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Abstract: A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In
this paper, it is proved that the (p, 1)-total labelling number of every 1-planar graph G is at most ∆(G) + 2p − 2
provided that ∆(G) ≥ 8p+4 or ∆(G) ≥ 6p+2 and g(G) ≥ 4. As a consequence, the well-known (p, 1)-total labelling
conjecture has been confirmed for some 1-planar graphs.
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1. Introduction

In the frequency assignment problems, we need to assign different frequencies to close transmitters so that they couldavoid interference and communication link failure. Traditionally, interference information initiates a graph coloring(labelling) problem. An L(p, q)-labelling of a graph G is a mapping f from the set of vertices V (G) to the set of integers
Zk = {0, 1, . . . , k} such that |f(x)− f(y)| ≥ p if x and y are adjacent and |f(x)− f(y)| ≥ q if x and y are at distance 2.
L(p, q)-labelling problems have been extensively studied in many papers. An interested reader can refer to the surveysby Calamoneri [12] and by Yeh [28].In 1995, Whittlesey, Georges and Mauro [26] studied the L(2, 1)-labelling of the incidence graph I(G) of a graph G,which is obtained from G by inserting one vertex of degree 2 on each edge of G. Such a special labelling of I(G) can beeasily translated to another kind of labelling, the so-called (2, 1)-total labelling of G, which was introduced by Havetand Yu [16, 17] and generalized to the notion of (p, 1)-total labelling.A k-(p, 1)-total labelling of a graph G is a function f from V (G) ∪ E(G) to the color set {0, 1, . . . , k} such that
|f(u)− f(v)| ≥ 1 if uv ∈ E(G), |f(e1) − f(e2)| ≥ 1 if e1 and e2 are two adjacent edges in G and |f(u) − f(e)| ≥ p
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if the vertex u is incident to the edge e. The minimum k such that G has a k-(p, 1)-total labelling, denoted by λTp (G),is called the (p, 1)-total labelling number of G. It is easy to see that a (1, 1)-total labelling is a total coloring as
λT1 (G) = χ ′′(G)− 1, where χ ′′(G) is the total chromatic number of a graph G. We know that ∆(G) + 1 is a trivial lowerbound for χ ′′(G). In fact, this can be easily generalized to a lower bound for the (p, 1)-total labelling number by lookingat the label of a vertex with maximum degree and its incident edges. One can see that λTp (G) ≥ ∆(G) + p − 1 with
p ≥ 1 and this lower bound is attained at a star when p < ∆(G). On the other hand, if we are given a graph G, thenwe can construct a (p, 1)-total labelling of G by properly coloring its edges with χ ′(G) integers of [0, χ ′(G)−1], and itsvertices with χ(G) integers of [χ ′(G)+p−1, χ(G)+χ ′(G)+p−2], where χ(G) and χ ′(G) denote the vertex chromaticnumber and the edge chromatic number of G, respectively. Thus we trivially have λTp (G) ≤ χ(G) + χ ′(G) + p − 2 forevery graph G. In view of this, Havet and Yu [17, 18] also remarked that λTp (G) ≤ 2∆(G) + p− 1 by Brooks’ theorem andVizing’s theorem. However, this upper bound for λTp (G) seems to be not tight. As a natural extension of the well-knownTotal Coloring Conjecture which states that every graph is (∆ +2)-total colorable, Havet and Yu [17, 18] conjectured thefollowing, which is known as the (p, 1)-Total Labelling Conjecture.
Conjecture 1.1.
Let G be a graph. Then λTp (G) ≤ min {∆(G)+2p−1, 2∆(G)+p−1}.
If p = 1, then this conjecture is nothing else than Total Coloring Conjecture. The total coloring of graphs has beenextensively studied in many papers including [5, 9–11, 21, 24]. For p ≥ 2, the (2, 1)-Total Labelling Conjecture hasalready been confirmed for all outerplanar graphs [13, 15] and the (p, 1)-Total Labelling Conjecture in general has beenconsidered for some other classes such as planar graphs with high girth and high maximum degree [2] and graphs witha given maximum average degree [22]. In particular, Bazzaro, Montassier and Raspaud proved the following theorem forall planar graphs [2].
Theorem 1.2.
Let G be a planar graph with maximum degree ∆. If ∆ ≥ 8p+ 2 and p ≥ 2, then λTp (G) ≤ ∆ + 2p − 2.

