3(v)≤ 6, we have w′(v) > 8−1×4− (1/3)×6−2 = 0 by R5′, R3′ and R7′.

Suppose d(v)≥ 7. Then w(v) = 3d(v)−10. If n2(v) = 0, then the discussion is similar
to the corresponding situation in Case 1. In the following, we focus on the situation n2(v) =
1. For G contains no structure H40, each 4-face is incident to v is not a (3,3,7+,5+)- or
(3,4,7+,4+)-face. Since n3(v)+(3/2) f3(v)+1≤ d(v), we have

n3(v)≤ d(v)− (3/2) f3(v)−1.

For G contains no 5-cycle, then f3(v)≤ (2/3)(d(v)− f4(v)) , we have

f4(v)≤ d(v)− (3/2) f3(v).

So w′(v) ≥ 3d(v)− 10− 2 f3(v)− f4(v)− (1/3)n3(v)− 2 ≥ 3d(v)− 10− 2 f3(v)− d(v)+
(3/2) f3(v)− (1/3)d(v) + (1/2) f3(v) + (1/3)− 2 = (5/3)d(v)− (35/3) ≥ 0 by R6′, R5′,
R3′ and R7′.

Suppose d( f ) = 3. Then w( f ) =−4 and n2( f )≤ 1. If n2( f ) = 1, then f is a (2,6+,6+)-
face by Claim 3.5. So w′( f ) ≥ 2×2 = 0 by R6′. Otherwise, the discussion on other cases
is similar to the corresponding situation when d( f ) = 3 in Case 1.

Suppose d( f )= 4. Then w( f )=−2. If n2( f )= 1, then f is a (2,3,7+,7+)- (2,4,7+,7+)-,
(2,5,7+,7+)- or (2,6+,6+,6+)-face by Claim 3.7. So w′( f )≥−2+1×2 = 0 or w′( f )≥
−2+(2/3)×3 = 0 by R5′. If n2( f ) = 0, then the discussion is similar to the situation when
d( f ) = 4 in Case 1.

From the above discussion, we can obtain that w′(x) ≥ 0 for each x ∈ V (G)∪ F(G)
and x is none of a special 3-vertex, a special 2-vertex and a special face. From the above
discussion, we have ∑x∈V (G)∪F(G) w′(x)≥−4−4 =−8 >−20, a contradiction.

Case 4. δ (G) = 1.
Case 4.1. There is one 1-vertex and at most two 2-vertices in G.

When d(v) = 1, then w(v) = −7. If there is one 1-vertex in G, then 3-faces in G are
(3−,5+,5+)-faces or (4+,4+,4+)-faces for G contains no structure H41 and the 4-face
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which is incident to a 2-vertex is (2,5+,5+,5+)-face for G contains no structure H42. Now
there are not special 3-vertices and special faces in G. The discharging rules are the same
as Case 1 except for the two cases. (1) A 4-face have a common 2-vertex with a 3-face.
(2) Two 4-faces have a common 2-vertex. Under these situation, transfer charge from its
common incident vertices to only the 3-face in the first situation and transfer charge from its
common incident vertices to only one of them in the second situation. Clearly, we can guar-
antee the new charge of each vertex of G is larger than or equal to zero. For convenience, let
w′t1 (w′t2) denote the total new charge of one 2-vertex (two 2-vertices) and the faces which
are incident to the 2-vertex (the two 2-vertices).
Case 4.1.1 There is one 2-vertex in G. If the 2-vertex is incident to at most one 3-face
and one 4-face simultaneously. Furthermore, the 3-face and 4-face is (2,5+,5+)- and
(2,5+,5+,5+)-face respectively. So w′t1 ≥ −4− 2− 4 + (3/2)× 3 = −(11/2) > −6 by
R6 and R5. If the 2-vertex is incident a 3-face and not incident to a 4-face, then the 3-face
is (2,5+,5+)-face. We have w′t1 ≥ −4− 4 +(3/2)× 2 = −5 > −6 by R6. If the 2-vertex
is incident a 4-face and not incident to a 3-face, we consider the situation such that the 2-
vertex is a common vertex of two 4-faces, then the 4-face is a (2,5+,5+,5+)-face. We have
w′t1 ≥ −4− 2− 2 +(2/3)× 4 = −(16/3) > −6 by R5. We can obtain that w′t1 ≥ −6, so
∑x∈V (G)∪F(G) w′(x)≥−7+w′t1 ≥−7−6 =−13 >−20, a contradiction.
Case 4.1.2 There are two 2-vertices in G.

