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basic background material in graph theory, linear algebra and group theory. Each chapter
concludes with an extensive list of references.
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Preface

The field of graph theory has undergone tremendous growth during the past century.
As recently as fifty years ago, the graph theory community had few members
and most were in Europe and North America; today there are hundreds of graph
theorists and they span the globe. By the mid-1970s, the field had reached the
point where we perceived the need for a collection of surveys of the areas of graph
theory: the result was our three-volume series Selected Topics in Graph Theory,
comprising articles written by distinguished experts in a common style. During
the past quarter-century, the transformation of the subject has continued, with
individual areas (such as algebraic graph theory) expanding to the point of having
important sub-branches themselves. This inspired us to conceive of a new series
of books, each a collection of articles within a particular area written by experts
within that area. This is the first of these books.

One innovative feature of this volume is the engagement of an academic consul-
tant (Peter Cameron) to advise us on topics to be included and authors to be invited.
We believe that this has been successful, the result being chapters covering the full
range of areas within algebraic graph theory written by authors from around the
world. Another important feature is that we have imposed uniform terminology
and notation throughout, as far as possible, in the belief that this will aid readers
in going from one chapter to another. For a similar reason we have not attempted
to remove a small amount of overlap between the various chapters.

We hope that these features will make the book easier to use in an advanced
course or seminar. We heartily thank the authors for cooperating on this, even
though it sometimes required their abandoning some of their favourite conven-
tions – for example, most graph theorists use G to denote a graph, whereas for
algebraic graph theorists G usually denotes a group: the graph theorists won on
this one. We also asked our contributors to undergo the ordeal of having their early
versions subjected to detailed critical reading. We believe that the final product is
thereby significantly better than it might otherwise have been, simply a collection

xi



xii Preface

of individually authored chapters. We want to express our sincere appreciation to
all of our contributors for their cooperation.

We extend special thanks to Peter Cameron for his willingness to share his
expertise as academic consultant – his advice has been invaluable. We are also
grateful to Cambridge University Press for publishing this work; in particular, we
thank Roger Astley for his advice, support and cooperation. Finally, we extend
our appreciation to several universities for the different ways in which they have
assisted with this endeavour: Purdue University awarded the first editor (LWB)
sabbatical leave during which he was a guest of the Mathematical Institute at
Oxford University, while the second editor (RJW) has had the cooperation of the
Open University and Keble College, Oxford.

LWB, RJW
February 2004



Foreword

The topic of this volume is the connection between graph theory and algebra –
more specifically, how algebra helps in the study of graphs, and how graph theory
repays the debt.

There are two main connections between graph theory and algebra. These arise
from two algebraic objects associated with a graph: its adjacency matrix and its
automorphism group. Of course, they are related: the automorphism group can
be regarded as the collection of all permutation matrices that commute with the
adjacency matrix. Nevertheless, the two connections involve different algebraic
techniques – linear algebra and group theory, respectively – and have a somewhat
different flavour.

The introductory chapter presents the basic background material on graphs,
linear algebra and groups that is used in the rest of the book.

Turning first to linear algebra, the first four chapters survey different aspects of
the interaction between graphs and matrices. The adjacency matrix of a graph is a
real symmetric matrix, and hence is diagonalizable: the eigenvalues of this matrix
are closely connected with a variety of graph parameters. For directed graphs,
the adjacency matrix is not necessarily diagonalizable, and things are much less
straightforward. Moreover, in both cases the adjacency matrix is non-negative,
and so the theory of such matrices developed by Perron and Frobenius can be
applied.

The first chapter describes the basic results, including connections with counting
closed walks and with clique and colouring problems, while the second gives a
number of rather surprising applications. The third chapter looks in much more
detail at the geometry of the eigenvectors of the adjacency matrix and surveys the
theory of graph angles and star partitions which has been developed largely by the
authors of this chapter.

xiii



xiv Foreword

For some questions about graphs, especially those connected with random walks
and of approximating manifolds by graphs, a different matrix is more appropriate:
this is the Laplacian matrix, the matrix D − A, where A is the adjacency matrix and
D is the diagonal matrix whose diagonal entries are the vertex-degrees. This matrix
is positive semi-definite with a zero eigenvalue; the smallest non-zero eigenvalue
gives crucial information about the behaviour of a random walk on the graph. This
is discussed in the fourth chapter.

