
The Probabilistic Method 

Third Edition 

Noga Alón 
School of Mathematics 

Raymond and Beverly Sackler Faculty ofExact Sciences 
TelAviv University 

Joel H. Spencer 
Courant Institute of Mathematical Sciences 

New York University 

WILEY 

A JOHN WILEY & SONS, INC., PUBLICATION 



This Page Intentionally Left Blank



Preface 

The Probabilistic Method is one of the most powerful and widely used tools applied 
in combinatorics. One of the major reasons for its rapid development is the impor-
tant role of randomness in theoretical computer science and in statistical physics. 

The interplay between discrete mathematics and computer science suggests an 
algorithmic point of view in the study of the probabilistic method in combinatorics 
and this is the approach we tried to adopt in this book. The book thus includes a dis-
cussion of algorithmic techniques together with a study of the classical method as 
well as the modern tools applied in it. The first part of the book contains a descrip-
tion of the tools applied in probabilistic arguments, including the basic techniques 
that use expectation and variance, as well as the more recent applications of martin-
gales and correlation inequalities. The second part includes a study of various topics 
in which probabilistic techniques have been successful. This part contains chapters 
on discrepancy and random graphs, as well as on several áreas in theoretical com-
puter science: circuit complexity, computational geometry, and derandomization of 
randomized algorithms. Scattered between the chapters are gems described under 
the heading The Probabilistic Lens. These are elegant proofs that are not necessarily 
related to the chapters after which they appear and can usually be read separately. 

The basic Probabilistic Method can be described as follows: In order to prove the 
existence of a combinatorial structure with certain properties, we construct an ap-
propriate probability space and show that a randomly chosen element in this space 
has the desired properties with positive probability. This method was initiated by 
Paul Erdos, who contributed so much to its development over a fifty year period, 
that it seems appropriate to cali it "The Erdos Method." His cdntribution can be 
measured not only by his numerous deep results in the subject, but also by his many 
intriguing problems and conjectures that stimulated a big portion of the research in 
the área. 

It seems impossible to write an encyclopedic book on the Probabilistic Method; 
too many recent interesting results apply probabilistic arguments, and we do not 
even try to mention all of them. Our emphasis is on methodology, and we thus try to 
describe the ideas, and not always to give the best possible results if these are too 
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technical to allow a clear presentation. Many of the results are asymptotic, and we 
use the standard asymptotic notation: for two functions/and g, we write/= 0(g) if 
f^cg for all sufficiently large valúes of the variables of the two functions, where c 
is an absolute positive constant. We write / = íl(g) if g = 0(f) and / = @(g) if 
/ = 0{g) and / = íi(g). If the limit of the ratio f/g tends to zero as the variables 
of the functions tend to infinity we write / = o(g). Finally, f~g denotes that f = 
(1 + o(l))g; that is, f/g tends to 1 when the variables tend to infinity. Each chapter 
ends with a list of exercises. The more difficult ones are marked by (*). The exercis-
es enable readers to check their understanding of the material and also provide the 
possibility of using the book as a textbook. 

This is the third edition of the book; it contains several improved results and cov-
ers various additional topics that developed extensively during the last few years. 
The additions include a modern treatment of the Erdós-Rényi phase transition dis-
cussed in Chapter 11, focusing on the behavior of the random graph near the emer-
gence of the giant component and briefly exploring its connection to classical per-
colation theory. Another addition is Chapter 17, Graph Property Testing—a recent 
topic that combines combinatorial, probabilistic and algorithmic techniques. This 
chapter also includes a proof of the Regularity Lemma of Szemerédi (described in a 
probabilistic language) and a presentation of some of its applications in the área. 
Further additions are two new Probabilistic Lenses, several additional exercises, 
and a new part in Appendix A focused on lower bounds. 

It is a special pleasure to thank our wives, Nurit and Mary Ann. Their patience, 
understanding and encouragement have been key ingredients in the success of this 
enterprise. 

NOGA ALÓN 

JOEL H. SPENCER 
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1 
The Basic Method 

What you need is that your brain is open. 

- Paul Erdos 

1.1 THE PROBABILISTIC METHOD 

The probabihstic method is a powerful tool for tackling many problems in discrete 
mathematics. Roughly speaking, the method works as follows: Trying to prove that a 
structure with certain desired properties exists, one defines an appropriate probability 
space of structures and then shows that the desired properties hold in this structures 
and then shows that the desired properties hold in this space with positive probability. 
The method is best illustrated by examples. Here is a simple one. The Ramsey 
number R(k, £) is the smallest integer n such that in any two-coloring of the edges 
of a complete graph on n vértices Kn by red and blue, either there is a red K^ (i.e., 
a complete subgraph on k vértices all of whose edges are colored red) or there is a 
blue K(. Ramsey (1929) showed that R(k, l) is finite for any two integers k and í. 
Let us obtain a lower bound for the diagonal Ramsey numbers R(k, k). 

Proposition 1.1.1 / / (") •21~(^ < lthenR(k,k) > n. Thus R(k,k) > [2kl2\for 
all k > 3. 

The Probabilistic Method, Third Edition By Noga Alón and Joel Spencer 
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2 THE BASIC METHOD 

Proof. Consider a random two-coloring of the edges of Kn obtained by coloring 
each edge independently either red or blue, where each color is equally likely. For 
any fixed set i? of k vértices, let AR be the event that the induced subgraph of Kn on 
R is monochromatic (Le., that either all its edges are red or they are all blue). Clearly, 
Pr[^4ñ] = 21 - ' -2 ' . Since there are (£) possible choices for R, the probability 

that at least one of the events AR occurs is at most (^)2l~\2> < 1. Thus, with 
positive probability, no event AR occurs and there is a two-coloring of Kn without a 
monochromatic Kk; that is, R(k, k) > n. Note that if k > 3 and we take n = |_2fc/2J 
then 

/ n \ i (k\ 21+i nk 

U > í a ) < i f c r - 2 w í < 1 

and henee R(k, k) > |_2fc/2J for all k > 3. • 

This simple example demonstrates the essence of the probabilistic method. To 
prove the existence of a good coloring we do not present one explicitly, but rather 
show, in a nonconstructive way, that it exists. This example appeared in a paper of 
P. Erdós from 1947. Although Szele had applied the probabilistic method to another 
combinatorial problem, mentioned in Chapter 2, already in 1943, Erdós was certainly 
the first one who understood the full power of this method and applied it successfully 
over the years to numerous problems. One can, of course, claim that the probability 
is not essential in the proof given above. An equally simple proof can be described 
by counting; we just check that the total number of two-colorings of Kn is larger 
than the number of those containing a monochromatic K¡-. 

Moreover, since the vast majority of the probability spaces considered in the 
study of combinatorial problems are finite spaces, this claim applies to most of the 
applications of the probabilistic method in discrete mathematics. Theoretically, this 
is, indeed, the case. However, in practice, the probability is essential. It would 
be hopeless to replace the applications of many of the tools appearing in this book, 
including, for example, the second moment method, the Lovász Local Lemma and the 
concentration via martingales by counting arguments, even when these are applied 
to finite probability spaces. 

The probabilistic method has an interesting algorithmic aspect. Consider, for 
example, the proof of Proposition 1.1.1 that shows that there is an edge two-coloring 
of Kn without a monochromatic i^2iog2n- Can we actually find such a coloring? 
This question, as asked, may sound ridiculous; the total number of possible colorings 
is finite, so we can try them all until we find the desired one. However, such a 
procedure may require 2\2> steps; an amount of time that is exponential in the size 
[= (2)] of the problem. Algorithms whose running time is more than polynomial in 
the size of the problem are usually considered impractical. The class of problems that 
can be solved in polynomial time, usually denoted by P [see, e.g., Aho, Hopcroft and 
Ullman (1974)], is, in a sense, the class of all solvable problems. In this sense, the 
exhaustive search approach suggested above for finding a good coloring of Kn is not 
acceptable, and this is the reason for our remark that the proof of Proposition 1.1.1 is 
nonconstructive; it does not supply a constructive, efficient and deterministic way of 
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producing a coloring with the desired properties. However, a closer look at the proof 
shows that, in fact, it can be used to produce, effectively, a coloring that is very likely 
to be good. This is because for large k, if n = |_2fc/2J then 

\k) < k\ [2^> S k\ ^ 

Henee, a random coloring of Kn is very likely not to contain a monochromatic 
•f^iogn- This means that if, for some reason, we must present a two-coloring 
of the edges of KW2i without a monochromatic K2o we can simply produce a 
random two-coloring by flipping a fair coin ( 2 ) times. We can then deliver the 
resulting coloring safely; the probability that it contains a monochromatic X20 is 
less than 211/20!, probably much smaller than our chances of making a mistake in 
any rigorous proof that a certain coloring is good! Therefore, in some cases the 
probabilistic, nonconstructive method does supply effective probabilistic algorithms. 
Moreover, these algorithms can sometimes be converted into deterministic ones. This 
topic is discussed in some detail in Chapter 16. 

The probabilistic method is a powerful tool in Combinatorics and in Graph Theory. 
It is also extremely useful in Number Theory and in Combinatorial Geometry. More 
recently, it has been applied in the development of efficient algorithmic techniques 
and in the study of various computational problems. In the rest of this chapter 
we present several simple examples that demónstrate some of the broad spectrum 
of topics in which this method is helpful. More complicated examples, involving 
various more delicate probabilistic arguments, appear in the rest of the book. 

1.2 GRAPH THEORY 

A toumament on a set V of n players is an orientation T = (V, E) of the edges of the 
complete graph on the set of vértices V. Thus for every two distinct elements x and 
y of V either (x, y) or (y, x) is in E, but not both. The ñame "toumament" is natural, 
since one can think of the set V a s a set of players in which each pair participates in 
a single match, where (x, y) is in the toumament iff x beats y. We say that T has the 
property Su if for every set of/c players there is one who beats them all. For example, a 
directed triangle T3 = (V, E), where V = {1,2,3} and £ = {(1,2), (2,3), (3,1)}, 
has S\. Is it true that for every finite k there is a toumament T (on more than k vértices) 
with the property Sfc? As shown by Erdos (1963b), this problem, raised by Schütte, 
can be solved almost trivially by applying probabilistic arguments. Moreover, these 
arguments even supply a rather sharp estímate for the mínimum possible number of 
vértices in such a toumament. The basic (and natural) idea is that if n is sufficiently 
large as a function of k, then a random toumament on the set V = { 1 , . . . , n} of n 
players is very likely to have property Sk. By a random toumament we mean here a 
toumament T onV obtained by choosing, for each 1 < i < j < n, independently, 
either the edge (i,j) or the edge (j, i), where each of these two choices is equally 
likely. Observe that in this manner, all the 2^J possible toumaments on V are 
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equally likely; that is, the probability space considered is symmetric. It is worth 
noting that we often use in applications symmetric probability spaces. In these cases, 
we shall sometimes refer to an element of the space as a random element, without 
describing explicitly the probability distribution. Thus, for example, in the proof of 
Proposition 1.1.1 random two-colorings of Kn were considered; that is, all possible 
colorings were equally likely. Similarly, in the proof of the next simple result we 
study random tournaments on V. 

