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5 Colouring

How many colours do we need to colour the countries of a map in such
a way that adjacent countries are coloured differently? How many days
have to be scheduled for committee meetings of a parliament if every
committee intends to meet for one day and some members of parliament
serve on several committees? How can we find a school timetable of min-
imum total length, based on the information of how often each teacher
has to teach each class?

A vertex colouring of a graph G = (V, E) is a map c:V → S such vertex
colouring

that c(v) �= c(w) whenever v and w are adjacent. The elements of the
set S are called the available colours. All that interests us about S is
its size: typically, we shall be asking for the smallest integer k such that
G has a k-colouring , a vertex colouring c:V →{ 1, . . . , k }. This k is the chromatic

number
(vertex-) chromatic number of G; it is denoted by χ(G). A graph G with χ(G)

χ(G) = k is called k-chromatic; if χ(G) � k, we call G k-colourable.
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Fig. 5.0.1. A vertex colouring V →{ 1, . . . , 4 }
Note that a k-colouring is nothing but a vertex partition into k

independent sets, now called colour classes; the non-trivial 2-colourable colour
classesgraphs, for example,are precisely the bipartite graphs.
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114 5. Colouring

How do we determine the chromatic number of a given graph? How can
we find a vertex-colouring with as few colours as possible? How does
the chromatic number relate to other graph invariants, such as average
degree, connectivity or girth?

Straight from the definition of the chromatic number we may derive
the following upper bound:

Proposition 5.2.1. Every graph G with m edges satisfies

χ(G) � 1
2 +

√
2m + 1

4 .

Proof . Let c be a vertex colouring of G with k = χ(G) colours. Then
G has at least one edge between any two colour classes: if not, we could
have used the same colour for both classes. Thus, m � 1

2k(k−1). Solving
this inequality for k, we obtain the assertion claimed. �

One obvious way to colour a graph G with not too many colours is
the following greedy algorithm: starting from a fixed vertex enumerationgreedy

algorithm
v1, . . . , vn of G, we consider the vertices in turn and colour each vi with
the first available colour—e.g., with the smallest positive integer not
already used to colour any neighbour of vi among v1, . . . , vi−1. In this
way, we never use more than ∆(G) + 1 colours, even for unfavourable
choices of the enumeration v1, . . . , vn. If G is complete or an odd cycle,
then this is even best possible.

In general, though, this upper bound of ∆ + 1 is rather generous,
even for greedy colourings. Indeed, when we come to colour the vertex
vi in the above algorithm, we only need a supply of dG[ v1,...,vi ](vi) + 1
rather than dG(vi)+1 colours to proceed; recall that, at this stage, the al-
gorithm ignores any neighbours vj of vi with j > i. Hence in most graphs,
there will be scope for an improvement of the ∆+1 bound by choosing a
particularly suitable vertex ordering to start with: one that picks vertices
of large degree early (when most neighbours are ignored) and vertices
of small degree last. Locally, the number dG[ v1,...,vi ](vi) + 1 of colours
required will be smallest if vi has minimum degree in G [ v1, . . . , vi ]. But
this is easily achieved: we just choose vn first, with d(vn) = δ(G), then
choose as vn−1 a vertex of minimum degree in G− vn, and so on.

The least number k such that G has a vertex enumeration in which
each vertex is preceded by fewer than k of its neighbours is called
the colouring number col(G) of G. The enumeration we just discussed

colouring
number
col(G) shows that col(G) � maxH⊆G δ(H) + 1. But for H ⊆ G clearly also

col(G) � col(H) and col(H) � δ(H) + 1, since the ‘back-degree’ of the
last vertex in any enumeration of H is just its ordinary degree in H,
which is at least δ(H). So we have proved the following:
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5.2 Colouring vertices 115

Proposition 5.2.2. Every graph G satisfies

χ(G) � col(G) = max { δ(H) | H ⊆ G }+ 1 .
�

Corollary 5.2.3. Every graph G has a subgraph of minimum degree at

[ 9.2.1 ]
[ 7.3.9 ]
[ 9.2.3 ]

[ 11.2.3 ]least χ(G)− 1. �

The colouring number of a graph is closely related to its arboricity; see
the remark following Theorem 2.4.4.