In this paper, we focus on 1-planar graphs. A graph is 1-planar if it can be drawn on the plane so that each edge iscrossed by at most one other edge. It is easy to see that every planar graph is 1-planar. The notion of 1-planar graphswas introduced by Ringel [23] while trying to simultaneously color the vertices and faces of a planar graph G so thatevery pair of adjacent/incident elements receives different colors. Note that we can construct a 1-planar graph G′ froma planar graph G so that the vertex set of G′ is V (G) ∪ F (G) and any two vertices in G′ are adjacent if and only iftheir corresponding elements in G are adjacent or incident, moreover, the vertex-face chromatic number of G is equal tothe chromatic number of G′. In the abovementioned paper, Ringel proved that the chromatic number of each 1-planargraph is at most 7. This bound was latter improved to 6 (being sharp) by Borodin [4, 6]. The list analogue of vertexcoloring of 1-planar graphs was firstly investigated by Albertson and Mohar in [1]. Wang and Lih [25] proved that each1-planar graph is list 7-colorable. In [8], Borodin et al. proved that each 1-planar graph is acyclically 20-colorable.Recently, Zhang et al. showed that each 1-planar graph G with maximum degree ∆ is ∆-edge-colorable provided that∆ ≥ 10 [34], or ∆ ≥ 9 and G contains no chordal 5-cycles [29], or ∆ ≥ 8 and G contains no chordal 4-cycles [30], or∆ ≥ 7 and G contains no 3-cycles [31]. They [35] also proved that each 1-planar graph with maximum degree ∆ is list∆-edge-colorable and list (∆+1)-total-colorable if ∆ ≥ 21, is list (∆+1)-edge-colorable and list (∆+2)-total-colorableif ∆ ≥ 16. As far as we know, no other results on the colorability of 1-planar graphs can be found in the literature,although there are many papers concerning the local or global structures of 1-planar graphs (see [7, 14, 19, 20, 32, 33]for details).The purpose of this paper is to investigate the (p, 1)-total labellings of 1-planar graphs by proving the following maintheorem.
Theorem 1.3.
Let p ≥ 2 be an integer and let G be a 1-planar graph with maximum degree ∆ and girth g. If ∆ ≥ 8p+4 or ∆ ≥ 6p+2
and g ≥ 4, then λTp (G) ≤ ∆ +2p− 2.
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For a 1-planar graph G, as mentioned previously, χ(G) ≤ 6 and χ ′(G) = ∆(G) provided that ∆(G) ≥ 10 or ∆(G) ≥ 7 and
g(G) ≥ 4. Recall that λTp (G) ≤ χ(G)+χ ′(G)+p− 2 for every graph G. So we directly have the following theorem.
Theorem 1.4.
Let p ≥ 1 be an integer and let G be a 1-planar graph with maximum degree ∆ and girth g. If ∆ ≥ 10 or ∆ ≥ 7 and
g ≥ 4, then λTp (G) ≤ ∆ +p+4.

Comparing this result to Theorem 1.3, one can find that our upper bound for λTp (G) in Theorem 1.3 is better for small p.In the next section, we will prove Theorem 1.3 by contradiction. In particular, we will prove the following slightly strongertheorem. Indeed, it is only a technical strengthening of Theorem 1.3, without which we would get complications whenconsidering a subgraph G′ ⊂ G such that ∆(G′) < ∆(G). Of course, the only interesting case is when M = ∆.
Theorem 1.5.
Let M, p be two integers and let G be a 1-planar graph with maximum degree ∆ ≤ M and girth g. Then λTd (G) ≤
M+2p−2 with p ≥ 2 in the following cases:(1) M ≥ 8p+ 4;(2) M ≥ 6p+ 2 and g ≥ 4.

We close this section by introducing some useful notation. Let f be a (p, 1)-total labelling of a given graph G and C bethe color set used by f . For a vertex x ∈ V (G), put Θf (x) = {f(xy) : y ∈ NG(x)} and Φf (x) = {f(x) + i : |i| ≤ p− 1}∩C .Similarly, for an edge xy ∈ E(G), put Φf (xy) = {f(xy) + i : |i| ≤ p − 1} ∩ C . Throughout this paper, a k-, k+- and
k−-vertex (resp. face) is a vertex (resp. face) of degree k , at least k and at most k . For other undefined standard conceptswe refer the readers to [3].
2. Structures of the minimum counterexample to Theorem 1.5

Let G be a counterexample to Theorem 1.5 with |V (G)|+ |E(G)| being minimum. First of all, we prove the following twolemmas.
Lemma 2.1.
For any edge uv ∈ E(G), if min {dG(u), dG(v)} ≤ ⌊M + 2p − 22p

⌋
,

then dG(u) + dG(v) ≥ M + 2.

