List \((d,1)\)-Total Labelling of Graphs
Embedded in Surfaces

YU Yong\(^{1}\)† ZHANG Xin\(^{1}\) LIU Guizhen\(^{1}\)

Abstract The \(\langle d,1\rangle\)-total labelling of graphs was introduced by Havet and Yu. In
this paper, we consider the list version of \(\langle d,1\rangle\)-total labelling of graphs. Let \(G\) be a
graph embedded in a surface with Euler characteristic \(\varepsilon\) whose maximum degree \(\Delta(G)\) is
sufficiently large. We prove that the list \(\langle d,1\rangle\)-total labelling number \(Ch_{d,1}^{T}(G)\) of \(G\) is at
most \(\Delta(G) + 2d\).

Keywords \(\langle d,1\rangle\)-total labelling, list \(\langle d,1\rangle\)-total labelling, list \(\langle d,1\rangle\)-total labelling
number, graphs

Chinese Library Classification O157.5
2010 Mathematics Subject Classification 05C15

关于可嵌入曲面图的列表 \((d, 1)\)- 全标号问题

于 永 \(^{1}\)† 张 欣 1 刘桂真 1

摘要 图的 \((d, 1)\)-全标号问题最初是由 Havet 等人提出的。在本文中，我们考虑了可嵌
入曲面图的列表 \((d, 1)\)-全标号问题，并证明了其列表 \((d, 1)\)-全标号数不超过 \(\Delta(G) + 2d\).

关键词 \((d, 1)\)-全标号，列表 \((d, 1)\)-全标号，列表 \((d, 1)\)-全标号数，图
中图分类号 O157.5
数学分类号 05C15

0 Introduction

In this paper, graph \(G\) is a simple connected graph with a finite vertex set \(V(G)\)
and a finite edge set \(E(G)\). If \(X\) is a set, we usually denote the cardinality of \(X\) by \(|X|\).
Denote the set of vertices adjacent to \(v\) by \(N(v)\). The degree of a vertex \(v\) in \(G\), denoted by
\(d_G(v)\), is the number of edges incident with \(v\). We sometimes write \(V, E, d(v), \Delta, \delta\) instead of
\(V(G), E(G), d_G(v), \Delta(G), \delta(G)\), respectively. Let \(G\) be a plane graph. We always denote
by \(F(G)\) the face set of \(G\). The degree of a face \(f\), denoted by \(d(f)\), is the number of edges
incident with it, where cut edge is counted twice. A \(k-\), \(k^+\)- and \(k^-\)-vertex (or face) in graph
\(G\) is a vertex (or face) of degree \(k\), at least \(k\) and at most \(k\), respectively.

\(^{*}\) Supported by GIIFSDU(yzc11025), NNSF(61070230, 11026184, 10901097) and RDFP (200804220001,
20100131120017) and SRF for ROCS.
1. School of Mathematics, Shandong University, Jinan 250100, China; 山东大学数学学院，济南 250100
\(^{†}\) 通讯作者 Corresponding author
The $(d,1)$-total labelling of graphs was introduced by Havet and Yu\cite{1}. A k-$(d,1)$-total labelling of a graph G is a function c from $V(G) \cup E(G)$ to the color set $\{0, 1, \cdots, k\}$ such that $c(u) \neq c(v)$ if $uv \in E(G)$, $c(e) \neq c(e')$ if e and e' are two adjacent edges, and $|c(u) - c(v)| \geq d$ if vertex u is incident to the edge e. The minimum k such that G has a k-$(d,1)$-total labelling is called the $(d,1)$-total labelling number and denoted by $\lambda_d^T(G)$.