Theorem 1.2.1 lf (£)(1 — 2~k)n~k < 1 then there is a tournament on n vértices 
that has the property Sf¿-

Proof. Consider a random tournament on the set V = { 1 , . . . , n}. For every fixed 
subset K of size k of V, let AK be the event that there is no vértex that beats all 
the members of K. Clearly Pr [AK] = (1 — 2~~k)n~k. This is because for each 
fixed vértex v G V — K, the probability that v does not beat all the members of K is 
1 — 2~fc, and all these n — k events corresponding to the various possible choices of 
v are independent. It follows that 

Pr V ¿* 
KCV 
| /C|=fc 

< £ Pr[AK]=(f\(l-2'k)n-k<l 
KCV V / 
\K\ = k 

Therefore, with positive probability, no event AK occurs; that is, there is a tournament 
on n vértices that has the property Sk- • 

Let f(k) denote the mínimum possible number of vértices of a tournament that 
has the property Sk. Since (£) < (en/k)k and (1 - 2~k)n-k < e-^-k)/2k^ 
Theorem 1.2.1 implies that f(k) < k2 • 2k • (ln2)(l + o(l)). It is not too difficult 
to check that / ( l ) = 3 and /(2) = 7. As proved by Szekeres [cf. Moon (1968)], 
/(fe) > ci • k-2k. 

Can one find an explicit construction of tournaments with at most ck vértices 
having property S^? Such a construction is known but is not trivial; it is described in 
Chapter 9. 

A dominating set of an undirected graph G = (V, E) is a set U C V such that 
every vértex v G V — U has at least one neighbor in U. 

Theorem 1.2.2 Let G = (V, E) be a graph on n vértices, with mínimum degree 
5 > 1. Then G has a dominating set of at most n[\ + ln(á + l)]/(¿ + 1) vértices. 

Proof. Let p G [0,1] be, for the moment, arbitrary. Let us pick, randomly and 
independently, each vértex of V with probability p. Let X be the (random) set of all 
vértices picked and let Y — Yx be the random set of all vértices in V - X that do not 
have any neighbor in X. The expected valué of |X \ is clearly np. For each fixed vértex 
v G V, Pr [v G Y] = Pr [v and its neighbors are not in X] < (1 — p)6+1. Since the 
expected valué of a sum of random variables is the sum of their expectations (even 
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if they are not independent) and since the random variable \Y\ can be written as 
a sum of n indicator random variables \v (v & V), where \v = 1 if v € Y and 
Xv = 0 otherwise, we conclude that the expected valué of \X\ + \Y\ is at most 
np + n(\ — p)s+1. Consequently, there is at least one choice o f l c y such that 
\X\ + \Yx\ <np + n(l - p)s+1. The set U = X U Yx is clearly a dominating set 
of G whose cardinality is at most this size. 

The above argument works for any p £ [0,1], To optimize the result we use 
elementary calculus. For convenience we bound 1 — p < e~p (this holds for all 
nonnegative p and is a fairly cióse bound when p is small) to give the simpler bound 

\U\ < np + ne-^s+l). 

Take the derivative of the right-hand side with respect to p and set it equal to zero. 
The right-hand side is minimized at 

l n ( ¿ + l ) 

Formally, we set p equal to this valué in the first line of the proof. We now have 
\U\ < n[l + ln(¿ + 1)]/(S + 1) as claimed. • 

Three simple but important ideas are incorporated in the last proof. The first is 
the linearity of expectation; many applications of this simple, yet powerful principie 
appear in Chapter 2. The second is perhaps more subtle and is an example of the 
"alteration" principie that is discussed in Chapter 3. The random choice did not 
supply the required dominating set U immediately; it only supplied the set X, which 
has to be altered a little (by adding to it the set Yx) to provide the required dominating 
set. The third involves the optimal choice of p. One often wants to make a random 
choice but is not certain what probability p should be used. The idea is to carry out 
the proof with p as a parameter giving a result that is a function of p. At the end, that 
p is selected which gives the optimal result. There is here yet a fourth idea that might 
be called asymptotic calculus. We wanted the asymptotics of min np + n( 1 — p)s+1, 
where p ranges over [0,1]. The actual mínimum p = 1 - {8 + I)'1/5 is difficult 
to deal with and in many similar cases precise minima are impossible to find in 
closed form. Rather, we give away a little bit, bounding 1 — p < e~p, yielding 
a clean bound. A good part of the art of the probabilistic method lies in finding 
suboptimal but clean bounds. Did we give away too much in this case? The answer 
depends on the emphasis for the original question. For 8 = 3 our rough bound gives 
\U\ < 0.596n while the more precise calculation gives \U\ < 0.496n, perhaps a 
substantial difference. For 8 large both methods give asymptotically n ln 8/5. 

It can easily be deduced from the results in Alón (1990b) that the bound in 
Theorem 1.2.2 is nearly optimal. A non probabilistic, algorithmic proof of this 
theorem can be obtained by choosing the vértices for the dominating set one by 
one, when in each step a vértex that covers the máximum number of yet uncovered 
vértices is picked. Indeed, for each vértex v denote by C(v) the set consisting of v 
together with all its neighbors. Suppose that during the process of picking vértices 
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the number of vértices u that do not lie in the unión of the sets C(v) of the vértices 
chosen so far is r. By the assumption, the sum of the cardinalities of the sets C(u) 
over all such uncovered vértices u is at least r(S + 1), and henee, by averaging, there 
is a vértex v that belongs to at least r(S + l ) / n such sets C{u). Adding this v to 
the set of chosen vértices we observe that the number of uncovered vértices is now 
at most r ( l — (5 + l ) /n) . It follows that in each iteration of the above procedure the 
number of uncovered vértices decreases by a factor of 1 — (5 + l ) /n and henee after 
n ln(í + l ) / (¿ + 1) steps there will be at most n/(6 + 1) yet uncovered vértices that 
can now be added to the set of chosen vértices to form a dominating set of size at 
most equal to the one in the conclusión of Theorem 1.2.2. 

Combining this with some ideas of Podderyugin and Matula, we can obtain a very 
efficient algorithm to decide if a given undirected graph on n vértices is, say, n/2 
edge-connected. A cut in a graph G = (V, E) is a partition of the set of vértices V 
into two nonempty disjoint sets V = V\ U V¿. If v\ e V\ and v-¿ € V2 we say that 
the cut separates v\ and Vi. The size of the cut is the number of edges of G having 
one end in Vi and another end in V?. In fact, we sometimes identify the cut with the 
set of these edges. The edge connectivity of G is the minimum size of a cut of G. 
The following lemma is due to Podderyugin and Matula (independently). 

Lemma 1.2.3 Let G = (V,E)bea graph with minimum degree 5 and let V = V\ U V2 
be a cut of size smaller than 6 in G Then every dominating set U ofG has vértices 
in V\ and in V2. 

Proof. Suppose this is false and í/ C Vi. Choose, arbitrarily, a vértex v £ V2 and 
let vi, t>2, • • •, vg be S of its neighbors. For each i, 1 < i < S, define an edge e¿ of 
the given cut as follows; if Vi G Vi then e¿ = {v, Vi}, otherwise, v¿ e V2 and since 
U is dominating there is at least one vértex u 6 U such that {u, w¿} is an edge; take 
such a u and put e¿ = {u, v¿}. The S edges e i , . . . , e¿ are all distinct and all lie in 
the given cut, contradicting the assumption that its size is less than S. This completes 
the proof. • 

Let G = (V,E) be a graph on n vértices, and suppose we wish to decide if 
G is n/2 edge-connected; that is, if its edge connectivity is at least n/2. Matula 
showed, by applying Lemma 1.2.3, that this can be done in time 0(n3). By the 
remark following the proof of Theorem 1.2.2, we can slightly improve it and get 
an 0(n8/3 logn) algorithm as follows. We first check if the minimum degree 5 of 
G is at least n/2. If not, G is not n/2 edge-connected, and the algorithm ends. 
Otherwise, by Theorem 1.2.2 there is a dominating set U = {ui,... ,Uk} of G, 
where k = O(logn), and it can in fact be found in time 0(n2). We now find, for 
each i, 2 < i < k, the minimum size s¿ of a cut that separates u\ from u¿. Each of 
these problems can be solved by solving a standard network flow problem in time 
0(n 8 / 3) [see, e.g., Tarjan (1983)]. By Lemma 1.2.3 the edge connectivity of G is 
simply the minimum between 5 and min2<¿<fc s¿. The total time of the algorithm is 
0(ns/3 log n), as claimed. 
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1.3 COMBINATORIOS 

A hypergraph is a pair H = (V,E), where V is a finite set whose elements are called 
vértices and E is a family of subsets of V, called edges. It is n-uniform if each of 
its edges contains precisely n vértices. We say that H has property B, or that it is 
two-colorable if there is a two-coloring of y such that no edge is monochromatic. 
Let m{n) denote the minimum possible number of edges of an n-uniform hypergraph 
that does not have property B. 

Proposition 1.3.1 [Erdos (1963a)] Every n-uniform hypergraph with less than 2n~l 

edges has property B. Therefore m(n) > 2n~1. 

Proof. Let H = (V,E) be an n-uniform hypergraph with less than 2 n _ 1 edges. 
Color V randomly by two colors. For each edge e e E, let Ae be the event that e is 
monochromatic. Clearly Pr [Ae] = 21_Tl. Therefore 

Pr \J Ae 
.eeE 

<£Pr [A e ]< l 
eeE 

and there is a two-coloring without monochromatic edges. • 

In Section 3.5 we present a more delicate argument, due to Radhakrishnan and 
Srinivasan, and based on an idea of Beck, that shows that 

/ / n \ J / 2 

The best known upper bound to m(n) is found by turning the probabilistic argu-
ment "on its head." Basically, the sets become random and each coloring defines an 
event. Fix V with v points, where we shall later optimize v. Let x be a coloring of V 
with a points in one color, b — v — a points in the other. Let S c V be a uniformly 
selected n-set. Then 

(a) + H 
Pr [S is monochromatic under x] = /v\ • 

\n) 

Let us assume v is even for convenience. As (JQ is convex, this expression is 
minimized when a = b. Thus 

Pr [S is monochromatic under x] > P > 

where we set 

p o 
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for notational convenience. Now let Si,..., Sm be uniformly and independently 
chosen n-sets, m to be determined. For each coloring \ let Ax be the event that none 
of the Si are monochromatic. By the independence of the Si 

Pi[Ax]<(l-p)r 

There are 2V colorings so 

Pr \M < 2 " ( l - p ) r 

When this quantity is less than 1 there exist Si,..., Sm so that no Ax holds; that is, 
S i , . . . , Sm is not two-colorable and henee m(n) < m. 