In Chapter 5 the focus switches to automorphisms of graphs. Almost all graphs
admit no non-trivial automorphisms; but often it is the case that graphs with sym-
metry have other important properties. Such graphs as the Petersen graph and the
skeletons of regular polyhedra bear witness to this. Chapter 5 presents the basics
about automorphisms.

Typically we find that the more symmetry we require of a graph, the more
group theory contributes to the analysis of the graph. A first level of symmetry
we might require is vertex-transitivity, the property that the automorphism group
acts transitively on vertices. Among such graphs, the most important and widely
studied are the Cayley graphs. A Cayley graph of a group has the group elements
as vertices: the graph is obtained by specifying the neighbours of the identity
element and obtaining the remaining edges by translation. Cayley graphs and
their properties are described in Chapter 6. A stronger symmetry requirement is
that the automorphism group acts transitively on the set of adjacent pairs of vertices.
Such graphs are called symmetric, and they form the subject of Chapter 7.

The two algebraic strands, linear algebra and group theory, meet in the study
of graphs satisfying ‘higher regularity conditions’: distance-regular graphs (and
their special case, strongly regular graphs) and distance-transitive graphs. A graph
is strongly regular if it is regular and if the number of common neighbours of
two vertices v and w depends only on whether v and w are adjacent. It turns out
that a regular connected graph that is not complete is strongly regular if and only
if its adjacency matrix has just three distinct eigenvalues (the smallest possible
number). Furthermore, if the automorphism group of a graph acts transitively on
the sets of ordered pairs of vertices and of non-adjacent vertices, then the graph is
strongly regular. Such graphs are the subject of Chapter 8.

This last condition leads naturally to the definition of a distance-transitive graph,
one where the automorphism group acts transitively on the set of ordered pairs of
vertices at each fixed distance up to the diameter of the graph. This is a very strong
symmetry condition, and the goal of researchers in the area is the determination
of all such graphs. The current state of this research programme is described in
Chapter 9. The arguments here are very group-theoretic, using (for example) the
classification of the finite simple groups.



Foreword xv

If a graph is symmetric, then it is possible to exploit the symmetry to simplify
searching for structures within the graph. Moreover, computational tools in group
theory have reached a high level of sophistication. The final chapter discusses these
matters with a detailed look at how such computations can be done.

PETER J. CAMERON





Introduction
LOWELL BEINEKE, ROBIN WILSON and PETER CAMERON

1. Graph theory
2. Linear algebra
3. Group theory
References

This introductory chapter is divided into three parts. The first presents the
basic ideas of graph theory. The second concerns linear algebra (for Chapters
1–4), while the third concerns group theory (for Chapters 5–10).

1. Graph theory

This section presents the basic definitions, terminology and notations of graph
theory, along with some fundamental results. Further information can be found in
the many standard books on the subject – for example, West [4] or (for a simpler
treatment) Wilson [5].

Graphs

A graph G is a pair of sets (V, E), where V is a finite non-empty set of elements
called vertices, and E is a set of unordered pairs of distinct vertices called edges.
The sets V and E are the vertex-set and the edge-set of G, and are often denoted
by V (G) and E(G), respectively. An example of a graph is shown in Fig. 1.

The number of vertices in a graph is the order of the graph; usually it is denoted
by n and the number of edges by m. Standard notation for the vertex-set is V =
{v1, v2, . . . , vn} and for the edge-set is E = {e1, e2, . . . , em}. Arbitrary vertices are
frequently represented by u, v, w, . . . and edges by e, f, . . . .

1
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υ2 υ3

υ1 υ4 υ5

G:
V = {υ1, υ2, υ3, υ4, υ5} 

E = {υ1υ2, υ1υ4, υ2υ3, υ2υ4, υ3υ4, υ4υ5}

Fig. 1.