Readers are referred to \cite{2,4-7} for further research. Suppose that $L(x)$ is a list of colors available to choose for each element $x \in V(G) \cup E(G)$. If G has a $(d,1)$-total labelling c such that $c(x) \in L(x)$ for all $x \in V(G) \cup E(G)$, then we say that c is an L-$(d,1)$-total labelling of G, and G is L-$(d,1)$-total labelable (sometimes we also say G is list $(d,1)$-total labelable). Furthermore, if G is L-$(d,1)$-total labelable for any L with $|L(x)| = k$ for each $x \in V(G) \cup E(G)$, we say that G is k-$(d,1)$-total choosable. The list $(d,1)$-total labelling number, denoted by $Ch^T_{d,1}(G)$, is the minimum k such that G is k-$(d,1)$-total choosable. Actually, when $d = 1$, the list $(1,1)$-total labelling is the well-known list total coloring of graphs. It is known that for list version of total colorings there is a list total coloring conjecture (LTCC). Therefore, it is natural to conjecture that $Ch^T_{d,1}(G) = \lambda_d^T(G) + 1$. Unfortunately, counterexamples that $Ch^T_{d,1}(G)$ is strictly greater than $\lambda_d^T(G) + 1$ can be found in \cite{9}. Although we can not present a conjecture like LTCC, we conjecture that

$$Ch^T_{d,1}(G) \leq \Delta + 2d$$

for any graph G. In \cite{9}, we studied the list $(d,1)$-total labelling of special graphs such as paths, trees, stars and outerplanar graphs which lend positive support to our conjecture.

In this paper, we prove that, for graphs embedded in a surface with Euler characteristic ε, the conjecture is still true when the maximum degree is sufficiently large. Our main results are the following:

Theorem 0.1 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon \leq 0$ and

$$\Delta(G) \geq \frac{d}{2d - 1} \left(10d - 8 + \sqrt{(10d - 2)^2 - 24(2d - 1)\varepsilon}\right) + 1,$$

where $d \geq 2$. Then

$$Ch^T_{d,1}(G) \leq \Delta(G) + 2d.$$

Theorem 0.2 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon > 0$. If $\Delta(G) \geq 5d + 2$ where $d \geq 2$, then

$$Ch^T_{d,1}(G) \leq \Delta(G) + 2d.$$

We prove two conclusions which are slightly stronger than the theorems above as follows.

Theorem 0.3 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon \leq 0$ and let positive integer

$$M \geq \frac{d}{2d - 1} \left(10d - 8 + \sqrt{(10d - 2)^2 - 24(2d - 1)\varepsilon}\right) + 1,$$

where $d \geq 2$. If $\Delta(G) \leq M$, then

$$Ch^T_{d,1}(G) \leq M + 2d.$$
In particular,

\[Ch_{d,1}^T(G) \leq \Delta(G) + 2d \quad \text{if} \quad \Delta(G) = M. \]

Theorem 0.4 Let \(G \) be a graph embedded in a surface of Euler characteristic \(\varepsilon > 0 \) and let positive integer \(M \geq 5d + 2 \) where \(d \geq 2 \). If \(\Delta(G) \leq M \), then

\[Ch_{d,1}^T(G) \leq M + 2d. \]

In particular,

\[Ch_{d,1}^T(G) \leq \Delta(G) + 2d \quad \text{if} \quad \Delta(G) = M. \]

The interesting cases of Theorem 0.3 and Theorem 0.4 are when \(M = \Delta(G) \). Indeed, Theorem 0.3 and Theorem 0.4 are only technical strengthening of Theorem 0.1 and Theorem 0.2, respectively. But without them we would get complications when a subgraph \(H \subset G \) such that \(\Delta(H) < \Delta(G) \) is considered.

In Section 1, we prove some lemmas. In Section 2, we complete our main proof with discharging method.

1 Structural properties

From now on, we will use without distinction the terms *colors* and *labels*. Let \(c \) be a partial list \((d,1)\)-total labelling of \(G \). We denote by \(A(x) \) the set of colors which are still available for coloring element \(x \) of \(G \) with the partial list \((d,1)\)-total labelling \(c \). Let \(G \) be a minimal counterexample in terms of \(|V(G)| + |E(G)| \) to Theorem 0.3 or Theorem 0.4.

Lemma 1.1 \(G \) is connected.