The asymptotics provide a fairly typical example of those encountered when 
employing the probabilistic method. We first use the inequality 1 — p < e~p. This 
is valid for all positive p and the terms are quite cióse when p is small. When 

üln2 

then 2"(1 — p)m < 2ve~pm < 1 so m(n) < m. Now we need to find v to minimize 
v/p. We may interpret p as twice the probability of picking n white balls from 
an urn with v/2 white and v/2 black balls, sampling without replacement. It is 
tempting to estimate p by 2~n+1, the probability for sampling with replacement. 
This approximation would yield m ~ v2n _ 1(ln2). As v gets smaller, however, the 
approximation becomes less accurate and, as we wish to minimize m, the trade-off 
becomes essential. We use a second order approximation 

P 
2(T) 

(ñ) 
-íl—n n 

i-0 

•2i 

V — l 

)l—n„—n /2v 

as long as v S> n3/2 , estimating 

v - 2z _ 
v2 

-i/v+0(i2/v2) 

Elementary calculus gives v = n2/2 for the optimal valué. The evenness of v may 
require a change of at most 2, which turns out to be asymptotically negligible. This 
yields the following result of Erdos (1964). 

eln2 2c\n Theorem 1.3.2 m{n) < (1 + o(l))—— n¿2 

Let T = {(Ai, Bi)}^=1 be a family of pairs of subsets of an arbitrary set. We 
cali T a (k,í)-system if |A¿¡ = k and |B¿| = i for all 1 < i < h, Ai n B, = 0 
and Í4J n B^ ¿̂ 0 for all distinct i, j with 1 < i, j < h. Bollobás (1965) proved the 
following result, which has many interesting extensions and applications. 
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h ;„„iu o\ „„t„m *u„„ h ^ fk+e\ Theorem 1.3.3 IfT = {{Ai, £ ¿ ) } i = 1 is a (k, l)-system then h < (fc+*). 

\h Proof. Put X = \Ji=1(Ai U Bi) and consider a random order ir of X. For each i, 
1 < i < h, let Xi be the event that all the elements of Ai precede all those of Bi in 
this order. Clearly Pr [Xi] = l / ( £ )• It is also easy to check that the events Xi 
are pairwise disjoint. Indeed, assume this is false and let n be an order in which all 
the elements of A¿ precede those of Bi and all the elements of Aj precede those of 
Bj. Without loss of generality we may assume that the last element of A, does not 
appear after the last element of Aj. But in this case, all elements of Ai precede all 
those of Bj, contradicting the fact that Ai n Bj ^ 0. Therefore all the events X¿ are 
pairwise disjoint, as claimed. It follows that 

1 > Pr V * ¿Pr[*] =*/(*£*), 

completing the proof. 

Theorem 1.3.3 is sharp, as shown by the family T = {(A, X \ A) : A c X, [A] — 
k},v/here X = {1,2,... ,k + ¿}. 

1.4 COMBINATORIA!. NUMBER THEORY 

A subset A of an abelian group G is called sum-free if (A + A) n A = 0; that is, if 
there are no ai , a^, a-¡, € A such that a,\ + ai = a^. 

Theorem 1.4.1 [Erdós (1965a)] Every set B = {b\,..., bn} ofn nonzero integers 
contains a sum-free subset A ofsize \A\ > | n . 

Proof. Let p = 3fc + 2 be a prime, which satisfies p > 2max{¡6¿|}™=1 and put 
C = {k+ l,k + 2,... ,2k + 1}. Observe that C is a sum-free subset of the cyclic 
group Zp and that 

\C\ _ fc + 1 1 
p-1 3k + l 3 

Let us choose at random an integer x, 1 < x < p, according to a uniform distribution 
on {1,2, . . . ,p — 1}, and define di,... ,dn by di = x6¿ (mod p), 0 < d¿ < p. 
Trivially, for every fixed i, 1 < i < n, as x ranges over all numbers 1,2,... ,p—l,di 
ranges over all nonzero elements of Zp and henee Pr [d¿ e C] = \C\/{p — 1) > | . 
Therefore the expected number of elements 6¿ such that di G C is more than n /3 . 
Consequently, there is an x, 1 < x < p and a subsequence A of B of cardinality 
\A\ > n/3, such that xa (mod p) £ C for all a e A. This A is clearly sum-free, 
since if ai + Ü2 = a% for some ai, 02,03 £ A then xa\ + xa^ = xa% (mod p), 
contradicting the fact that C is a sum-free subset of Zp. This completes the proof. • 
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Remark. The above proof works whenever p is a prime that does not divide any of 
the numbers 6¿. This can be used to design an efficient deterministic algorithm for 
finding a sum-free subset A of size bigger than \B\/3 in a given set B as above. In 
Alón and Kleitman (1990) it is shown that every set of n nonzero elements of an 
arbitrary abelian group contains a sum-free subset of more than 2n/7 elements, and 
that the constant 2/7 is best possible. The best possible constant in Theorem 1.4.1 is 
not known. 

1.5 DISJOINT PAIRS 

The probabilistic method is most striking when it is applied to prove theorems whose 
statement does not seem to suggest at all the need for probability. Most of the 
examples given in the previous sections are simple instances of such statements. In 
this section we describe a (slightly) more complicated result, due to Alón and Frankl 
(1985), which solves a conjecture of Daykin and Erdós. 

Let T be a family of m distinct subsets of X = {1 ,2 , . . . , n}. Let d(T) denote 
the number of disjoint pairs in F; that is, 

d ( f ) = | { { F , F ' } : F , F ' e f , f n F ' = f)}| . 

Daykin and Erdos conjectured that if m = 2(1/2+<5)ra, then, for every fixed 6 > 0, 
dí¿F) = o(?n2),asntendstoinfinity. This result follows from the following theorem, 
which is a special case of a more general result. 

Theorem 1.5.1 Let F be a family ofm = 2^'2+^n subsets of X = {1 ,2 , . . . , n}, 
where 5 > 0. Then 

d{T) < m2-s2/2 . (1.1) 

Proof. Suppose (1.1) is false and pick independently t members A\, Ai,..., At of T 
with repetitions at random, where t is a large positive integer, to be chosen later. We 
will show that with positive probability \AX U A2 U • • • U At\ > n/2 and still this 
unión is disjoint to more than 2"/2 distinct subsets of X. This contradiction will 
establish(l.l). 

In fact, 

P r p ! U A 2 U - - - U ^ Í | < n / 2 ] 

< J2 Pr[Ai<zS,i = l,...,t] (1.2) 
scx 

| S | = n / 2 

<- nnínn/2 ln(l/2+5)n\t r>n(l— St) 

Define 
v(B) = \{AeF:BnA = Q}\. 
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Clearly, 
£ v(B) = 2d{F) > 2m2-pl2 . 

Let y be a random variable whose valué is the number of members B € T that are 
disjoint to all the At (1 < i < t). By the convexity of zl the expected valué of Y 
satisfies 

E[y] 

Since y < m w e conclude that 

> i_.mf?ffiy>w-^. 
nv \ m ) 

ude that 

Pr Y > m 1 "^ 2 / 2 ' > m" t ó 2 / 2 . (1.3) 

One can check that for t = [1 + 1/<5~|, m1_t<52/2 > 2ra/2 and the right-hand side 
of (1.3) is greater than the right-hand side of (1.2). Thus, with positive probability, 
|̂ 41 U A2 U • • • U At | > n/2 and still this unión is disjoint to more than 2"/2 members 
of F. This contradiction implies inequality (1.1). • 

1.6 EXERCISES 

1. Prove that if there is a real p, 0 < p < 1 such that 

then the Ramsey number R(k, t) satisfies R(k, t) > n. Using this, show that 

ü(4, í) > 0 ( í 3 / 2 / ( l n í ) 3 / 2 ) . 

2. Suppose n > 4 and let H be an n-uniform hypergraph with at most 4™~1/3Tl 

edges. Prove that there is a coloring of the vértices of H by four colors so that 
in every edge all four colors are represented. 

3. (*) Prove that for every two independent, identically distributed real random 
variables X and Y, 

Pr [\X -Y\<2}< 3Pr [\X - Y\ < 1] . 

4. (*) Let G = {V, E) be a graph with n vértices and mínimum degree 5 > 10. 
Prove that there is a partition of V into two disjoint subsets A and B so that 
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\A\ < 0(n ln 5/8), and each vértex of B has at least one neighbor in A and at 
least one neighbor in B. 

5. (*) Let G = (V, E) be a graph on n > 10 vértices and suppose that if we add 
to G any edge not in G then the number of copies of a complete graph on 10 
vértices in it increases. Show that the number of edges of G is at least 8n — 36. 

6. (*) Theorem 1.2.1 asserts that for every integer k > 0 there is a tournament 
Tk = (V, E) with | V| > k such that for every set U of at most k vértices of 
Tfc there is a vértex v so that all directed ares {(v, u) : u e U} are in E. Show 
that each such tournament contains at least fl(k2k) vértices. 

7. Let {(AÍ,BÍ), 1 < i < h} be a family of pairs of subsets of the set of 
integers such that \Ai\ = k for all i and |B¿| = l for all i, Ai n fí¿ = 0 and 
(Ai n Bj) U (A3 C\BÍ)^% for all i ^ j . Prove that h < (k + l)k+l/(kkll). 

8. (Prefix-free codes; Kraft Inequality). Let F be a finite collection of binary 
strings of finite lengths and assume no member of F is a prefix of another one. 
Let Ni denote the number of strings of length i in F. Prove that 

E — < i . 

9. (*) (Uniquely decipherable codes; Kraft-McMillan Inequality). Let F be a 
finite collection of binary strings of finite lengths and assume that no two 
distinct concatenations of two finite sequences of codewords result in the same 
binary sequence. Let AT¿ denote the number of strings of length i in F. Prove 
that 

Ni E . < i . 
2i -

10. Prove that there is an absolute constant c > 0 with the following property. 
Let A be an n by n matrix with pairwise distinct entries. Then there is 
a permutation of the rows of A so that no column in the permuted matrix 
contains an increasing subsequence of length at least C\fa. 



THE PROBABILISTIC LENS: 

The Erdós-Ko-Rado 
Theorem 

A family J7 of sets is called intersecting \f A,B G T implies A n B ^ 0. Suppose 
n > 2k and let T be an intersecting family of fc-element subsets of an n-set, for 
definiteness {0, . . . ,n — 1}. The Erdós-Ko-Rado Theorem is that \T\ < (%Z\)-
This is achievable by taking the family of fc-sets containing a particular point. We 
give a short proof due to Katona (1972). 