Proof. Suppose, to the contrary, that there exists an edge uv ∈ E(G) such that dG(u) ≤ b(M+2p−2)/(2p)c and
dG(u) + dG(v) ≤ M + 1. Consider the graph G′ = G − uv , which has an (M+2p−2)-(p, 1)-total labelling f by theminimality of G. Let C = {0, 1, . . . ,M+2p−2} be the color set involved in f . First of all, we label the edge uv with acolor f(uv) ∈ C \ (Θf (u) ∪Θf (v) ∪ Φf (v)). Since∣∣C \ (Θf (u) ∪Θf (v) ∪ Φf (v))∣∣ ≥ (M + 2p − 1)− (dG(u)− 1)− (dG(v)− 1)− (2p − 1) ≥ 1,
such a labelling of uv does exist. We denote the labelling at this stage still by f . Then we relabel (if necessary) thevertex u with a color f(u) ∈ C \⋃w∈NG (u)(Φf (uw) ∪ {f(w)}). One can also check that∣∣∣∣∣∣C \ ⋃

w∈NG (u)(Φf (uw) ∪ {f(w)})
∣∣∣∣∣∣ ≥ (M + 2p − 1)− (2p − 1)dG(u)− dG(u) ≥ (M + 2p − 1)− 2p⌊M + 2p − 22p

⌋
≥ 1.
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Thus we have already constructed an (M+2p−2)-(p, 1)-total labelling of G, a contradiction.
Lemma 2.2.
For any edge uv ∈ E(G), it holds that dG(u)+dG(v) ≥ M−2p+3.

The proof of this lemma is similar to that of Lemma 2.1. So we omit it here.Now we introduce another lemma useful for our proof. To begin with, let us review the following lemma proved byBorodin, Kostochka and Woodall.
Lemma 2.3 ([10]).
A bipartite graph B is edge f-choosable, where f(uv) = max {dB(u), dB(v)} for any uv ∈ E(B).
A bipartite subgraph B with two partite sets X and Y of the graph G is called a k-alternating subgraph for some2 ≤ k ≤ b(M+2p−2)/(2p)c if dB(x) = dG(x) ≤ k for each x ∈ X and dB(y) ≥ dG(y)+k −M for each y ∈ Y .This notion, along with the terminology of masters and dependents (which will be mentioned later), was introduced byBorodin, Kostochka and Woodall in [10]. The special case k = 2 of this notion, under the name of 2-alternating cycle,was introduced by Borodin in [5] and then used in several dozens of papers on graph colorings.
Lemma 2.4.
There is no k-alternating subgraphs in G for any integer

2 ≤ k ≤ ⌊M + 2p − 22p
⌋
. (?)

Proof. Suppose that G contains a k-alternating subgraph B with two partite sets X and Y such that dB(x) = dG(x) ≤ kfor each x ∈ X and dB(y) ≥ dG(y)+k −M for each y ∈ Y . Consider the graph G′ = G − X . By the minimality of G,
G′ has an (M+2p−2)-(p, 1)-total labelling f . Let C = {0, 1, . . . ,M+2p−2} be the color set involved in f . Now weconsider the edges between X and Y . Let xy ∈ E(B) where x ∈ X and y ∈ Y . By Axy denote the list of availablecolors to label the edge xy. One can easily see that Axy = C \ (Θf (y) ∪ Φf (y)). It follows that

|Axy| ≥ (M + 2p − 2)− (dG(y)− dB(y))− (2p − 1) = M − dG(y) + dB(y) ≥ dB(y),
|Axy| ≥ M − dG(y) + dB(y) ≥ M − dG(y) + dG(y) + k −M = k ≥ dB(x).