Proof Suppose that \(G \) is not connected. Without loss of generality, let \(G_1 \) be one component of \(G \) and \(G_2 = G \setminus G_1 \). By the minimality of \(G \), \(G_1 \) and \(G_2 \) are both \((M + 2d)-(d,1)\)-total choosable which implies \(G \) is \((M + 2d)-(d,1)\)-total choosable, a contradiction.

Lemma 1.2 For each edge \(e = uv \in E(G) \),

\[d(u) + d(v) \geq M - 2d + 4. \]

Proof Suppose to the contrary that there exists some edge \(e = uv \in E(G) \) such that

\[d(u) + d(v) \leq M - 2d + 3. \]

By the minimality of \(G \), \(G - e \) is \((M + 2d)-(d,1)\)-total choosable. We denote this coloring by \(c \). Since

\[|A(e)| \geq M + 2d - (d(u) + d(v) - 2) - 2(2d - 1) = M + 2d - (M - 2d + 1) - 2(2d - 1) \geq 1 \]

under the coloring \(c \), we can extend \(c \) to \(G \), a contradiction.

Lemma 1.3 For any edge \(e = uv \in E(G) \) with

\[\min\{d(u), d(v)\} \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor, \]
we have
\[d(u) + d(v) \geq M + 3. \]

Proof Suppose there is some \(e = uv \in E(G) \) such that
\[d(u) \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \]
and
\[d(u) + d(v) \leq M + 2. \]

By the minimality of \(G \), \(G - e \) is \((M + 2d)\)-(d,1)-total choosable. Erase the color of vertex \(u \), and let \(c \) be the partial list \((d,1)\)-total labelling with \(|L| = M + 2d\). Then
\[
|A(e)| \geq M + 2d - (d(u) + d(v) - 2) - (2d - 1) \\
\geq M + 2d - M - (2d - 1) \\
\geq 1,
\]
which implies that \(e \) can be properly colored. Next, for vertex \(u \),
\[
|A(u)| \geq M + 2d - (d(u) + (2d - 1)d(u)) \\
\geq M + 2d - (M + 2d - 1) \\
\geq 1.
\]

Thus we extend the coloring \(c \) to \(G \), a contradiction.

Lemma 1.4 ([2]) A bipartite graph \(G \) is edge \(f \)-choosable where \(f(uv) = \max\{d(u), d(v)\} \) for any \(uv \in E(G) \).

A \(k \)-alternator for some \(k \) (\(3 \leq k \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \)) is a bipartite subgraph \(B(X, Y) \) of graph \(G \) such that \(d_B(x) = d_G(x) \leq k \) for each \(x \in V(G) \) and \(d_B(y) \geq d_G(y) + k - M - 1 \) for each \(y \in Y \).

The concept of \(k \)-alternator was first introduced by Borodin, Kostochka and Woodall [3] and generalized by Wu and Wang [8].

Lemma 1.5 There is no \(k \)-alternator \(B(X, Y) \) in \(G \) for any integer \(k \) with \(3 \leq k \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \).

Proof Suppose that there exists a \(k \)-alternator \(B(X, Y) \) in \(G \). Obviously, \(X \) is an independent set of vertices in graph \(G \) by Lemma 2.3. By the minimality of \(G \), we can color all elements of subgraph \(G[V(G) \setminus X] \) from their lists of size \(M + 2d \). We denote this partial list \((d,1)\)-total labelling by \(c \). Then for each edge \(e = xy \in B(X, Y) \),
\[
|A(e)| \geq M + 2d - (d_G(y) - d_B(y) + (2d - 1)) \\
\geq M + 2d - (M - d_G(y) + (2d - 1)) \\
\geq d_B(y)
\]
and
\[
|A(e)| \geq M + 2d - (d_G(y) - d_B(y) + (2d - 1))
\]
\[\geq M + 2d - (M + 2d - k) \]
\[\geq k \]
because \(B(X,Y) \) is a \(k \)-alternator. Therefore,
\[|A(e)| \geq \max\{d_B(y), d_B(x)\}. \]

By Lemma 1.4, it follows that \(E(B(X,Y)) \) can be colored properly from their new color lists. Next, for each vertex \(x \in X \),
\[|A(x)| \geq M + 2d - (d(x) + (2d - 1)d(x)) \]
\[\geq M + 2d - (M + 2d - 1) \]
\[\geq 1, \]
because \(d_G(x) \leq k \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \). Thus we extend the coloring \(c \) to \(G \), a contradiction.