Lemma 1 For 0 < s < n — 1 set As — {s, s + 1 , . . . , s + k — 1} where addition is 
modulo n. Then T can contain at most k ofthe sets As. 

Proof. Fix some As e T. All other sets At that intersect As can be partitioned into 
k — 1 pairs {^4S_¿, As+fc_¿}, (1 < i < k — 1), and the members of each such pairare 
disjoint. The result follows, since T can contain at most one member of each pair. • 

Now we prove the Erdós-Ko-Rado Theorem. Let a permutation a of {0 , . . . , n -
1} and i G {0 , . . . , n — 1} be chosen randomly, uniformly and independently and set 
A — {a(i),a(i + 1 ) , . . . , a(i + k — 1)}, addition again modulo n. Conditioning on 
any choice of a the lemma gives Pr [A G !F] < k/n. Henee Pr [A G T\ < k/n. But 
A is uniformly chosen from all fc-sets so 

and 
, „,. k ín\ (n — \ 

13 
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2 
Linearity of Expectation 

The search for truth is more precious than its possession. 
- Albert Einstein 

2.1 BASICS 

Let Xi,..., Xn be random variables, X = c\Xi + • • • + cnXn. Linearity of 
expectation states that 

E[X]=c1E[X1} + ---+cnE[Xn] . 

The power of this principie comes from there being no restrictions on the dependence 
or independence of the Xi. In many instances E [X] can easily be calculated by a 
judicious decomposition into simple (often indicator) random variables Xi. 

Let o be a random permutation on { 1 , . . . , n}, uniformly chosen. Let X(a) be 
the number of fixed points of a. To find E [X] we decompose X = Xy + • • • + Xn 

where X¿ is the indicator random variable of the event a(i) = i. Then 

E [Xi] = Pr [a(i) =i] = -

The Probabilistic Method, Third Edition By Noga Alón and Joel Spencer 
Copyright © 2008 John Wiley & Sons, Inc. 
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so that 
E [X] = - + ... + - = 1. 

n n 

In applications we often use that there is a point in the probability space for which 
X > E \X] and a point for which X < E [X]. We have selected results with a 
purpose of describing this basic methodology. The following result of Szele (1943) 
is oftentimes considered the first use of the probabilistic method. 

Theorem 2.1.1 There is a toumament T with n players and at least n!2~(n_1) 
Hamiltonian paths. 

Proof. In the random toumament let X be the number of Hamiltonian paths. For each 
permutation a let Xa be the indicator random variable for a giving a Hamiltonian 
path; that is, satisfying {(r(i), <J(Í + 1)) € T for 1 < i < n. Then X = J2 Xa and 

E{X] = ^ E [ X ( T ] = n ! 2 " ( n - 1 ) . 

Thus some toumament has at least E [X] Hamiltonian paths. • 

Szele conjectured that the máximum possible number of Hamiltonian paths in a 
toumament on n players is at most n!/(2 — o(l))n . This was proved in Alón (1990a) 
and is presented in The Probabilistic Lens: Hamiltonian Paths (following Chapter4). 

2.2 SPLITTING GRAPHS 

Theorem 2.2.1 Let G = (V, E) be a graph with n vértices and e edges. Then G 
contains a bipartite subgraph with at least e/2 edges. 

Proof. Let T C V be a random subset given by Pr [ I E T ] = 1/2, these choices 
being mutually independent. Set B = V — T. Cali an edge {x, y} crossing if exactly 
one of x, y is in T. Let X be the number of crossing edges. We decompose 

X = 2_^ Xxy, 
{x,y}£E 

where Xxy is the indicator random variable for {x, y} being crossing. Then 

E [Xxy] = -

as two fair coin flips have probability 1/2 of being different. Then 

{x,y}£E 
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Thus X > e/2 for some choice of T and the set of those crossing edges form a 
bipartite graph. • 

A more subtle probability space gives a small improvement (which is tight for 
complete graphs). 

Theorem 2.2.2 IfG has 2n vértices and e edges then it contains a bipartite subgraph 
with at least en/(2n — 1) edges. IfG has 2n + 1 vértices and e edges then it contains 
a bipartite subgraph with at least e(n + l)/2n + 1 edges. 

Proof. When G has 2n vértices let T be chosen uniformly from among all n-element 
subsets of V. Any edge {x, y} now has probability n/(2n — 1) of being crossing 
and the proof concludes as before. When G has 2n + 1 vértices choose T uniformly 
from among all n-element subsets of V and the proof is similar. • 

Here is a more complicated example in which the choice of distribution requires 
a preliminary lemma. Let V = Vi U • • • U Vk, where the V¿ are disjoint sets of size 
n. Let h :Vk —> {±1} be a two-coloring of the fc-sets. A fc-set E is crossing if it 
contains precisely one point from each V¿. For S C V set h(S) = Yl h(E), the sum 
over all fc-sets ECS. 

Theorem 2.2.3 Suppose h(E) — +1 for all crossing k-sets E. Then there is an 
S C V for which 

\h{S)\>ckn
k. 

Here ck is a positive constant, independent ofn. 

Lemma 2.2.4 Let Pk denote the set of all homogeneous polynomials f(pi, •. • ,pk) 
of degree k with all coefficients having absolute valué at most one and P1P2 • • -Pk 
having coefficient one. Then for all f G Pk there exist Pi,. • • ,Pk € [0,1] with 

|/(Pl,---,Pfc)| > Cfc-

Here ck is positive and independent of f. 

Proof. Set 
M ( / ) = max | / (p i , . . . , p f c ) | . 

Pi,-,Pfc€[0,l] 

For / e Pk, M(f) > 0 as / is not the zero polynomial. As Pk is compact and 
M : Pk —> R is continuous, M must assume its mínimum c¿. • 

Proof [Theorem 2.2.3]. Define a random S C V by setting 

PT[X e S}=PÍ, x e V , 

these choices being mutually independent, with p¿ to be determined. Set X = h(S). 
For each fc-set E set 

x = í h{E) ÍÍECS, 
1 0 otherwise. 
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Say E has type ( a i , . . . , ak) if \E n V¿| = a¿, 1 < i < k. For these E, 

E [XE] = h(E)Pr [ECS}= h{E)p\í • ..pa
k" . 

Combining terms by type 

E[*]= E PT---PT E ^ ) -
aiH hofc = fc B of type (o i , - - ,a f c ) 

When ai = . . . = cifc = 1 all /i(¿?) = 1 by assumption so 

E w 
B of type (i,...,i) 

nk 

For any other type there are fewer than nk terms, each ±1, so 

E w 
£ of type (a.1,...,afc) 

<n f c 

Thus 
E[X]=nkf(Pl,...,pk), 

where / e Pt, as defined by Lemma 2.2.4. 
Now selectpi,. . . ,pk 6 [0,1] with | / ( p i , . . . ,pfc)l > cfc. Then 

E[\X\]>\E[X]\>ckn
k. 

Some particular valué of \X\ must exceed or equal its expectation. Henee there is a 
particular set S C y with |X| = 1/1(5)1 > ckn

k. • 

Theorem 2.2.3 has an interesting application to Ramsey Theory. It is known [see 
Erdos (1965b)] that given any coloring with two colors of the fc-sets of an n-set there 
exist k disjoint m-sets, m = ©((lnn)1^* - 1)) , so that all crossing fc-sets are the 
same color. From Theorem 2.2.3 there then exists a set of size 0((lnn)1^ fc_1- )), at 
least i + ek of whose fc-sets are the same color. This is somewhat surprising since it 
is known that there are colorings in which the largest monochromatic set has size at 
most the k — 2-fold logarithm of n. 

2.3 TWOQUICKIES 

Linearity of expectation sometimes gives very quick results. 

Theorem 2.3.1 There is a two-coloring ofKn with at most 

I21-© 
a 
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monochromatic Ka. 

Proof [Outline]. Take a random coloring. Let X be the number of monochromatic 
Ka and find E [X]. For some coloring the valué of X is at most this expectation. • 

In Chapter 16 it is shown how such a coloring can be found deterministically and 
efficiently. 

Theorem 2.3.2 There is a two-coloring of Km^n with at most 

monochromatic Ka^. 

Proof [Outline]. Take a random coloring. Let X be the number of monochromatic 
Ka¿ and find E [X]. For some coloring the valué of X is at most this expectation. • 

2.4 BALANCING VECTORS 

The next result has an elegant non probabilistic proof, which we defer to the end of 
this chapter. Here \v\ is the usual Euclidean norm. 

Theorem 2.4.1 Let v\,...,vn £ Kn, all \v¡\ = 1. Then there exist t\,..., e„ = ±1 
so that 

\t\vi -\ he„u„j < Vñ, 

and also there exist e\,..., en = ±1 so that 

\e1v1 H \-envn\ > y/ñ. 

Proof. Let e i , . . . , en be selected uniformly and independently from { — 1, +1}. Set 

X = ¡dvi H \-envn\
2 . 

Then 
n n 

x = Y1Y1 ei€JVi • ví • 
Í=I Í = I 

Thus 
n n 

E [*] = £ $ > • v¿Eke¿l-
¿=i ¿=i 

When i ¿ j , E [e¿ej] = E [e¿] E [ê ] = 0. When i = j , e¡ = 1 so E [ef] = 1. Thus 

n 

E \X] = \^ Vi • Vi = n. 
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Henee there exist specific e i , . . . , e„ = ±1 with X > n and with X < n. Taking 
square roots gives the theorem. • 

The next result includes part of Theorem 2.4.1 as a linear translation of the 
P\ = • •' = Pn = 1/2 case. 

Theorem 2.4.2 Let vu ... ,vn e Rn, all \VÍ\ < 1. Let pi,...,pn e [0,1] be 
arbitrary and set w = p\V\ + • • • + pnvn. Then there exist 6\,..., en € {0,1} so 
that, setting v = t\V\ + • • • + envn, 

i i \/ñ 
\w-v\<—. 

Proof. Pick e¿ independently with 

Vr[el = l}=pl, Pr[e¿ = 0] = l ~ P l . 

The random choice of e¿ gives a random v and a random variable 

X = \w-v\2 . 

We expand 

X ^2(PI - e*)vi 
¿ = 1 ] = 1 

so that 

For¿ T¿ j , 

For i = j , 

E w = E E yi •v^ [fe ^ e*)fe - ei)i • 
i = l ] = 1 

E [{pt - £i){p3 - ej)] =E\pi- el] E [pj - ej] = 0 . 

E [(Pl - et)
2} = Pi{pt - l ) 2 + (1 - Pi)p¡ = P i ( l - P i ) < - , 

(E [(pi — e¿)2] = Var [e»], the variance to be discussed in Chapter4.) Thus 

n i n 

E [X] = X>(i -P l)N 2 < 7 E H2 ^ 
¿=1 i = l 

and the proof concludes as in that of Theorem 2.4.1. 

n 
4 
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2.5 UNBALANCING LIGHTS 

Theorem 2.5.1 Let o¿j = ±1 for 1 < i,j < n. Then there exist Xi,yj = ±1, 
1 < i,j' < n so that 

¿ ¿ oyarij/j > ( A/f + o(l) ) n 3 / 2 . 