Thus by Lemma 2.3, each of the edges between X and Y can be properly labelled with a color in C . So we only need tolabel the vertices in X at the end. Indeed, this can be easily done by a similar argument as that of Lemma 2.1. Hence,
G has an (M+2p−2)-(p, 1)-total labelling, a contradiction.
Lemma 2.5.
For any integer k satisfying (?), let Xk = {x ∈ V (G) : dG(x) ≤ k} and Yk = ⋃x∈XkNG(x). If Xk 6= ∅, then there exists a
bipartite subgraph Mk of G with partite sets Xk and Yk such that dMk (x) = 1 for every x ∈ Xk and dMk (y) ≤ k − 1 for
every y ∈ Yk .

The proof idea of Lemma 2.5 is borrowed from the proof of [10, Theorem 8]. In particular, Wu and Wang [27, Lemma 2.4]proved a total coloring analog of this lemma and their proof can be easily translated to a (p, 1)-total labelling version.So we omit the detailed proof of Lemma 2.5 here. In fact, if we assume that the required bipartite subgraph Mk inLemma 2.5 does not appear in G, then we would find a k-alternating subgraph that cannot appear in G by Lemma 2.4.This is why we prove Lemma 2.4 at first.Following the terms of Borodin, Kostochka and Woodall in [10], in Lemma 2.5 we call y the k-master of x if xy ∈ Mk and
x ∈ Xk and we call x the k-dependent of y. From Lemma 2.5, we can deduce the following useful lemma as a corollary.

1427

Author c
opy



On (p, 1)-total labelling of 1-planar graphs

Lemma 2.6.
Every i-vertex in G has a j-master, where 2 ≤ i ≤ j ≤ b(M+2p−2)/(2p)c, and every vertex in G has at most k −1,
k-dependents, assuming (?) holds.

The above lemmas are devoted to the structural properties of G which can be considered as a critical graph in terms oflabelling. From now on, we investigate some other structural properties of G, which are related to its embedding. Recallthat G is a 1-planar graph.In the following, we always assume that G has been embedded in a plane so that every edge is crossed by at most oneother edge and the number of crossings is as small as possible. The associated plane graph G× of G is the plane graphthat is obtained from G by turning all crossings of G into new 4-vertices. A vertex in G× is called false if it is not avertex of G and true otherwise. By a false face, we mean a face f in G× that is incident with at least one false vertex;otherwise, we call f true. For a true vertex v in G×, let α(v) and β(v) be the number of false and true 3-faces that areincident with v in G×, respectively. In [34], Zhang and Wu proved the following lemma.
Lemma 2.7.
The following facts hold for G and G×.(1) No two false vertices are adjacent in G×.

(2) If dG× (v) = 2, then α(v) = 0.

(3) If dG× (v) = 3 and α(v) ≥ 2, then v is incident with a 5+-face in G×.

(4) If dG× (v) = 4, then α(v) ≤ 3.

(5) If dG× (v) ≥ 5, then α(v) ≤ 2bdG× (v)/2c.
In the following we set t = 7 while proving (1) of Theorem 1.5 and set t = 5 while proving (2) of Theorem 1.5. We calla vertex in G small if it is of degree no more than t and big otherwise. A false 3-face in G× is called unbalanced or
balanced according to whether or not it is incident with a small vertex. For a true vertex v in G×, let αa(v) and αb(v)be the number of unbalanced and balanced false 3-faces that are incident with v in G×, respectively. By Lemma 2.2, wedirectly have the following.
Lemma 2.8.
No two small vertices are adjacent in G.

Lemma 2.9.
Let v be a big vertex in G.(1) If α(v)+β(v) = dG× (v), then αa(v) ≤ bdG× (v)/2c.(2) If α(v)+β(v) = dG× (v)−1, then αa(v) ≤ d(dG× (v)−1)/2e.
(3) If α(v)+β(v) = dG× (v)−2, then αa(v) ≤ d(dG× (v)−2)/2e+ 1.

(4) If α(v) + β(v) = dG× (v)−3, then αa(v) ≤ d(dG× (v)−3)/2e+ 2.