Lemma 1.6

Let
\[X_k = \{ x \in V(G) \mid d_G(x) \leq k \} \quad \text{and} \quad Y_k = \bigcup_{x \in X_k} N(x) \]
for any integer \(k \) with \(3 \leq k \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \). If \(X_k \neq \emptyset \), then there exists a bipartite subgraph \(M_k \) of \(G \) with partite sets \(X_k \) and \(Y_k \), such that \(d_{M_k}(x) = 1 \) for each \(x \in X_k \) and \(d_{M_k}(y) \leq k - 2 \) for each \(y \in Y_k \).

Proof The proof is omitted here as it is similar with the proof of Lemma 2.4 in [8].

We call \(y \) the \(k \)-master of \(x \) if \(xy \in M_k \) and \(x \in X_k, y \in Y_k \). By Lemma 1.3, if \(uv \in E(G) \) satisfies
\[d(v) \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \quad \text{and} \quad d(u) = M - i, \]
then
\[d(v) \geq M + 3 - d(u) \geq i + 3. \]
Together with Lemma 1.6, it follows that each \((M - i)\)-vertex can be a \(j \)-master of at most \(j - 2 \) vertices, where \(3 \leq i + 3 \leq j \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \). Each \(i \)-vertex has a \(j \)-master by Lemma 1.6, where \(3 \leq i \leq j \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \).

2 Proof of main results

By our Lemmas above, \(G \) has structural properties in the following.

(C1) \(G \) is connected;
(C2) for each \(e = uv \in E(G) \), \(d(u) + d(v) \geq M - 2d + 4 \);
(C3) if \(e = uv \in E(G) \) and \(\min\{d(u), d(v)\} \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \), then \(d(u) + d(v) \geq M + 3 \);
(C4) each \(i \)-vertex (if exists) has one \(j \)-master, where \(3 \leq i \leq j \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \);
(C5) each \((M - i)\)-vertex (if exists) can be a \(j \)-master of at most \(j - 2 \) vertices, where \(3 \leq i + 3 \leq j \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \).
Proof of Theorem 0.3 Let G be a minimal counterexample in terms of $|V(G)| + |E(G)|$ to Theorem 0.3. In this theorem,

$$M \geq \frac{d}{2d-1} \left(10d - 8 + \sqrt{(10d - 2)^2 - 24(2d - 1)\varepsilon}\right) + 1$$

\[\geq 10d + 1. \]

Thus

$$\left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \geq 6.$$

In the following, we apply the discharging method to complete the proof by contradiction. At the very beginning, we assign an initial charge $w(x) = d(x) - 6$ for any $x \in V(G)$. By Euler’s formula

$$|V| - |E| + |F| = \varepsilon,$$

we have

$$\sum_{x \in V} w(x) = \sum_{x \in V} (d(x) - 6)$$

$$= -6\varepsilon - \sum_{x \in F} (2d(x) - 6)$$

$$\leq -6\varepsilon.$$

The discharging rule is as follows.

(R1) each i-vertex (if exists) receives charge 1 from each of its j-master, where $3 \leq i \leq j \leq 5$.

If $M \geq \Delta + 3$, then $\delta(G) \geq 6$. Otherwise, let $uv \in E(G)$ and $d(u) \leq 5$. Then

$$d(u) + d(v) \leq M - 3 + 5 \leq M + 2$$

and

$$d(u) \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor$$

as $\left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \geq 6$,

which is a contradiction to (C3). This obviously contradicts the fact $\delta(G) \leq 5$ for any planar graph. Proof of the theorem is completed. Next, we only consider the case $\Delta \leq M \leq \Delta + 2$.