This result has an amusing interpretation. Let ann x n array of lights be given, 
each either on (ay = +1) or off (a^ = —1). Suppose for each row and each column 
there is a switch so that if the switch is pulled (x¿ = — 1 for row i and y¡ = —1 for 
column j) all of the lights in that line are "switched": on to off or off to on. Then 
for any initial configuration it is possible to perform switches so that the number of 
lights on minus the number of lights off is at least (y/2/ir + o(l))n3/2 . 

Proof. Forget the x's. Let y\,..., yn = ±1 be selected independently and uniformly 
and set 

n n 
R i = S¿2 aijVj , R = X] 1̂ 1 ' 

j = l ¿=1 

Fix i. Regardless of ay, a^yj is ±1 with probability 1/2 and their valúes (over j) 
are independent; that is, whatever the ¿th row is initially after random switching it 
becomes a uniformly distributed row, all 2™ possibilities equally likely. Thus Ri 
has distribution Sn — the distribution of the sum of n independent uniform { — 1,1} 
random variables — and so 

E[ | i2 i | ]=E[ |5„ | ] = 

These asymptotics may be found by estimating Sn by y/ñN, where N is standard 
normal and using elementary calculus. Alternatively, a closed form 

Ens.^.a-^'l-í/jj 
may be derived combinatorially (a problem in the 1974 Putnam competition!) and 
the asymptotics follows from Stirling's formula. 

Now apply linearity of expectation to R: 

E[R} = J2v{\Ri\]=(]fl + o(l)\nV\ 

There exist y\,...,yn = ±1 with R at least this valué. Finally, pick x¿ with the 
same sign as Ri so that 

n n n n / nr" \ 

Y^xiY.^m = Y.x-Ri = H\R^ = R^ v - + °(1)U3/2- • 
¿=1 j=l i=l ¿=1 \ ^ ) 
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Another result on unbalancing lights appears in The Probabilistic Lens: Unbal-
ancing Lights (following Chapter 13). The existence of Hadamard matrices and 
the discussion in Section 9.1 show that the estímate in the last theorem cannot be 
improved to anything bigger than v?¡2. 

2.6 WITHOUT COIN FLIPS 

A non probabilistic proof of Theorem 2.2.1 may be given by placing each vértex in 
either T or B sequentially. At each stage place x in either T or B so that at least half 
of the edges from x to previous vértices are crossing. With this effective algorithm 
at least half the edges will be crossing. 

There is also a simple sequential algorithm for choosing signs in Theorem 2.4.1. 
When the sign for t>¿ is to be chosen, a partial sum w = ei^i + • • • + e¿_i?;¿_i has 
been calculated. Now if it is desired that the sum be small select e¿ = ±1 so that 
e¿w¿ makes an obtuse (or right) angle with w. If the sum need be big make the angle 
acute or right. In the extreme case when all angles are right angles, Pythagoras and 
induction give that the final w has norm s/ñ, otherwise it is either less than \fñ or 
greater than s/ñ as desired. 

For Theorem 2.4.2 a greedy algorithm produces the desired e¿. Given v\,..., vn £ 
R n ,p i , • • • ,pn G [0,1] suppose e i , . . . , es_i € {0,1} have already been chosen. Set 
ws-i = J2iZ\ ÍPi ~ ti)vi' the partial sum. Select es so that 

s 

ws = ws^i + (ps - es)vs = ^2(pi - ÍÍ)VÍ 

has minimal norm. A random es € {0,1} chosen with Pr [es = 1] = ps gives 

E [ K | 2 ] = \ws-1\
2 + 2ws.1-vsE[ps-es} + \vs\

2E[ps-es}
2 

= |w s_i|2 +pa(l -Ps)\Vs\2 

so for some choice of es e {0,1}, 

Kl2 < K- i | 2 +p s ( i -p s )H 2 . 
As this holds for all 1 < s < n (taking WQ = 0), the final 

n 

|u>n|
2 < ^2PÍ(1 - p¿ )k l 2 -

i=\ 

While the proofs appear similar, a direct implementation of the proof of Theorem 2.4.2 
to find e i , . . . , e„ might take an exhaustive search with exponential time. In applying 
the greedy algorithm at the sth stage one makes two calculations of \ws |

2, depending 
on whether es = 0 or 1, and picks that es giving the smaller valué. Henee there are 
only a linear number of calculations of norms to be made and the entire algorithm 
takes only quadratic time. In Chapter 16 we discuss several similar examples in a 
more general setting. 
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2.7 EXERCISES 

1. Suppose n > 2 and let H = (V, E) be an n-uniform hypergraph with \E\ = 
4™_1 edges. Show that there is a coloring of V by four colors so that no edge 
is monochromatic. 

2. Prove that there is a positive constant c so that every set A of n nonzero reals 
contains a subset B C Aofsize|B| > en so that there are no 61,62163, 64 G B 
satisfying 

61 + 2b2 = 263 + 264 . 

3. Prove that every set of n non zero real numbers contains a subset A of strictly 
more than ra/3 numbers such that there are no 0,1,(12,0.3 e A satisfying 
ai + a,2 — a3. 

4. Suppose p > n> 10m2, with p prime, and let 0 < ai < a2, < • • • < am < p 
be integers. Prove that there is an integer x, 0 < x < p for which the m 
numbers 

(XÜÍ mod p) mod n, 1 < i < m 

are pairwise distinct. 

5. Let H be a graph, and let n > \V(H)\ be an integer. Suppose there is a 
graph on n vértices and t edges containing no copy of H, and suppose that 
tk > n2 loge n. Show that there is a coloring of the edges of the complete 
graph on n vértices by k colors with no monochromatic copy of H. 

6. (*) Prove, using the technique shown in The Probabilistic Lens: Hamiltonian 
Paths, that there is a constant c > 0 such that for every even n > 4 the following 
holds: For every undirected complete graph K on n vértices whose edges are 
colored red and blue, the number of alternating Hamiltonian eyeles in K (i.e., 
properly edge-colored eyeles of length n) is at most 

c n ! 
n — . 

2n 

1. Let T be a family of subsets ofTV = {1,2,... ,n}, and suppose there are no 
A, B 6 T satisfying A c B. Let a 6 Sn be a random permutation of the 
elements of N and consider the random variable 

X = | { ¿ : H l ) , ( 7 ( 2 ) ) . . . ) < 7 ( i ) } G ^ } | . 

By considering the expectation of X prove that |T\ < (, n ^ 2 , ) . 

8. (*) Let X be a collection of pairwise orthogonal unit vectors in Mn and suppose 
the projection of each of these vectors on the first k coordinates is of Euclidean 
norm at least e. Show that \X\ < k/e2, and this is tight for all e2 = k/2r < 1. 

9. Let G — (V, E) be a bipartite graph with n vértices and a list S(v) of more 
than log2 n colors associated with each vértex v G V. Prove that there is a 
proper coloring of G assigning to each vértex v a color from its list S(v). 



THE PROBABILISTIC LENS: 

Brégman 's Theorem 

Let A =• [a,ij] be an n x n matrix with all a¿3- £ {0,1}. Let r¿ = ^ 1 < í < n a¿j be 
the number of ones in the ¿th row. Let S be the set of permutations cr e Sn with 
a¿,CT¿ = 1 for 1 < i < n. Then the permanent per (A) is simply |5 | . The following 
result was conjectured by Mine and proved by Brégman (1973). The proof presented 
here is similar to that of Schrijver (1978). 

Theorem 1 [Brégman 's Theorem] per (A) < JJ (r¿!)1/r i . 
l<¿<n 

Pick o e S and r e Sn independently and uniformly. Set A^ = A. Let RT\ 
be the number of ones in row r l in A^1'. Delete row TÍ and column crrl from A^ 
to give A^2\ In general, let A^ denote A with rows r l , . . . , r(z — 1) and columns 
a r l , . . . , a r ( i — 1) deleted and let i?T¿ denote the number of ones of row TÍ in 
(This is nonzero as the (rrith column has a one.) Set 

L = L(<7,r)= J ] fi„. 
l < i < n 

We think, roughly, of L as Lazyman's permanent calculation. There are RT\ 
choices for a one in row r l , each of which leads to a different subpermanent cal-
culation. Instead, Lazyman takes the factor RT\, takes the one from permutation a, 
and examines A^K As a G S is chosen uniformly Lazyman tends toward the high 
subpermanents and so it should not be surprising that he tends to overestimate the 
permanent. To make this precise we define the geometric mean G[Y]. IfY > 0 takes 
valúes a,\,... ,as with probabilities p i , . . . ,ps, respectively, then G[Y] = Yl aT • 
Equivalently, G[Y] = eEIln Y ¡ . Linearity of expectation translates into the geometric 
mean of a product being the product of the geometric means. 

24 



The Probabilistic Lens: Brégman's Theorem 25 

Claim 2.7.1 per (4) <G[L\. 

Proof. We show this for any fixed r . Set r 1 = 1 for convenience of notation. We use 
induction on the size of the matrix. Reorder, for convenience, so that the first row has 
ones in the first r columns, where r = r\. For 1 < j < r let tj be the permanent of 
A with the first row and jth column removed or, equivalently, the number of a £ S 
with crl — j . Set 

¿H \-tr 

r 
so that per(A) = rt. Conditioning on al = j,R2- • • Rn is Lazyman's calculation of 
per (^ 2 ) ) , where A^ is A with the first row and jth column removed. By induction 

G[R2---Rn\al=j]>t 3 

and so 

G[L] > HK) t j / p e r ( A ) = r [ I # / r t . 
j = l J=l 

Lemma 2 I TT £ 

Proof. Taking logarithms, this is equivalent to 

> í l n í . - J ^ í j - l n í j 

which follows from the convexity of the function f(x) = x ln x. 

Applying the lemma, 

G[L] >rY[ tt¡'rt > r{tl)l/t = rt = per(A). 
i = i 

Now we calcúlate G[L] conditional on a fixed a. For convenience of notation 
reorder so that ai = i, all i, and assume that the first row has ones in precisely the 
first r\ columns. With r selected uniformly the columns 1 , . . . , r i are deleted in 
order uniform over all r\! possibilities. Ri is the number of those columns remaining 
when the first column is to be deleted. As the first column is equally likely to be in 
any position among those r\ columns ü i is uniformly distributed from 1 to r\ and 
G[ñi] = (ri!)1 / , r i . "Linearity" then gives 

G[L] = G =nG^= i i(r< !) i / r i 
¿=i ¿=i 
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The overall G[L] is the geometric mean of the conditional G[L] and henee has the 
same valué. That is, 

n 

pev(A) < G\L] = Y[(ri\y^ . 