Proof. If any of the three facts does not hold, then there must be three consecutive unbalanced false 3-faces thatare incident with v in G×, say vv1v2, vv2v3 and vv3v4. If v2 is a false vertex in G×, then v1 and v3 are both small verticesin G and v1v3 ∈ E(G) by the drawing of G. This contradicts Lemma 2.8. So v2 is a true vertex and v3 is also true bysymmetry. This implies that the 3-face vv2v3 in G× is true, a contradiction.
Lemma 2.10.
If g(G) ≥ 4, then α(v) ≤ b2dG× (v)/3c and β(v) = 0.
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Proof. Since g(G) ≥ 4, we trivially have β(v) = 0. Suppose that α(v) > b2dG× (v)/3c. Then there must be threeconsecutive false 3-faces that are incident with v in G×, say vv1v2, vv2v3 and vv3v4. If v2 or v3 is a false vertex in G×,then v1v3 ∈ E(G) or v2v4 ∈ E(G), which implies that vv1v3v or vv2v4v is a triangle in G, a contradiction. On the otherhand, if both v2 and v3 are true vertices in G×, then vv2v3v is a triangle in G, a contradiction.
3. The proof of Theorem 1.5

First of all, we prove (1) of Theorem 1.5. Suppose that G is a minimum counterexample to it. Then it is easy to see that
G is connected. Moreover, we have δ(G) ≥ 2 by Lemma 2.1. In the following, we will apply the discharging method tothe associated plane graph G× of G and complete the proof by contradiction. Note that G× is also connected.For every element x ∈ V (G×) ∪ F (G×), we assign an initial charge c(x) = dG× (x)− 4 to x. Since G× is a planar graph,∑

x∈V (G×)∪F (G×) c(x) = −8 by the well-known Euler formula. Now we redistribute the initial charges on V (G×) ∪ F (G×)by the discharging rules below, where we use τ(x1→x2) to denote the charge moved from x1 to x2. Let c′(x) be the finalcharge of an element x ∈ V (G×)∪F (G×) after discharging. Then we still have ∑x∈V (G×)∪F (G×) c′(x) = −8 < 0, since ourrules only move charge around and do not affect the sum.
R1. Suppose that f = uvw is a true 3-face in G×. If dG× (u) ≥ 8, then τ(u→f) = 1/2.
R2. Suppose that f = uvw is a false 3-face in G× with a false vertex u.

R2.1. If dG× (v) ≤ 7, then τ(v →f) = 1/3 and τ(w→f) = 2/3.R2.2. If min {dG× (v), dG× (w)} ≥ 8, then τ(v →f) = τ(w→f) = 1/2.
R3. Suppose that f is a 5+-face in G× and v is a 3−-vertex on the boundary of f . Then τ(f →v) = 1/3.
R4. Suppose that uv is an edge in G such that u is a k-master of v .

R4.1. If k = 2, then τ(u→v) = 2/3.R4.2. If k = 3, then τ(u→v) = 1/3.R4.3. If k = 4, then τ(u→v) = 2/3.R4.4. If k = 5, then τ(u→v) = 1/3.
R5. Suppose that uv and xy are two mutually crossed edges in G such that vx, vy ∈ E(G) and dG(u) = 2. Denote theother neighbor of u in G by w.

R5.1. If u has a positive charge θ after applying the above four rules, then τ(u→v) = θ.R5.2. Otherwise, we let τ(w→u) = τ(u→v) = 1/3.
The rule R5.2 means that w will send charge to v through u if u does not have positive charge after applying R1–R4.Under this condition, we claim that v will not send back charge to w through u by R5.2, since v and w are not symmetricalin that rule although they are both M-vertices by Lemma 2.1. The following lemma proves this fact.
Lemma 3.1.
If R5.2 is applied, then the edge uw is not crossed.

Proof. If R5.2 is applied, then by (2) of Lemma 2.7 and by R3 and R4, u is incident with exactly two 4-faces in G×.This follows that uw must be crossed by xy if uw is a crossed edge in G. However, it is impossible since xy has alreadybeen crossed by uv .
We call the 2-vertex u stated in R5.2 a special neighbor of w in G. Note that dG(w) = M = ∆ by Lemma 2.1. By
s(w) denote the number of special 2-vertices that are adjacent to w in G. Then by Lemma 3.1, one can easily prove thefollowing fact.
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Lemma 3.2.
Let w be vertex in G. Then α(w)+β(w)+2s(w) ≤ dG(w).
In the following, we will check that the final charge c′(x) of each element x ∈ V (G×) ∪ F (G×) is nonnegative, whichimplies that ∑x∈V (G×)∪F (G×) c′(x) ≥ 0, a contradiction.First, suppose that f is a face in G×. If f is a true 3-face, then by Lemma 2.8, f is incident with at least two 8+-vertices.This implies that c′(f) ≥ −1 + 2/2 = 0 by R1. If f is a false 3-face, then by R2, f receives exactly 1 from the verticesincident with it and thus c′(f) = −1 + 1 = 0. If f is a 4-face, then c′(f) = c(f) = 0 since 4-faces are not involved in thedischarging rules. If f is a 5+-face, then f is incident with at most bdG× (f)/2c, 3−-vertices since no two 3−-vertices areadjacent in G by Lemma 2.8. This implies that