As we have seen, every graph G satisfies χ(G) � ∆(G) + 1, with
equality for complete graphs and odd cycles. In all other cases, this
general bound can be improved a little:

Theorem 5.2.4. (Brooks 1941)
Let G be a connected graph. If G is neither complete nor an odd cycle,
then

χ(G) � ∆(G) .

Proof . We apply induction on |G|. If ∆(G) � 2, then G is a path or
a cycle, and the assertion is trivial. We therefore assume that ∆ := ∆

∆(G) � 3, and that the assertion holds for graphs of smaller order.
Suppose that χ(G) > ∆.

Let v ∈ G be a vertex and H := G − v. Then χ(H) � ∆ : by v, H

induction, every component H ′ of H satisfies χ(H ′) � ∆(H ′) � ∆ unless
H ′ is complete or an odd cycle, in which case χ(H ′) = ∆(H ′) + 1 � ∆
as every vertex of H ′ has maximum degree in H ′ and one such vertex is
also adjacent to v in G.

Since H can be ∆-coloured but G cannot, we have the following:

Every ∆-colouring of H uses all the colours 1, . . . ,∆ on
the neighbours of v; in particular, d(v) = ∆.

(1)

Given any ∆-colouring of H, let us denote the neighbour of v col-
oured i by vi, i = 1, . . . ,∆. For all i �= j, let Hi,j denote the subgraph v1, . . . , v∆

of H spanned by all the vertices coloured i or j. Hi,j

Ci,j

For all i �= j, the vertices vi and vj lie in a common com-
ponent Ci,j of Hi,j .

(2)

Otherwise we could interchange the colours i and j in one of those com-
ponents; then vi and vj would be coloured the same, contrary to (1).

Ci,j is always a vi– vj path. (3)

Indeed, let P be a vi– vj path in Ci,j . As dH(vi) � ∆−1, the neighbours
of vi have pairwise different colours: otherwise we could recolour vi,
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116 5. Colouring

contrary to (1). Hence the neighbour of vi on P is its only neighbour
in Ci,j , and similarly for vj . Thus if Ci,j �= P , then P has an inner
vertex with three identically coloured neighbours in H; let u be the first
such vertex on P (Fig. 5.2.1). Since at most ∆ − 2 colours are used
on the neighbours of u, we may recolour u. But this makes Pů into a
component of Hi,j , contradicting (2).

vi

vj

P ů

Ci,j
i

j j

j

j

i

ii

v

u
i

Fig. 5.2.1. The proof of (3) in Brooks’s theorem

For distinct i, j, k, the paths Ci,j and Ci,k meet only in vi. (4)

For if vi �= u ∈ Ci,j ∩Ci,k, then u has two neighbours coloured j and two
coloured k, so we may recolour u. In the new colouring, vi and vj lie in
different components of Hi,j , contrary to (2).

The proof of the theorem now follows easily. If the neighbours of v
are pairwise adjacent, then each has ∆ neighbours in N(v)∪{ v } already,
so G = G [N(v)∪{ v } ] = K∆+1. As G is complete, there is nothing to
show. We may thus assume that v1v2 /∈ G, where v1, . . . , v∆ derive theirv1, . . . , v∆

names from some fixed ∆-colouring c of H. Let u �= v2 be the neighbourc

of v1 on the path C1,2; then c(u) = 2. Interchanging the colours 1 and 3u

in C1,3, we obtain a new colouring c′ of H; let v′i, H ′
i,j , C ′

i,j etc. be definedc′

with respect to c′ in the obvious way. As a neighbour of v1 = v′3, our
vertex u now lies in C ′

2,3 , since c′(u) = c(u) = 2. By (4) for c, however,
the path v̊1C1,2 retained its original colouring, so u ∈ v̊1C1,2 ⊆ C ′

1,2.
Hence u ∈ C ′

2,3 ∩C ′
1,2, contradicting (4) for c′. �

As we have seen, a graph G of large chromatic number must have
large maximum degree: trivially at least χ(G)− 1, and less trivially at
least χ(G) (in most cases). What more can we say about the structure
of graphs with large chromatic number?