3 
Alterations 

Beauty is the first test: there is no permanent place in the world for ugly 
mathematics. 
- G. H. Hardy 

The basic probabilistic method was described in Chapter 1 as follows: Trying to 
prove that a structure with certain desired properties exists, one defines an appropriate 
probability space of structures and then shows that the desired properties hold in this 
space with positive probability. In this chapter we consider situations where the 
"random" structure does not have all the desired properties but may have a few 
"blemishes." With a small alteration we remove the blemishes, giving the desired 
structure. 

3.1 RAMSEY NUMBERS 

Recall from Section 1.1 that R(k, l) > n means there exists a two-coloring of the 
edges of Kn by red and blue so that there is neither a red Kk ñor a blue K¡. 

Theorem 3.1.1 For any integer n, R(k, k) > n - I 121 " ^ . 

The Probabilistic Method, Third Edition By Noga Alón and Joel Spencer 
Copyright © 2008 John Wiley & Sons, Inc. 

27 
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Proof. Consider a random two-coloring of the edges of Kn obtained by coloring 
each edge independently either red or blue, where each color is equally likely. For 
any set Rofk vértices let XR be the indicator random variable for the event that the 
induced subgraph of Kn on R is monochromatic. Set X = J2 XR, the sum over all 

such R. By linearity of expectation, E [X] = Y^ E [XR] = m with m = (£)21 -(2). 
Thus there exists a two-coloring for which X < m. Fix such a coloring. Remove 
from Kn one vértex from each monochromatic fc-set. At most m vértices have been 
removed (we may have "removed" the same vértex more than once but this only 
helps) so s vértices remain with s > n — m. This coloring on these s points has no 
monochromatic fc-set. • 

We are left with the "calculus" problem of finding that n which will optimize the 
inequality. Some analysis shows that we should take n ~ e_1fc2fe//2(l — o(l)) giving 

R{k,k)> - ( l + o(l))fc2fe/2. 

A careful examination of Proposition 1.1.1 gives the lower bound 

R(k,k) > - ^= (1 + o(\))k2kl2 . 

The more powerful Lovász Local Lemma (see Chapter 5) gives 

ñ. 
R(k,k)> — (l + o(l))k2k/2 . 

The distinctions between these bounds may be considered inconsequential since the 
best known upper boundforñ(fc,A;)is(4 + o(l))fc. The upper bounds do not involve 
probabilistic methods and may be found, for example, in Graham, Rothschild and 
Spencer (1990). We give all three lower bounds in following our philosophy of 
emphasizing methodologies rather than results. 

In dealing with the off-diagonal Ramsey numbers the distinction between the basic 
method and the alteration is given in the following two results. 

Theorem 3.1.2 If there exists p 6 [0,1] with 

then R(k, l) > n. 

Theorem 3.1.3 For all integers n and p G [0,1], 

fl(fc,0>n-QP(Í) - ( ; ) ( ! -p)G). 

Proof. In both cases we consider a random two-coloring of Kn obtained by coloring 
each edge independently either red or blue, where each edge is red with probability 
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p. Let X be the number of red fc-sets plus the number of blue /-sets. Linearity of 
expectation gives 

Em=Qp(*) + Q(i^)G) 
For Theorem 3.1.2, E [X] < 1 so there exists a two-coloring with X = 0. For 
Theorem 3.1.3 there exists a two-coloring with s "bad" sets (either red fc-sets or blue 
/-sets), s < E [X]. Removing one point from each bad set gives a coloring of at least 
n — s points with no bad sets. • 

The asymptotics of Theorems 3.1.2 and 3.1.3 can get fairly complex. Oftentimes 
Theorem 3.1.3 gives a substantial improvement on Theorem 3.1.2. Even further 
improvements may be found using the Lovász Local Lemma. These bounds have 
been analyzed in Spencer (1977). 

3.2 INDEPENDENT SETS 

Here is a short and sweet argument that gives roughly half of the celebrated Turán's 
Theorem. a(G) is the independence number of a graph G; a(G) > t means there 
exist t vértices with no edges between them. 

Theorem 3.2.1 Let G = (V, E) have n vértices and nd/2 edges, d > 1. Then 
a(G) > n/2d. 

Proof. Let S C V be a random subset defined by 

Pr [veS]=p, 

p to be determined, the events v € S being mutually independent. Let X = \S\ and 
let Y be the number of edges in G\s- For each e = {i, j} e E let Ye be the indicator 
random variable for the event i,j £ S so that Y = J2eeB ^é- F° r a ny s u c n e> 

E[Ye}=Pr{i,jeS]=p2, 

so by linearity of expectation, 

E[y] = X>[re] = ^ P
2 . 

eeE 

Clearly E [X] = np, so, again by linearity of expectation, 

E[X-Y]=np-rfp\ 

We setp = 1/d (here using d > 1) to maximize this quantity, giving 

E[*-H = Í . 
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Thus there exists a specific S for which the number of vértices of S minus the number 
of edges in S is at least n/2d. Select one vértex from each edge of S and delete it. 
This leaves a set S* with at least n/2d vértices. All edges having been destroyed, S* 
is an independent set. • 

The full result of Turan is given in The Probabilistic Lens: Turán's Theorem 
(following Chapter 6). 

3.3 COMBINATORIA!. GEOMETRY 

For a set S of n points in the unit square U, let T(S) be the minimum área of a 
triangle whose vértices are three distinct points of S. Put T(n) = max T(S), where 
S ranges over all sets of n points in U. Heilbronn conjectured that T(n) = 0(l/n2). 
This conjecture was disproved by Komlós, Pintz and Szemerédi (1982) who showed, 
by a rather involved probabilistic construction, that there is a set S of n points in U 
such that T(S) = íí(logn/n2). As this argument is rather complicated, we only 
present here a simpler one showing that T(n) = Í2(l/n2). 

Theorem 3.3.1 There is a set S ofn points in the unit square U such that T{S) > 
l/(100n2). 

Proof. We first make a calculation. Let P, Q, R be independently and uniformly 
selected from U and let \i = ¡i(PQR) denote the área of the triangle PQR. We 
bound Pr [fi < e] as follows. Let x be the distance from P to Q so that 

Pr [b < x < b + Ab] < n(b + Ab)2 - nb2 

and in the limit Pr [b < x < b + db) < 2irb db. Given P, Q at distance b, the altitude 
from R to the line PQ must have height h < 2e/b and so R must lie in a strip of 
width 4e/b and length at most \[2. This occurs with probability at most 4\/2e/b. As 
0 < b < \¡2 the total probability is bounded by 

rs/2 

/ (2Trb)(iV2e/b)db= lQne. 
Jo 

Now let P\,..., P2n be selected uniformly and independently in U and let X 
denote the number of triangles PiPjPk with área less than l/(100n2). For each 
particular i,j, k the probability of this occurring is less than 0.6n~2 and so 

E [ X ] < ( 2
3

n ) ( 0 . 6 n - 2 ) < n . 

Thus there exists a specific set of 2n vértices with fewer than n triangles of área less 
than l/(100n2). Delete one vértex from the set from each such triangle. This leaves 
at least n vértices and now no triangle has área less than l/(100n2). • 
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We note the following construction of Erdós showing T(n) > l/(2(n — l)2) with 
n prime. On [0, n — 1] x [0, n — 1] consider the n points (x, x2), where x2 is reduced 
modn (more formally, (x, y) where y = x2 mod n and 0 < y < n). If some three 
points of this set were collinear they would line on a line y = mx + b and m would be 
a rational number with denominator less than n. But then in Z^ the parábola y = x2 

would intersect the line y = mx + bat three points, so that the quadratic x2 — mx — b 
would have three distinct roots, an impossibility. Triangles between lattice points in 
the plañe have as their áreas either half-integers or integers, henee the áreas must be 
at least 1/2. Contracting the plañe by an n — 1 factor in both coordinates gives the 
desired set. While this gem does better than Theorem 3.3.1 it does not lead to the 
improvements of Komlós, Pintz and Szemerédi. 

3.4 PACKING 

Let C be a bounded measurable subset of Rd and let B{x) denote the cube [0, x]d of 
side x. A packing of C into B{x) is a family of mutually disjoint copies of C, all 
lying inside B(x). Let f(x) denote the largest size of such a family. The packing 
constant S = 6(C) is defined by 

5{C) = n{C) lim f(x)x~d , 

where fi(C) is the measure of C. This is the maximal proportion of space that may 
be packed by copies of C (this limit can be proved always to exist but even without 
that result the following result holds with lim replaced by lim inf.) 

Theorem 3.4.1 Let C be bounded, convex and centrally symmetric around the origin. 
ThenS{C) >2~d-\ 

Proof. Let P, Q be selected independently and uniformly from B(x) and consider the 
event (C + P) n (C + Q) ^ 0. For this to oceur we must have, for some c\, c^ £ C, 

P-Q = Cl-C2 = 2 ^ ^ e 2C 

by central symmetry and convexity. The event P G Q + 2C has probability at most 
p(2C)x~d for each given Q, henee 

Pr [{C. + P) n (C + Q) jí 0] < p(2C)x-d = 2d
x-

d¡i{C). 

Now let P\,..., P n be selected independently and uniformly from B(x) and let X 
be the number of i < j with (C + P¿)n(C + Pj) ^ 0. From linearity of expectation, 

E[X] < y2dx"V(C). 

Henee there exists a specific choice of n points with fewer than that many intersecting 
copies of C. For each P¿, P, with (C + P¿) n (C + Pj) ^ 0 remove either P¿ or 
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Pj from the set. This leaves at least n — (n2 /2)2dx~d [i(C) nonintersecting copies 
of C. Set n = xd2~d/n(C) to maximize this quantity, so that there are at least 
x
d2~d~l/fi(C) nonintersecting copies of C. These do not all lie inside B(x) but, 

letting w denote an upper bound on the absolute valúes of the coordinates of the 
points of C, they do all lie inside a cube of side x + 2w. Henee 

f(x + 2w) >xd2-d-1/fi(C) 

and so 8{C) > lim n(C)f(x + 2w){x + 2w)~d > 2~d-1. • 
x—>oo 

A simple greedy algorithm does somewhat better. Let P\,..., Pm be any maximal 
subset of [0, x]d with the property that the sets C + P¿ are disjoint. We have seen 
that C + Pi overlaps C + P if and only if P e 2C + P¿. Henee the sets 2C + P¿ 
must cover [(^x]^. As each such set has measure ¡JL{2C) = 2d^i(C) we must have 
m > xd2~d/fi(C). As before, all sets C + P¡ lie in a cube of side x + 2w, w a 
constant, so that 

f{x + 2w)>m> xd2-d/ii(C) 

and so 

5{C) >2~d. 

A still further improvement appears in The Probabilistic Lens: Efficient Packing 
(following Chapter 14). 