For two 2-vertices are not incident to a same 3- or 4-face, from the discussion in Case
4.1.1, we have w′t2 ≥ −6× 2 = −12. So ∑x∈V (G)∪F(G) w′(x) ≥ −7− 12 = −19 > −20, a
contradiction.
Case 4.2 There is one 1-vertex and at least three 2-vertices in G.

For G contains no structure H41, the 3-faces in G are (3−,5+,5+)-faces or (4+,4+,4+)-
faces. Now there are not special 3-vertices and special faces in G. The discussion is same as
the situation in Case 3, we have ∑x∈V (G)∪F(G) w′(x)≥−7−4 =−11 >−20, a contradiction.
Case 4.3 There are at least two 1-vertices in G.

If there are two 1-vertices in G, then there is neither 2-vertex nor other 1-vertex in G for G
contains no structure H43. Furthermore, any 3-face in G is (3,5+,5+)- or (4+,4+,4+)-face
for G contains no structure H41. Note that there are neither special 3-vertices nor special
faces in G now. And the following discussion is the same as the situation in Case 1. These
imply that ∑x∈V (G)∪F(G) w′(x)≥−7×2 =−14 >−20, a contradiction.

In the following, let us give the proof of the main theorems.

Theorem 2.1. If G is a planar graph without 5- and 7-cycles, then G is equitably k-
colorable where k ≥max{7,∆(G)}.

Proof. Let G be a counterexample with fewest vertices. If each component of G has at
most four vertices, then ∆(G) ≤ 3. So G is equitably k-colorable by Lemma 2.3. Oth-
erwise, there is at least one component with at least five vertices. By Lemma 2.7, G
has one of the structures H1 ∼ H43, taking one and the vertices are labeled as they are
in Figure 1. If there are vertices labeled repeatedly, then we take the larger (xi is larger
than xi−1). In the following, we show how to find S in Lemma 2.4. If G has one of H2,
H12, H32 and H43, then let S′ = {xk,xk−1,xk−2,x1}. If G has one of H3, H5 ∼ H13, H15,
H22, H23, H28 ∼ H31, H36, H41 and H42, then let S′ = {xk,xk−1,xk−2,x2,x1}. If G has
one of H9, H10, H21, H25, H33, H34, H39 and H40, then let S′ = {xk,xk−1,xk−2,x3,x2,x1}.
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If G has H14, then let S′ = {xk,xk−1,xk−2,xk−3,x1}. If G has one of H1, H8, H11, H24
and H35, then let S′ = {xk,xk−1,xk−2,xk−3,x2,x1}. If G has structure H26, then let S′ =
{xk,xk−1, · · · ,xk−3,x3,x2,x1}. If G has H16, H17 and H38, then let S′= {xk,xk−1, · · · ,xk−4,x1}.
If G has one of H4, H18 ∼H20, H37, then let S′ = {xk,xk−1, · · · ,xk−4,x2,x1}. By Lemma 2.1,
G is 3-generate, then we can find the remaining unspecified positions in S from highest to
lowest indices by choosing a vertex with minimum degree in the graph obtained from G by
deleting the vertices already being chosen for S at each step. By the minimality of |V (G)|
and k≥ ∆(G)≥ ∆(G−S), G−S is equitably k-colorable. So G is equitably k-colorable too
by Lemma 2.4.

Corollary 2.2. Let G be a planar graph without 5- and 7-cycles. If ∆(G)≥ 7, then χe(G)≤
∆(G).

Theorem 2.2. If G is a planar graph without 5- and 7-cycles and k ≥max{7,∆(G)}, then
G is equitably k-choosable.

Proof. Let G be a counterexample with fewest vertices. If each component of G has at most
four vertices, then ∆(G)≤ 3. So G is equitably k-choosable by Lemma 2.5. Otherwise, the
proof is similar to the proof of Theorem 2.8 by Lemma 2.6 and Lemma 2.7.

Corollary 2.3. Let G be a planar graph without 5- and 7-cycles. If ∆(G) ≥ 7, then G is
equitable ∆(G)-choosable.
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