One obvious possible cause for χ(G) � k is the presence of a Kk

subgraph. This is a local property of G, compatible with arbitrary values
of global invariants such as ε and κ. Hence, the assumption of χ(G) � k
does not tell us anything about those invariants for G itself. It does,
however, imply the existence of a subgraph where those invariants are
large: by Corollary 5.2.3, G has a subgraph H with δ(H) � k − 1, and
hence by Theorem 1.4.3 a subgraph H ′ with κ(H ′) � � 1

4 (k− 1)�.
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on the neighbours of u, we may recolour u. But this makes Pů into a
component of Hi,j , contradicting (2).
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Fig. 5.2.1. The proof of (3) in Brooks’s theorem

For distinct i, j, k, the paths Ci,j and Ci,k meet only in vi. (4)

For if vi �= u ∈ Ci,j ∩Ci,k, then u has two neighbours coloured j and two
coloured k, so we may recolour u. In the new colouring, vi and vj lie in
different components of Hi,j , contrary to (2).

The proof of the theorem now follows easily. If the neighbours of v
are pairwise adjacent, then each has ∆ neighbours in N(v)∪{ v } already,
so G = G [N(v)∪{ v } ] = K∆+1. As G is complete, there is nothing to
show. We may thus assume that v1v2 /∈ G, where v1, . . . , v∆ derive theirv1, . . . , v∆

names from some fixed ∆-colouring c of H. Let u �= v2 be the neighbourc

of v1 on the path C1,2; then c(u) = 2. Interchanging the colours 1 and 3u

in C1,3, we obtain a new colouring c′ of H; let v′i, H ′
i,j , C ′

i,j etc. be definedc′

with respect to c′ in the obvious way. As a neighbour of v1 = v′3, our
vertex u now lies in C ′

2,3 , since c′(u) = c(u) = 2. By (4) for c, however,
the path v̊1C1,2 retained its original colouring, so u ∈ v̊1C1,2 ⊆ C ′

1,2.
Hence u ∈ C ′

2,3 ∩C ′
1,2, contradicting (4) for c′. �

As we have seen, a graph G of large chromatic number must have
large maximum degree: trivially at least χ(G)− 1, and less trivially at
least χ(G) (in most cases). What more can we say about the structure
of graphs with large chromatic number?

One obvious possible cause for χ(G) � k is the presence of a Kk

subgraph. This is a local property of G, compatible with arbitrary values
of global invariants such as ε and κ. Hence, the assumption of χ(G) � k
does not tell us anything about those invariants for G itself. It does,
however, imply the existence of a subgraph where those invariants are
large: by Corollary 5.2.3, G has a subgraph H with δ(H) � k − 1, and
hence by Theorem 1.4.3 a subgraph H ′ with κ(H ′) � � 1

4 (k− 1)�.
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Exercises

Show that every graph G has a vertex ordering for which the greedy
algorithm uses only χ(G) colours.

A k-chromatic graph is called critically k-chromatic, or just critical ,
if χ(G − v) < k for every v ∈ V (G). Show that every k-chromatic
graph has a critical k-chromatic induced subgraph, and that any such
subgraph has minimum degree at least k− 1.

An n×n - matrix with entries from { 1, . . . , n } is called a Latin square
if every element of { 1, . . . , n } appears exactly once in each column and
exactly once in each row. Recast the problem of constructing Latin
squares as a colouring problem.
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