3.5 RECOLORING 

Suppose that a random coloring leaves a set of blemishes. Here we apply a random 
recoloring to the blemishes to remove them. If the recoloring is too weak then not 
all the blemishes are removed. If the recoloring is too strong then new blemishes 
are created. The recoloring is given a parameter p and these two possibilities are 
decreasing and increasing functions of p. Calculus then points us to the optimal p. 

We use the notation of Section 1.3 on property B: m(n) > m means that given 
any n-uniform hypergraph H = (V, E) with m edges there exists a two-coloring of 
V so that no edge is monochromatic. Beck (1978) improved Erdós' 1963 bound to 
m{n) — f](2™n1/3). Building on his methods, Radhakrishnan and Srinivasan (2000) 
proved m(n) = ü (2 n (n/ lnn) 1 / 2 ) and it is that proof we shall give. While this 
proof is neither long ñor technically complex it has a number of subtle and beautiful 
steps and it is not surprising that it took more than thirty-five years to find it. That 
said, the upper and lower bounds on m(n) remain quite far apart! 

Theorem 3.5.1 If there exists p 6 [0,1] with fc(l — p)n + k2p < 1 then m(ri) > 
2n~1k. 

Corollary 3.5.2 m{n) = ü (2™(n/lnn)1/2). 
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Proof. Bound 1 — p < e p. The function ke pn + k2p is minimized at p = 
\n(n/k)/n. Substituting back in, if 

— ( l + l n ( n / / c ) ) < l 
n 

then the condition of Theorem 3.5.1 holds. This inequality is true when k = 
c(n/ ln n)1/2 for any c < \¡2 with n sufficiently large. • 

The condition of Theorem 3.5.1 is somewhat typical; one wants the total failure 
probability to be less than 1 and there are two types of failure. Oftentimes one 
finds reasonable bounds by requiring the stronger condition that each failure type 
has probability less than one-half. Here k2p < ^ gives p < \k~2. Plugging the 
maximal possiblep into the second inequality k(í - p)n < \ gives 2fc2 ln(2A:) < n. 
This again holds when k = c(n/ ln n) 1 / 2 though now we have the weaker condition 
c < 1. We recommend this rougher approach as a first attempt at a problem, when 
the approximate range of the parameters is still in doubt. The refinements of calculus 
can be placed in the published work! 

Proof [Theorem 3.5.1]. Fix H = (V, E) with m = 2n~1k edges and p satisfying 
the condition. We describe a randomized algorithm that yields a coloring of V. It 
is best to preprocess the randomness: Each v G V flips a first coin, which comes 
up heads with probability | and a second coin, which comes up heads (representing 
potential recoloration) with probability p. In addition (and importantly), the vértices 
of V are ordered randomly. 

Step 1. Color each v eV red if its first coin was heads, otherwise blue. Cali this 
the first coloring. Let D (for dangerous) denote the set of v G V that lie in some 
(possibly many) monochromatic e £ E. 

Step 2. Consider the elements of D sequentially in the (random) order of V. 
When d is being considered cali it still dangerous if there is some (possibly many) 
e G H containing d that was monochromatic in the first coloring and for which no 
vértices have yet changed color. If d is not still dangerous then do nothing. But if 
it is still dangerous then check its second coin. If it is heads then change the color 
of d, otherwise do nothing. We cali the coloring at the time of termination the final 
coloring. 

We say the algorithm fails if some e e H is monochromatic in the final coloring. 
We shall bound the failure probability by fc(l — p)n + k2p. The assumption of 
Theorem 3.5.1 then assures us that with positive probability the algorithm succeeds. 
This, by our usual magic, means that there is some running of the algorithm which 
yields a final coloring with no monochromatic e; that is, there exists a two-coloring 
of V with no monochromatic edge. For convenience, we bound the probability that 
some e G H is red in the final coloring; the failure probability for the algorithm is at 
most twice that. 

An e G E can be red in the final coloring in two ways. Either e was red in the first 
coloring and remained red through to the final coloring or e was not red in the first 
coloring but was red in the final coloring (the structure of the algorithm assures us 
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that vértices cannot change color more than once). Let Ae be the first event and Ce 

the second. Then 
Pr[¿ e ] = 2 - " ( l - p ) n . 

The first factor is the probability e is red in the first coloring, that all first coins of e 
carne up heads. The second factor is the probability that all second coins carne up 
tails. If they all did, then n o « E e would be recolored in Step 2. Inversely, if any 
second coins o f u g e carne up heads there would be a first v (in the ordering) that 
carne up heads. When it did v was still dangerous as e was still monochromatic and 
so v does look at its second coin and change its color. We have 

2 ^ P r [ i 4 e ] = A : ( l - p r 
eÉff 

giving the first addend of our failure probability. 
In Beck's 1978 proof, given in our first edition, there was no notion of "still 

dangerous" — every d G D changed its color if and only if its second coin was 
heads. The valúes Pr [Ae] = 2 _ n ( l — p)n are the same in both arguments. Beck's 
had bounded Pr [Ce] < k2pepn. The new argument avoids excessive recoloration 
and leads to a better bound on Pr [Ce]. We turn to the ingenious bounding of Pr [Ce]. 

For distinct e,feEwe say e Mames f if: 

• e, / overlap in precisely one element. Cali it v. 

• In the first coloring / was blue and in the final coloring e was red. 

• In Step 2 v was the last vértex of e that changed color from blue to red. 

• When v changed its color / was still entirely blue. 

Suppose Ce holds. Some points of e changed color from blue to red so there is a 
last point v that did so. But why did v flip its coin? It must have been still dangerous. 
That is, v must be in some (perhaps many) set / that was blue in the first coloring 
and was still blue when v was considered. Can e, / overlap in another vértex v' ? 
No! For such a v' would necessarily have been blue in the first coloring (as v' G f) 
and red in the final coloring (as v' G e), but then v' changed color before v. Henee / 
was no longer entirely blue when v was considered, contradicting the assumption on 
/ . Therefore, when Ce holds, e blames some / . Let Be¡ be the event that e blames 
/ . Then £ e Pr [Ce] < ^ejtf Pr [Bef]. As there are less than (2n"1/c)2 pairs e ^ / 
it now suffices to bound Pr [Bej] < 21~2np. 

Let e, / with e f l / = {v} (otherwise Be¡ cannot oceur) be fixed. The random 
ordering of V induces a random ordering a of e U / . Let i = ¿(cr) denote the number 
of v' G e coming before v in the ordering and let j = j{a) denote the number of 
v' G / coming before v in the ordering. Fixing a we claim 

P r [ B e / | c r ] < | 2 - " + 1 ( l - p ) j 2 -
l+p 
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Let's take the factors one at a time. First, v itself must start blue and turn red. Second, 
all other v' 6 / must start blue. Third, all v' € / coming before v must have second 
coin tails. Fourth, all v' e e coming after v must start red (since v is the last point of 
e to change color). Finally, all v' G e coming before v must either start red or start 
blue and turn red. [The final factor may well be a substantial overestimate. Those 
v' G e coming before v which start blue must not only have second coin heads but 
must themselves lie in an e' S H monochromatic under the first coloring. Attempts 
to further improve bounds on m(n) have often centered on this overestimate but (thus 
far!) to no avail.] 

We can then write 

P r [ J B e / ] < 2 1 - 2 > E [ ( l + p ) * ( l - p ) ¿ ] , 

where the expectation is over the uniform choice of a. The following gem therefore 
completes the argument. 

Lemma 3.5.3 E [(1 +p) ¿ ( l - p)i] < 1. 

Proof. Fix a matching between e — {v} and / — {v}; think of Mr. & Mrs. Jones, 
Mr. & Mrs. Smith, and so on. Condition on how many of each pair (two Joneses, 
one Smith, no Taylors, etc.) come before v. This splits the space into 3™"1 parts, 
and it suffices to show that the conditional expectation in each of them is at most 
1. Indeed, the factor contributed to (1 + p)l{l — p)J from each pair is at most 1, as 
follows: when there is no Taylor there is no factor. When there are two Joneses there 
is afactor (1+p)( l —p) < 1. When there is one Smith the factor is equally likely to 
be 1 + p (Brad) or 1 — p (Angelina), giving a factor of one. Moreover, these factors 
are independent for different pairs (given the above conditioning). All factors are at 
most one, and henee so is their product. • 

The desired result follows. • 

3.6 CONTINUOUS TIME 

Discrete random processes can sometimes be analyzed by placing them in a con-
tinuous time framework. This allows the powerful methods of analysis (such as 
integration!) to be applied. The approach seems most effective when dealing with 
random orderings. We give two examples. 

PropertyB. Wemodify the proof that m(n) = ü(2nn1/2ln~1^2 n) oftheprevious 
section. We assign to each vértex v £ V a "birth time" xv. The xv are independent 
real variables, each uniform in [0,1]. The ordering of V is then the ordering (under 
less than) of the xv. We now claim 

Pr[Bef}<J2(n hl~2n xlpl+\l-xp)n-ldx. 
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For T C e — {v} let P e /T be the event that Be¡ and in the first coloring e had 
precisely T U {v} blue. There are ("y1) choices for an ¿-set T, with l ranging from 
0 to n — 1. The first coloring on e U / is then determined and has probability 2 1 - 2 " 
of occurring. Suppose v has birth time xv = x. All w G T U {?;} must have second 
coin flip heads — probability pl+1. All w G T must be born before v — so that 
xw < x, which has probability xl. No w G / — {u} can be born before v and have 
coin flip heads. Each such w has probability xp of doing that so there is probability 
(1 — xp)71'1 that no w does. As xv = x was uniform in [0,1] we intégrate over x. 
Recombining terms, 

Pr [Bef] < 21~2np í (1 + xp)n-l{\ - xp)71'1 dx . 
Jo 

The integrand is always at most one so Pr [Bef] < 2l~2np. The remainder of the 
proof is unchanged. 

Random Greedy Packing. Let H be a (k + l)-uniform hypergraph on a vértex 
set V of size N. The e G H, which we cali edges, are simply subsets of V of size 
k + 1. We assume: 
Degree Condition: Every u G V is in precisely £> edges. 
Codegree Condition: Every distinct pair v,v' G V have only o{D) edges in common. 

We think of k fixed (fc = 2 being an illustrative example) and the asymptotics as 
N, D —> cxo, with no set relationship between N and D. 

A packing is a family P of vértex disjoint edges e G H. Clearly \P\ < N/(k + l). 
We define a randomized algorithm to produce a (not necessarily optimal) packing. 
Assign to each e G H uniformly and independently a birth time xe G [0, D). [The 
choice of [0, D) rather than [0,1] proves to be a technical convenience. Note that as 
the xe are real variables with probability one there are no ties.] At time zero P <— 0. 
As time progresses from 0 to D when an edge e is born it is added to P if possible — 
that is, unless there is already some e ' e P that overlaps e. Let Pc denote the valué of 
P just before time c — when all e with birth times te < c have been examined. Set 
pFiNAL _ pD jsjpjg tjja t ^ t j m e JJ ajj e (¡ges ijjyg b e e n | 3 0 r n an (j m e j r birms were 
in random order. Thus p F I N A L ¡s identical to the discrete process — often called 
the random greedy algorithm — in which H is first randomly ordered and then the 
e G H are considered sequentially. 