c′(f) ≥ dG× (f)− 4− 13
⌊
dG× (f)2

⌋
> 0.

Second, suppose that v is a vertex in G×. If v is a false vertex, then it is trivial that c′(v) = c(v) = 0. So, in whatfollows we always assume that v is a true vertex. Recall that no vertex of degree less than M can be involved in R5.2by Lemma 2.1.If dG× (v) = 2, then by (2) of Lemma 2.7, v is incident with no false 3-faces and thus v sends out no charges by R1–R4.On the other hand, v is adjacent to two ∆-vertices in G by Lemma 2.1 and v has one 2-master, one 3-master, one4-master and one 5-master by Lemma 2.6. Then by R4 and R5, we have c′(v) ≥ −2 + 2/3 + 1/3 + 2/3 + 1/3 = 0.If dG× (v) = 3, then by Lemma 2.6, v has one 3-master, one 4-master and one 5-master. If α(v) ≤ 1, then by R2.1 andR4, c′(v) ≥ −1− 1/3 + 1/3 + 2/3 + 1/3 = 0. If α(v) ≥ 2, then by (3) of Lemma 2.7, v is incident with one 5+-face, whichalso implies that c′(v) ≥ −1− 2/3 + 1/3 + 2/3 + 1/3 + 1/3 = 0 by R2.1, R3 and R4.If dG× (v) = 4, then by Lemma 2.6 and (4) of Lemma 2.7, v has one 4-master, one 5-master and α(v) ≤ 3. This impliesthat c′(v) ≥ 0− 3/3 + 2/3 + 1/3 = 0 by R2.1, R4.3 and R4.4.If dG× (v) = 5, then by Lemma 2.6 and (5) of Lemma 2.7, v has one 5-master and α(v) ≤ 4. This implies that c′(v) ≥1− 4/3 + 1/3 = 0 by R2.1 and R4.4.If 6 ≤ dG× (v) ≤ 7, then α(v) ≤ 6 by (5) of Lemma 2.7. This implies that c′(v) ≥ dG× (v)− 4− 6/3 ≥ 0 by R2.1.If 8 ≤ dG× (v) ≤ 11, then v is adjacent to no 7−-vertices by Lemma 2.2 and thus c′(v) ≥ dG× (v)− 4−dG× (v)/2 ≥ 0 by R1and R2.2.If 12 ≤ dG× (v) ≤ M−4, then v is adjacent to no 5−-vertices by Lemma 2.1 and thus c′(v) ≥ dG× (v)− 4− 2dG× (v)/3 ≥ 0by R1 and R2.If dG× (v) = M−3, then by Lemmas 2.1 and 2.6, v has no i-dependents for i ≤ 4 but may have at most four 5-dependents.This implies that c′(v) ≥ dG× (v)− 4− 2dG× (v)/2− 4/3 = (M−19)/3 > 0 by R1, R2 and R4.4, since M ≥ 8p+4 ≥ 20.If dG× (v) = M−2, then by Lemmas 2.1 and 2.6, v has no i-dependents for i ≤ 3 but may have at most three 4-dependentsand at most four 5-dependents. If α(v)+β(v) ≤ dG× (v)−2, then c′(v) ≥ dG× (v) − 4 − 2(dG× (v)−2)/3 − 4/3 − 3 · 2/3 =(M−20)/3 ≥ 0 by R1, R2, R4.3 and R4.4. If α(v) + β(v) ≥ dG× (v) − 1, then by (1) and (2) of Lemma 2.9, we have
αa(v) ≤ ⌈(α(v)+β(v))/2⌉ and thus

c′(v) ≥ dG× (v)− 4− 23 αa(v)− 12 (α(v) + β(v)− αa(v))− 4 · 13 − 3 · 23 ≥ M − 76
⌈
M2
⌉
− 496 > 0