Variations of graphs

By definition, our graphs are simple, meaning that two vertices are connected by
at most one edge. If several edges, called multiple edges, are allowed between
two vertices, we have a multigraph. Sometimes, loops – edges joining vertices
to themselves – are also permitted. In a weighted graph, the edges are assigned
numerical values called weights. Finally, if the vertex-set is allowed to be infinite,
then G is an infinite graph.

Perhaps the most important variation is that of directed graphs; these are dis-
cussed at the end of this section.

Adjacency and degrees

For convenience, the edge {v, w} is commonly written as vw. We say that this edge
joins v and w and that it is incident with v and w. In this case, v and w are adjacent
vertices, or neighbours. The set of neighbours of a vertex v is its neighbourhood
N (v). Two edges are adjacent edges if they have a vertex in common.

The number of neighbours of a vertex v is called its degree, denoted by deg v.
Observe that the sum of the degrees in a graph is twice the number of edges. If
all the degrees of G are equal, then G is regular, or is k-regular if that common
degree is k. The maximum degree in a graph is often denoted by �.

Walks

A walk in a graph is a sequence of vertices and edges v0, e1, v1, . . . , ek, vk , in
which each edge ei = vi−1vi . This walk goes from v0 to vk or connects v0 and vk ,
and is called a v0-vk walk. It is frequently shortened to v0v1 . . . vk , since the edges
may be inferred from this. Its length is k, the number of occurrences of edges. If
vk = v0, the walk is closed.

Some important types of walk are the following:
� a path is a walk in which no vertex is repeated;
� a trail is a walk in which no edge is repeated;
� a cycle is a non-trivial closed trail in which no vertex is repeated.
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Distance

In a connected graph, the distance between two vertices v and w is the minimum
length of a path from v to w, and is denoted by d(v, w). It is easy to see that
distance satisfies the properties of a metric: for all vertices u, v and w,
� d(v, w) ≥ 0, with equality if and only if v = w;
� d(v, w) = d(w, v);
� d(u, w) ≤ d(u, v) + d(v, w)

The diameter of a graph G is the maximum distance between two vertices
of G. If G has cycles, the girth of G is the length of a shortest cycle, and the
circumference is the length of a longest cycle.

Subgraphs

If G and H are graphs with V (H ) ⊆ V (G) and E(H ) ⊆ E(G), then H is a sub-
graph of G. If, moreover, V (H ) = V (G), then H is a spanning subgraph. The
subgraph induced by a non-empty set S of vertices in G is that subgraph H with
vertex-set S whose edge-set consists of those edges of G that join two vertices in
S; it is denoted by 〈S〉 or G[S]. A subgraph H of G is induced if H = 〈V (H )〉. In
Fig. 2, H1 is a spanning subgraph of G, and H2 is an induced subgraph.

Given a graph G, the deletion of a vertex v results in the subgraph obtained by
excluding v and all edges incident with it. It is denoted by G − v and is the subgraph
induced by V − {v}. More generally, if S ⊂ V, we write G − S for the graph
obtained from G by deleting all of the vertices of S; that is, G − S = 〈V − S〉.

The deletion of an edge e results in the subgraph G − e obtained by excluding e
from E ; for F ⊆ E, G − F denotes the spanning subgraph with edge-set E − F .

Connectedness and connectivity

A graph G is connected if there is a path connecting each pair of vertices. A
(connected) component of G is a maximal connected subgraph of G.

A vertex v of a graph G is a cut-vertex if G − v has more components than G.
A connected graph with no cut-vertices is 2-connected or non-separable. The
following statements are equivalent for a graph G with at least three vertices:

G: H1: H2:

graph spanning subgraph induced subgraph

Fig. 2.



4 Lowell Beineke, Robin Wilson and Peter Cameron

� G is non-separable;
� every pair of vertices lie on a cycle;
� every vertex and edge lie on a cycle;
� every pair of edges lie on a cycle;
� for any three vertices u, v, and w, there is a v-w path containing u;
� for any three vertices u, v, and w, there is a v-w path not containing u;
� for any two vertices v and w and any edge e, there is a v-w path containing e.
More generally, a graph G is k-connected if there is no set S with fewer than k
vertices for which G − S is a connected non-trivial graph. Menger characterized
such graphs.