Claim 1 $\delta \geq M - \Delta + 3$.

Proof If there is some $e = uv \in E(G)$ such that $d(v) \leq M - \Delta + 2$, then

$$d(u) + d(v) \leq \Delta + (M - \Delta + 2) \leq M + 2$$

and

$$d(v) \leq 5 \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor$$

as $\left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \geq 6$,

a contradiction to (C3).

Let v be a k-vertex of G.

(a) If $3 \leq k \leq 5$, then

$$w'(v) = w(v) + \sum_{k \leq i \leq 5} 1 = (k - 6) + (6 - k) = 0$$
by (C4) and rule (R1);

(b) If $6 \leq k \leq M - 3$, then for all $u \in N(v)$, $d(u) \geq 6$ by (C3). Therefore, v neither receives nor gives any charge by our rule, which implies that $w'(v) = w(v) = k - 6 \geq 0$;

(c) If $M - 2 \leq k \leq \Delta$.

Case 1 $M = \Delta + 2$. Then $\delta \geq 5$ by Claim 1. For $k = \Delta$, $w'(v) \geq w(v) - 3 = \Delta - 9 = M - 11$ by (C5) and rule (R1).

Case 2 $M = \Delta + 1$. Then $\delta \geq 4$ by Claim 1. For $k = \Delta - 1$, $w'(v) \geq w(v) - 3 = \Delta - 1 - 6 - 3 = M - 11$ by (C5) and rule (R1). For $k = \Delta$, $w'(v) \geq w(v) - 3 - 2 = \Delta - 6 - 3 - 2 = M - 12$ by (C5) and rule (R1).

Case 3 $M = \Delta$. Then $\delta(G) \geq 3$ by Claim 1. For $k = \Delta - 2$, $w'(v) \geq w(v) - 3 = \Delta - 2 - 6 - 3 = M - 11$ by (C5) and rule (R1). For $k = \Delta - 1$, $w'(v) \geq w(v) - 3 - 2 = \Delta - 1 - 6 - 3 - 2 = M - 12$ by (C5) and rule (R1). For all cases above, $w'(v) \geq M - 12 > 0$ for any $d(v) \geq \Delta - 2$ as $M \geq 10d + 1 \geq 21$.

Let $X = \{x \in V(G)\mid d_G(x) \leq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor \}$. By (C3), X is an independent set of vertices.

Claim 2 The number of $\left(\frac{M + 2d - 1}{2d}\right) + 1$-vertex of G is at least $M - \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor + 3$. That is,
\[|V(G \setminus X)| \geq M - \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor + 3. \]

Proof Otherwise, let $Y = N_{x \in X}(x)$ and $B = B(X,Y)$ be the induced bipartite subgraph. For all $y \in Y$,
\[d_{G \setminus X}(y) \leq |Y| - 1 \leq M - \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor + 1. \]

Therefore,
\[d_B(y) = d_G(y) - d_{G \setminus X}(y) \geq d_G(y) + \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor - M - 1, \]

which implies B is a $\left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor$-alternator of G, a contradiction to Lemma 2.5.

Since $M \geq 10d + 1$, it follows that
\[M - 12 > \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor - 5. \]

Thus,
\[w'(v) \geq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor - 5 \]

when $d_G(v) \geq \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor + 1$. Then
\[
\sum_{x \in V} w(x) = \sum_{x \in V} w'(x) \\
\geq (M - \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor + 3) \left(\left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor - 5 \right) \\
\geq (2d - 1) \left(\left\lfloor \frac{M - 1}{2d} \right\rfloor \right)^2 - (10d - 8) \frac{M - 1}{2d} - 15
\]
\[M \geq \frac{d}{2d-1} \left(10d - 8 + \sqrt{(10d-2)^2 - 24(2d-1)\varepsilon}\right) + 1.\]

Then this contradiction completes the proof.

