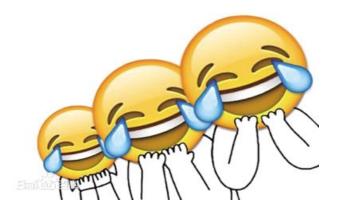
Algebra is interesting and useful

Xin Zhang

2018.07.06



Topic 1: Nonlinear programming

$$\begin{array}{ll} \max & 2x_1x_2 + 2x_2x_3 + 2x_3x_4 + 2x_4x_1 \\ s.t. & x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1 \end{array}$$

Topic 2: Real symmetric matrix

If A is an $n \times n$ real symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, then X'AX $\lambda_1 = \max_{||X||=1} X'AX = \max_{||X||\neq 0} \frac{1}{X'X}$ X'AX $\lambda_n = \min_{||X||=1} X'AX = \min_{||X||\neq 0} \frac{1}{X'X}$

Topic 2: Real symmetric matrix

Def. $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$ is the <u>spectrum</u> of A

Def. $\rho(A) = \max_{i} |\lambda_i|$ is the <u>spectral radius</u> of A

Topic 2: Real symmetric matrix

If A is an $n \times n$ positive semidefinite matrix with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$, then

$$\rho(A) = \min_{i} |\lambda_{i}| = \max_{i} \lambda_{i} > 0$$

Topic 3: Applications of the Jordan normal form

Do you remember the Jordan normal form? How to use it? What is the most classical theorem on JNF?

Note

JNF will appear on your final examination paper!

Topic 3: Applications of the Jordan normal form

If A is an $n \times n$ complex valued matrix, then $\lim_{k \to +\infty} A^k = 0 \text{ if and only if}$ $\rho(A) < 1$

Hints: (1) $A \sim JNF$; (2) how can we say about the *k*-th power of a Jordan block?

Topic 3: Applications of the Jordan normal form

$$J_{m_{i}}^{k}(\lambda_{i}) = \begin{bmatrix} \lambda_{i}^{k} & \binom{k}{1}\lambda_{i}^{k-1} & \binom{k}{2}\lambda_{i}^{k-2} & \cdots & \binom{k}{m_{i}-1}\lambda_{i}^{k-m_{i}+1} \\ 0 & \lambda_{i}^{k} & \binom{k}{1}\lambda_{i}^{k-1} & \cdots & \binom{k}{m_{i}-2}\lambda_{i}^{k-m_{i}+2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{i}^{k} & \binom{k}{1}\lambda_{i}^{k-1} \\ 0 & 0 & \cdots & 0 & \lambda_{i}^{k} \end{bmatrix}$$

Topic 4: Algebraic games

First, a trick: *Use <u>three 2</u> and <u>some algebraic operations</u> <i>to represent 2, 3, 4, 5,*

Topic 4: Algebraic games

¥125.00 containing at most 5 notes
¥120.00 containing at most 5 notes
¥100.00 containing at most 5 notes

Choose one note from each red envelope so that the chosen three notes have different denominations! Can you finish it?

Topic 4: Algebraic games

Alon's Theorem in 1999

(Combinatorial Nullstellensatz). Let $f \in F[x_1, x_2, \ldots, x_n]$ be a polynomial of degree $t_1 + \cdots + t_n$. If S_1, S_2, \ldots, S_n are nonempty subsets of F such that $|S_i| \ge t_i + 1$ for all i, then there exists $s_1 \in S_1, s_2 \in S_2, \ldots, s_n \in S_n$ for which $f(s_1, s_2, \ldots, s_n) \ne 0$

as long as the coefficient of $x_1^{t_1} x_2^{t_2} \dots x_n^{t_n}$ is nonzero.

To prove it, the <u>division algorithm</u> and

<u>mathematical induction</u> on $t_1 + t_2 + \dots + t_n$ is enough!