by R1, R2, R4.3 and R4.4.If dG× (v) = M−1, then by Lemmas 2.1 and 2.6, v has no 2-dependents but may have at most two 3-dependents, at mostthree 4-dependents and at most four 5-dependents. If α(v)+β(v) ≤ dG× (v)− 3, then c′(v) ≥ dG× (v)−4−2(dG× (v)− 3)/3−
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4/3− 3 · 2/3− 2/3 = (M−19)/3 ≥ 0 by R1, R2 and R4. If dG× (v)− 2 ≤ α(v)+β(v) ≤ dG× (v)−1, then by Lemma 2.9, wehave αa(v) ≤ ⌈α(v)+β(v))/2⌉ + 1 and thus
c′(v) ≥ dG× (v)− 4− 23 αa(v)− 12 (α(v) + β(v)− αa(v))− 4 · 13 − 3 · 23 − 2 · 13 ≥ M − 76

⌈
M2
⌉
− 8 > 0

by R1, R2 and R4. If α(v)+β(v) = dG× (v), then by (1) of Lemma 2.9, we have αa(v) ≤ ⌊(α(v)+β(v))/2⌋ and thus
c′(v) ≥ dG× (v)− 4− 23 αa(v)− 12 (α(v) + β(v)− αa(v))− 4 · 13 − 3 · 23 − 2 · 13 ≥ M2 − 16

⌊
M − 12

⌋
− 172 ≥ 0

by R1, R2 and R4.If dG× (v) ≥ M, then we shall assume that dG× (v) = M = ∆ since ∆ ≤ M ≤ dG× (v) ≤ ∆. By Lemma 2.6, v may haveat most one 2-dependent, at most two 3-dependents, at most three 4-dependents and at most four 5-dependents. If
s(v) ≥ 2, then by Lemma 3.2, α(v)+β(v) ≤ M−2s(v). It follows that
c′(v) ≥ dG× (v)− 4− 23 (α(v) + β(v))− s(v)3 − 4 · 13 − 3 · 23 − 2 · 13 − 23 ≥ 13 (M − 26 + 3s(v)) ≥ 13 (M − 20) ≥ 0

by R1, R2, R4 and R5.2. So we assume that s(v) ≤ 1. If α(v)+β(v) ≤ dG× (v)− 4, then
c′(v) ≥ dG× (v)− 4− 2 dG× (v)− 43 − 4 · 13 − 3 · 23 − 2 · 13 − 23 − 13 = M − 193 > 0

by R1, R2, R4 and R5.2. If α(v)+β(v) = dG× (v)− 3, then αa(v) ≤ ⌈(α(v)+β(v))/2⌉ + 2 by Lemma 2.9 and
c′(v) ≥ dG× (v)− 4− 23 αa(v)− 12 (α(v) + β(v)− αa(v))− 4 · 13 − 3 · 23 − 2 · 13 − 23 − 13 ≥ M2 − 16

⌈
M − 32

⌉
− 476 > 0

by R1, R2, R4 and R5.2. Similarly, we can also show that c′(v) ≥ 0 when dG× (v)− 2 ≤ α(v)+β(v) ≤ dG× (v)− 1, byLemma 2.9 and the rules mentioned above. At last, we shall consider the case when α(v)+β(v) = dG× (v). By (1) ofLemma 2.9 and Lemma 3.2, we have αa(v) ≤ ⌊(α(v)+β(v))/2⌋ and s(v) = 0. If v has no 2-dependents, then by R1, R2and R4,
c′(v) ≥ dG× (v)− 4− 23 αa(v)− 12 (α(v) + β(v)− αa(v))− 4 · 13 − 3 · 23 − 2 · 13 ≥ 512 ∆ − 8 > 0.