Menger’s theorem A graph G is k-connected if and only if, for each pair of
vertices v and w, there is a set of k v-w paths that pairwise have only v and w in
common.

The connectivity κ(G) of a graph G is the maximum value of k for which G is
k-connected.

There are similar concepts and results for edges. A cut-edge (or bridge) is any
edge whose deletion produces one more component than before. A non-trivial
graph G is k-edge-connected if the result of removing fewer than k edges is always
connected, and the edge-connectivity λ(G) is the maximum value of k for which
G is k-edge-connected. We note that Menger’s theorem also has an edge version.

Bipartite graphs

If the vertices of a graph G can be partitioned into two non-empty sets so that no
edge joins two vertices in the same set, then G is bipartite. The two sets are called
partite sets, and if they have orders r and s, G may be called an r × s bipartite
graph. The most important property of bipartite graphs is that they are the graphs
that contain no cycles of odd length.

Trees

A tree is a connected graph that has no cycles. They have been characterized in
many ways, a few of which we give here. For a graph G of order n:
� G is connected and has no cycles;
� G is connected and has n − 1 edges;
� G has no cycles and has n − 1 edges.
Any graph without cycles is a forest; note that each component of a forest is a tree.
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Special graphs

We now introduce some individual types of graphs:
� the complete graph Kn has n vertices, each of which is adjacent to all of the

others;
� the null graph Nn has n vertices and no edges;
� the path graph Pn consists of the vertices and edges of a path of length n − 1;
� the cycle graph Cn consists of the vertices and edges of a cycle of length n;
� the complete bipartite graph Kr,s is the r × s bipartite graph in which each

vertex is adjacent to all those in the other partite set;
� in the complete k-partite graph, Kr1,r2,...,rn the vertices are in k sets (having

orders r1, r2, . . . , rk) and each vertex is adjacent to all the others, except those
in the same set. If the k sets all have order r , the graph is denoted by Kk(r ). The
graph Kk(2) is sometimes called the k-dimensional octahedral graph or cocktail
party graph, also denoted by CP(k); K3(2) is the graph of an octahedron.

� the d-dimensional cube (or d-cube) Qd is the graph whose vertices can be
labelled with the 2d binary d-tuples, in such a way that two vertices are
adjacent when their labels differ in exactly one position. It is regular of degree
d, and is isomorphic to the lattice of subgraphs of a set of d elements.

Examples of these graphs are given in Fig. 3.

Operations on graphs

There are several ways to get new graphs from old. We list some of the most
important here.

K5:

K3,3:

N5:

K3(2):

P5: C5:

Q3:

Fig. 3.
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� The complement G of a graph G has the same vertices as G, but two vertices
are adjacent in G if and only if they are not adjacent in G.

For the other operations, we assume that G and H are graphs with disjoint vertex-
sets, V (G) = {v1, v2, . . . , vn} and V (H ) = {w1, w2, . . . , wt }:
� the union G ∪ H has vertex-set V (G) ∪ V (H ) and edge-set E(G) ∪ E(H ).

The union of k graphs isomorphic to G is denoted by kG.
� the join G + H is obtained from G ∪ H by adding all of the edges from

vertices in G to those in H .
� the (Cartesian) product G � H or G × H has vertex-set V (G) × V (H ), and

(vi , w j ) is adjacent to (vh, wk) if either (a) vi is adjacent to vh in G and
w j = wk , or (b) vi = vh and w j is adjacent to wk in H . In less formal terms,
G � H can be obtained by taking n copies of H and joining corresponding
vertices in different copies whenever there is an edge in G. Note that, for
d-cubes, Qd+1 = K2 � Qd (with Q1 = K2).