Theorem 3.6.1 [Spencer (1995)] The expected valué o / | P F I N A L | is asymptotic to 
N/{k + 1). 

We say v G V survives at time c if no e G Pc contains v and we let Sc denote 
the set of v G V so surviving. Rather than looking at p F I N A L we shall examine Pc, 
where c is an arbitrary fixed nonnegative real. Let 

/(C) = l imPr[ t ;eS c ] , 

where, formally, we mean here that for all e > 0 there exist Do, Âo and S > 0 so that 
if H is (fc + l)-uniform on N > NQ vértices with each v in D > Do edges and every 
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distinct pair v, v' e V has less than 6D, common edges then |/(c) — Pr [v G Sc] \ < e 
for all v eV. 

The heart of the argument lies in showing that /(c) exists by defining a continuous 
time birth process yielding that valué. We now describe the birth process, omitting 
some of the epsilondeltamanship needed to formally show the limit. 

Our birth process starts at time c and time goes backwards to 0. It begins with 
root Eve, our anthropomorphized v. Eve has births in time interval [0,c). The 
number of births is given by a Poisson distribution with mean c and given their 
number their times are uniformly and independently distributed. [This is a standard 
Poisson process with intensity one. Equivalently, on any infinitesimal time interval 
[x, x + dx), Eve has probability dx of giving birth and these events are independent 
over disjoint intervals.] Our fertile Eve always gives birth to fc-tuplets. Each child is 
born fertile under the same rules, so if Alice in born at time x she (in our unisexual 
model) has a Poisson distribution with mean x of births, uniformly distributed in 
[0,ar). 

The resulting random tree T = Tc can be shown to be finite (note the time interval 
is finite) with probability 1. Given a finite T we say for each vértex Alice that Alice 
survives or dies according to the following scheme. 

Menendez Rule: If Alice has given birth to a set (or possibly several sets) of 
fc-tuplets all of whom survived then she dies; otherwise she survives. 

In particular, if Alice is childless she survives. We can then work our way up the 
tree to determine of each vértex whether she survives or dies. 

Example. c = 10, k = 2. Eve gives birth to Alice, Barbara at time 8.3 and then to 
Rachel, Siena at time 4.3. Alice gives birth to Nancy, Olive at time 5.7 and Rachel 
gives birth to Linda, Mayavati at time 0.4. There are no other births. Leaves Nancy, 
Olive, Linda, Mayavati, Barbara and Siena then survive. Working up the tree Alice 
and Rachel die. In neither of Eve's births did both children survive and therefore Eve 
survives. 

We define /(c) to be the probability that the root Eve survives in the random birth 
tree T = TC. 

We outline the equivalence by defining a tree T = Tc (v) for v € H. For each edge 
e containing v with birth time t = te < c we say that e — {v} is a set of fc-tuplets born 
to v at time t. We work recursively; if w is born at time t then for each e' containing 
w with birth time t' = te> < t we say that e' — {w} is a set of fc-tuplets born to w 
at time t'. Possibly this process does not give a tree since the same vértex w may be 
reached in more than one way — the simplest example is if v £ e, e' where both have 
birth times less than c and e, e' share another common vértex w. Then the process is 
stillborn and Tc(v) is not defined. We'll argüe that for any particular tree T, 

lim Pr [Tc(v) =* T] = Pr [Tc = T] . (3.1) 

As ^ T Pr [Tc = T] = 1 this gives a rather roundabout argument that the process 
defining Tc(v) is almost never stillborn. 

We find Tc(v) in stages. First consider the D edges e containing v. The number of 
them with birth time te < c has binomial distribution BIN [D, c/D] which approaches 
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(critically) the Poisson distribution with mean c. Given that there are l such e their 
birth times te are uniformly distributed. There are (by the codegree condition) o(D2) 
pairs e, e' containing v and also some other vértex so there is probability o(l) that 
two such e, e' have birth time less than c. Now suppose Tc(v) has been built out 
to a certain level and a vértex w has been born at time t. There are only o(D) 
comraon edges between w and any of the finite number of w' already born, so there 
are still about D edges e containing w and no other such w'. We now examine their 
birth times, the number with te < x has binomial distribution BIN[L> — o(D), x/D] 
which approaches the Poisson distribution with mean x. As above, almost surely no 
two such e, e' will have a common vértex other than w itself. For any fixed T the 
calculation of Pr [Tc(v) = T] involves a finite number of these limits, which allows 
us toconclude (3.1). 

With c < d the random tree T¿ includes Tc as a subtree by considering only those 
births of Eve occurring in [0, c). If Eve survives in Td she must survive in Tc. Henee 
f(d) < /(c). We now claim 

lim f(c) = 0. 
C—>00 

If not, the nondecreasing / would have a limit L > 0 and all f(x) > L. Suppose 
in Tc Eve had i births. In each birth there would be probability at least Lk that all k 
children survived. The probability that Eve survived would then be at most (1 — Lk)1. 
Since the number of Eve's births is Poisson with mean c, 

oo ¿ 

/ (c)<$>- c^(l-L f cr = e - ^ 
¿=o l-

but then lim^oo /(c) = 0, a contradiction. 
By linearity of expectation E[|SC|] —> f{c)n. As (k + 1)\PC\ + \SC\ = n, 

E [|PC|] - • (1 - f{c))n/{k + 1). But E [|PFINAL|] > E [\PC\]. We make /(c) arbi-
trarily small by taking c appropriately big, so that E [|PFINAL|] > (1 - o{\))n/{k + 
1). As | P F I N A L | < n/(k + 1) always, the theorem follows. 

Remark. We can actually say more about /(c). For Ac small, / (c + Ac) — /(c) ~ 
— (Ac)/(c)fc+1 as, roughly, an Eve starting at time c + Ac might have a birth in 
time interval [c, c + Ac), all of whose children survive, while Eve has no births 
in [0, c), all of whose children survive. Letting Ac —> 0 yields the differential 
equation f'(c) = —f(c)k+1. The initial valué /(O) = 1 gives a unique solution 
f(c) = (1 + ck)~llk. It is intriguing to plug in c = D. This is not justified as 
our limit arguments were for c fixed and N,D —> oo. Nonetheless, that would yield 
E[|5D | ] =0(ArL>-1/fe),thattherandomgreedyalgorithmwouldleaveO(iVD~1/fc) 
vértices uncovered. Suppose we replace the codegree condition by the stronger 
condition that every distinct pair v,v' G V have at most one edge in common. There 
is computer simulation data that in those cases the random greedy algorithm does 
leave 0{ND^x/k) vértices uncovered. This remains an open question, though it is 
shown in Alón, Kim and Spencer (1997) that this is the case for a modified versión 
of the greedy algorithm. 
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Corollary 3.6.2 Under the assumptions ofthe theorem there exists a packing P of 
size ~ N/(k + 1). 

Proof. We have defined a random process that gives a packing with expected size 
~ N/(k + 1) and our usual magic implies such a P must exist. • 

In particular, this gives an altérnate proof to the Erdós-Hanani conjecture, first 
proved by Rodl as given in Section 4.7. We use the notation of that section and 
define the packing number m(n, k, l) as the maximal size of a family F of fc-element 
subsets of [n] = { 1 , . . . , n) such that no ¿-set is contained in more than one fc-set. 
Define a hypergraph H = H(n, k, l) as follows: The vértices of H are the Z-element 
subsets of [n]. For each fc-element A c [n] we define an edge e^ as the set of 
í-element subsets of A. A family F satisfying the above conditions then corresponds 
to a packing P = {e^ : A G F} in H. H has N = (™) vértices. Each edge e^ 
has size K + 1 = ( J . Each vértex is in D = (£~|) edges. The number of edges 
containing two vértices v, v' depends on their intersection. It is largest (given v ^ v') 
when v, v' (considered as Z-sets) overlap in l — 1 points and then it is (^l{l | ) . We 
assume (as in Section 4.7) that k, l are fixed and n —> oo so this number of common 
edges is o(D). The assumptions of Section 4.7 give K + 1 fixed, N, D —> oo so that 
there exists P with 

m(n,k,l) = \P\ ~N/{K + 1) /© 
3.7 EXERCISES 

1. As shown in Section 3.1, the Ramsey number R(k, k) satisfies 

R(k,k)>n-(U\21-& 

for every integer n. Conclude that 

R(k,k)> ( l - o ( l ) ) - 2 f c / 2 . 
e 

2. Prove that the Ramsey number ñ(4, fc) satisfies 

ñ(4,fc) >f2((fc/lnfc)2). 

3. Prove that every three-uniform hypergraph with n vértices and m > n/3 edges 
contains an independent set (Le., a set of vértices containing no edges) of size 
at least 

2n3/2 

3^3 m 
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4. (*) Show that there is a finite n0 such that any directed graph on n > n0 

vértices in which each outdegree is at least log2 n — yg log2 log2 n contains an 
even simple directed cycle. 



THE PROBABILISTIC LENS: 

High Girth and 
High Chromatic Number 

Many consider this one of the most pleasing uses of the probabilistic method, as the 
result is surprising and does not appear to cali for nonconstructive techniques. The 
girth of a graph G is the size of its shortest cycle, a(G) is the size of the largest 
independent set in G and x(G) denotes its chromatic number. 

Theorem 1 [Erdós (1959)] For all k, l there exists a graph G with girth{G) > l 
and x{G) > k. 

Proof. Fix 9 < l/l and let G ~ G(n,p) with p = n6^1; that is, G is a random 
graph on n vértices chosen by picking each pair of vértices as an edge randomly and 
independently with probability p. Let X be the number of cycles of size at most l. 
Then 

^ = ¿^¿£-000 
¿—3 i=3 

as 61 < 1. In particular, 
P rp f >n/2] = o( l ) . 

Set x = f(3/p) lnn\ so that 

Pr[a(G) >x}< (U\l-p)& < \ne-p{x-1)/2}X = o( l ) . 

Let n be sufficiently large so that both these events have probability less than 0.5. 
Then there is a specific G with less than n/2 cycles of length at most l and with 

41 
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OÍ{G) < ?>nx e ln n. Remove from G a vértex from each cycle of length at most /. 
This gives a graph G* with at least n/2 vértices. G* has girth greater than l and 
a{G*) < a(G). Thus 

XK ' " a(G*) ~ ?>nl-9\nn 61nn ' 

To complete the proof, let n be sufficiently large so that this is greater than k. • 
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