So we assume that u is a 2-dependent of v . This implies that uv ∈ E(G) and dG(u) = 2. Since α(v)+β(v) = dG× (v),
uv must be a crossed edge in G. Suppose that the edge xy crosses uv in G at a point z in G×. By w denote theother neighbor of u in G. If u is incident with at least one 5+-face f in G×, then by a similar argument as before,one can easily check that u still has charge 1/3 after applying the four rules R1–R4 (note that R3 should be appliedto u now). So by R5.1, we have τ(u→v) = 1/3. If u is incident with no 5+-faces in G×, then by R5.2 we still have
τ(w→u) = τ(u→v) = 1/3 (note that vx, vy ∈ E(G)). Therefore, by R1, R2, R4 and R5 we have

c′(v) ≥ dG× (v)− 4− 23 αa(v)− α(v) + β(v)− αa(v)2 − 4 · 13 − 3 · 23 − 2 · 13 − 23 + 13 ≥ 512M − 253 ≥ 0
in each case, since M ≥ 8p+ 4 ≥ 20. Hence the proof of Theorem 1.5 (1) completes here.
Now we pass to (2) of Theorem 1.5. Assume that G is a minimum counterexample to the theorem. Then G is a connectedgraph with the minimum degree at least two. Now we apply a discharging procedure to the associated plane graph G×of G by assigning an initial charge c(x) = dG× (x)− 4 to every element x ∈ V (G×)∪F (G×) and defining the dischargingrules as follows.
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R̃1. Suppose that f = uvw is a false 3-face in G× with a false vertex u.
R̃1.1. If dG× (v) ≤ 5, then τ(v →f) = 1/3 and τ(w→f) = 2/3.
R̃1.2. If min {dG× (v), dG× (w)} ≥ 6, then τ(v →f) = τ(w→f) = 1/2.

R̃2. Suppose that f is a 5+-face in G× and v is a 3-vertex on the boundary of f . Then τ(f →v) = 1/3.
R̃3. Suppose that uv is an edge in G such that u is an i-master of v for some i ∈ {2, 3, 4}. Then τ(u→v) = 2/3.
In the following, we will complete the proof of the theorem by showing that the final charge c′(x) of every element
x ∈ V (G×) ∪ F (G×) is nonnegative, a contradiction. First of all, one can check that the final charge of every face andevery 4−-vertex in G× is nonnegative by a similar proof as that of Theorem 1.5 (1). So in what follows we only need toconsider the 5+-vertex v ∈ V (G×).If dG× (v) = 5, then α(v) ≤ 3 by Lemma 2.10, which implies that c′(v) ≥ 1− 3 · 1/3 = 0 by R̃1.1.If 6 ≤ dG× (v) ≤ 7, then v is adjacent to no 5−-vertices by Lemma 2.2, which implies that c′(v) ≥ dG× (v)− 4−α(v)/2 ≥
dG× (v)− 4−dG× (v)/3 ≥ 0 by R̃1.2 and Lemma 2.10.If 8 ≤ dG× (v) ≤ M−3, then v is adjacent to no 4−-vertices by Lemma 2.1. This implies that c′(v) ≥ dG× (v)− 4− 2α(v)/3 ≥
dG× (v)− 4−4dG× (v)/9 > 0 by R̃1 and Lemma 2.10.If dG× (v) = M− 2, then v is not adjacent to 3−-vertices by Lemma 2.1 and may have at most three 4-dependents byLemma 2.6. This implies that

c′(v) ≥ dG× (v)− 4− 23 α(v)− 3 · 23 ≥ dG× (v)− 6− 49 dG× (v) ≥ 5M − 649 > 0
by R̃1, R̃3 and Lemma 2.10, since M ≥ 6p+2 ≥ 14.If dG× (v) = M− 1, then v has no 2-dependents by Lemma 2.1 but may have at most two 3-dependents and at most three4-dependents by Lemma 2.6. So by R̃1, R̃3 and Lemma 2.10, we have

c′(v) ≥ dG× (v)− 4− 23 α(v)− 3 · 23 − 2 · 23 ≥ dG× (v)− 223 − 23
⌊23 dG× (v)

⌋ = M − 23
⌊23 (M − 1)⌋− 253 > 0.

If dG× (v) ≥ M, then we shall again assume that dG× (v) = M = ∆, since ∆ ≤ M ≤ dG× (v) ≤ ∆. By Lemma 2.6, v mayhave at most one 2-dependent, at most two 3-dependents and at most three 4-dependents. This implies that
c′(v) ≥ dG× (v)− 4− 23 α(v)− 23 − 2 · 23 − 3 · 23 ≥ M − 8− 23

⌊23M
⌋
≥ 0

by R̃1, R̃3 and Lemma 2.10, since M ≥ 6p+2 ≥ 14. Hence we have completed the proof of Theorem 1.5.
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