Examples of these binary operations are given in Fig. 4.
There are two basic operations involving an edge of a graph. The insertion of

a vertex into an edge e means that the edge e = vw is replaced by a new vertex
u and the two edges vu and uw. Two graphs are homeomorphic if each can be
obtained from a third graph by a sequence of vertex insertions. The contraction of
the edge vw means that v and w are replaced by a new vertex u that is adjacent
to the other neighbours of v and w. If a graph H can be obtained from G by
a sequence of edge contractions and the deletion of isolated vertices, then G is
said to be contractible to H . Finally, H is a minor of G if it can be obtained
from G by a sequence of edge-deletions and edge-contractions and the removal

G:

H:

G + H:

G ∪ H:

G    H:

Fig. 4.
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insertion contraction

υ

υ

w

u

u

e

w

Fig. 5.

of isolated vertices. The operations of insertion and contraction are illustrated in
Fig. 5.

Traversability

A connected graph G is Eulerian if it has a closed trail containing all of the edges
of G; such a trail is called an Eulerian trail. The following are equivalent for a
connected graph G:
� G is Eulerian;
� the degree of each vertex of G is even;
� the edge-set of G can be partitioned into cycles.

A graph G is Hamiltonian if it has a spanning cycle, and traceable if it has a
spanning path. No ‘good’ characterizations of these graphs are known.

Planarity

A planar graph is one that can be embedded in the plane in such a way that no
two edges meet except at a vertex incident with both. If a graph G is embedded in
this way, then the points of the plane not on G are partitioned into open sets called
faces or regions. Euler discovered the basic relationship between the numbers of
vertices, edges and faces.

Euler’s polyhedron formula Let G be a connected graph embedded in the plane
with n vertices, m edges and f faces. Then n − m + f = 2.
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It follows from this result that a planar graph with n vertices (n ≥ 3) has at most
3(n − 2) edges, and at most 2(n − 2) edges if it is bipartite. From this it follows
that the two graphs K5 and K3,3 are non-planar. Kuratowski proved that these two
graphs are the only barriers to planarity.

Kuratowski’s theorem The following statements are equivalent for a graph G:
� G is planar;
� G has no subgraph that is homeomorphic to K5 or K3,3;
� G has no subgraph that is contractible to K5 or K3,3.

Graph colourings

A graph G is k-colourable if, from a set of k colours, it is possible to assign a colour
to each vertex in such a way that adjacent vertices always have different colours.
The chromatic number χ (G) is the least value of k for which G is k-chromatic.
It is easy to see that a graph is 2-colourable if and only if it is bipartite, but there
is no ‘good’ way to determine which graphs are k-colourable for k ≥ 3. Brooks’s
theorem provides one of the best-known bounds on the chromatic number of a
graph.

Brooks’s theorem If G is a graph with maximum degree � that is neither an odd
cycle nor a complete graph, then χ (G) ≤ �.

There are similar concepts for colouring edges. A graph G is k-edge-colourable
if, from a set of k colours, it is possible to assign a colour to each edge in such a
way that adjacent edges always have different colours. The edge-chromatic number
χ ′(G) is the least k for which G is k-edge-colourable. Vizing proved that the range
of values of χ ′(G) is very limited.

Vizing’s theorem If G is a graph with maximum degree �, then

� ≤ χ ′(G) ≤ � + 1.

Line graphs

The line graph L(G) of a graph G has the edges of G as its vertices, with two of
these vertices adjacent if and only if the corresponding edges are adjacent in G.
An example is given in Fig. 6.

A graph is a line graph if and only if its edges can be partitioned into complete
subgraphs in such a way that no vertex is in more than two of these subgraphs.
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G: L(G):

Fig. 6.

υ2 υ3

υ1 υ4

D:
V = {υ1, υ2, υ3, υ4}
E = {υ1υ2, υ1υ4, υ2υ1, υ3υ2, υ3υ4}. 

Fig. 7.

Line graphs are also characterized by the property of having none of nine particular
graphs as a forbidden subgraph.

Directed graphs

Digraphs are directed analogues of graphs, and thus have many similarities, as
well as some important differences.