Proof of Theorem 0.4 Let G be a minimal counterexample in terms of \(|V(G)| + |E(G)|\) to Theorem 0.4. In this theorem, \(M \geq 5d + 2\). We define the initial charge function \(w(x) := d(x) - 4\) for all element \(x \in V \cup F\). By Euler’s formula \(|V| - |E| + |F| = \varepsilon\), we have

\[\sum_{x \in V \cup F} w(x) = \sum_{v \in V} (d(v) - 4) + \sum_{f \in F} (d(f) - 4) = -4\varepsilon < 0.\]

The transition rules are defined as follows.

(R1) Each 3-vertex (if exists) receives charge 1 from its 3-master.

(R2) Each \(k\)-vertex with \(3 \leq k \leq 7\) transfer charge \(\frac{k-3}{\varepsilon}\) to each 3-face that incident with it.

(R3) Each 8\(^{+}\)-vertex transfer charge \(\frac{1}{2}\) to each 3-face that incident with it.

Analogous with Claim 1 in the proof of Theorem 0.3, it is easy to prove that \(\delta(G) \geq 3\) when \(\Delta = M\) and \(\delta(G) \geq 4\) otherwise. Let \(v\) be a \(k\)-vertex of \(G\).

For \(k = 3\), then \(w'(v) = w(v) + 1 = 3 - 4 + 1 = 0\) since it receives 1 from its 3-master;

For \(k = 4\), then \(w'(v) = w(v) = 0\) since we never change the charge by our rules;

For \(3 \leq k \leq 7\), then \(w'(v) \geq w(v) - \frac{k-4}{\varepsilon} = 0\) by (R2);

For \(8 \leq k \leq M - 1\), then \(w'(v) \geq w(v) - \frac{k}{\varepsilon} \geq 0\) by (R3);

If \(M > \Delta\), then \(M - 1 \geq \Delta\). Thus \(w(v) \geq 0\) for all \(v \in V(G)\). Otherwise, \(\Delta = M\). Then for \(k = \Delta\), \(w'(v) \geq w(v) - \frac{1}{2}M - 1 = \frac{M}{2} - 5\) by (C5) and rules (R1), (R3). Since \(M \geq 5d + 2\), we have \(w'(v) \geq \frac{M}{2} - 5 > 0\).

Let \(f\) be a \(k\)-face of \(G\).

If \(k \geq 4\), then \(w'(f) = w(f) \geq 0\) since we never change the charge of them by our rules;

If \(k = 3\), assume that \(f = [v_1, v_2, v_3]\) with \(d(v_1) \leq d(v_2) \leq d(v_3)\). It is easy to see \(w(f) = -1\). Consider the subcases as follows.

(a) Suppose \(d(v_1) = 3\). Then \(M = \Delta = d(v_2) = d(v_3) = \Delta\) by (C3). Thus, \(w'(f) = w(f) + \frac{1}{2} \times 2 = 0\) by (R3);

(b) Suppose \(d(v_1) = 4\). Then \(d(v_3) \geq d(v_2) \geq M - 2d + 4 - d(v_1) \geq 3d + 2 \geq 8\) by (C2). Therefore, \(w'(f) = w(f) + \frac{1}{2} \times 2 = 0\) by (R3);

(c) Suppose \(d(v_1) = 5\). Then \(d(v_3) \geq d(v_2) \geq M - 2d + 4 - d(v_1) \geq 3d + 1 \geq 7\) by (C2). Therefore, \(w'(f) = w(f) + \frac{1}{2} \times 2 + \frac{1}{2} > 0\) by (R2);

(d) Suppose \(d(v_1) = m \geq 6\). Then \(d(v_3) \geq d(v_2) \geq M - 2d + 4 - d(v_1) \geq 3d + 1 \geq 6\) by (C2). Therefore, \(w'(f) = w(f) + 3 \times \min\{\frac{m-4}{m}, \frac{1}{2}\} = 0\) by (R2) and (R3).

Thus, we have \(\sum_{x \in V \cup F} w'(x) \geq 0\) which is a contradiction with

\[\sum_{x \in V \cup F} w'(x) = \sum_{x \in V \cup F} w(x) < 0.\]
References