A digraph (or directed graph) D is a pair of sets (V, E) where V is a finite
non-empty set of elements called vertices, and E is a set of ordered pairs of distinct
elements of V called arcs or directed edges. Note that the elements of E are now
ordered, which gives each of them a direction. An example of a digraph is given
in Fig. 7.

Because of the similarities between graphs and digraphs, we mention only the
main differences here and do not redefine those concepts that carry over easily.

An arc (v, w) of a digraph may be written as
−→
vw, and is said to go from v to w,

or to go out of v and go into w.
Walks, paths, trails and cycles are understood to be directed, unless otherwise

indicated.
The out-degree d+(v) of a vertex v in a digraph is the number of arcs that go

out of it, and the in-degree d−(v) is the number of arcs that go into it.
A digraph D is strongly connected, or strong, if there is a path from each vertex to

each of the others. A strong component is a maximal strongly connected subgraph.
Connectivity and edge-connectivity are defined in terms of strong connectedness.

A tournament is a digraph in which every pair of vertices are joined by exactly
one arc. One interesting aspect of tournaments is their Hamiltonian properties:
� every tournament has a spanning path;
� a tournament has a Hamiltonian cycle if and only if it is strong.
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2. Linear algebra

In this section we present the main results on vector spaces and matrices that are
used in Chapters 1–4. For further details, see [3].

The space Rn

The real n-dimensional space Rn consists of all n-tuples of real numbers x =
(x1, x2, . . . , xn); in particular, the plane R2 consists of all pairs (x1, x2), and three-
dimensional space R3 consists of all triples (x1, x2, x3). The elements x are vectors,
and the numbers xi are the coordinates or components of x.

When x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors in Rn , we can
form their sum x + y = (x1 + y1, x2 + y2, . . . , xn + yn), and if α is a scalar (real
number), we can form the scalar multiple αx = (αx1, αx2, . . . , αxn).

The zero vector is the vector 0 = (0, 0, . . . , 0), and the additive inverse of
x = (x1, x2, . . . , xn) is the vector −x = (−x1, −x2, . . . , −xn).

We can similarly define the complex n-dimensional space Cn , in which the
vectors are all n-tuples of complex numbers z = (z1, z2, . . . , zn); in this case, we
take the multiplying scalars α to be complex numbers.

Metric properties

When x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors in Rn , their dot
product is the scalar x · y = x1 y1 + x2 y2 + · · · + xn yn . The dot product is some-
times called the inner product and denoted by 〈x, y〉.

The length or norm ‖x‖ of a vector x = (x1, x2, . . . , xn) is

(x · x)1/2 = (
x2

1 + x2
2 + · · · + xn

n

)1/2
.

A unit vector is a vector u for which ‖u‖ = 1, and for any non-zero vector x, the
vector x/‖x‖ is a unit vector.

When x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the distance between x
and y is d(x, y) = ‖x − y‖. The distance function d satisfies the usual properties
of a metric: for any x, y, z ∈ Rn ,
� d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;
� d(x, y) = d(y, x);
� d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The following result is usually called the Cauchy-Schwarz inequality:

Cauchy-Schwarz inequality For any x, y ∈ Rn, |x · y| ≤ ‖x‖ · ‖y‖.
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We define the angle θ between the non-zero vectors x and y by

cos θ = x · y/‖x‖ · ‖y‖.
Two vectors x and y are orthogonal if the angle between them is 0 – that is, if
x · y = 0. In this case, we have the following celebrated result.

Pythagoras’s theorem If x and y are orthogonal, then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

An orthogonal set of vectors is a set of vectors each pair of which is orthogonal.
An orthonormal set is an orthogonal set in which each vector has length 1.

In a complex space Cn most of the above concepts are defined as above. One
exception is that the dot product of two complex vectors z = (z1, z2, . . . , zn)
and w = (w1, w2, . . . , wn) is now defined by z · w = z1w1 + z2w2 + · · · + znwn ,
where w is the complex conjugate of w.

Vector spaces

A real vector space V is a set of elements, called vectors, with rules of addition
and scalar multiplication that satisfy the following conditions:

Addition
A1: For all x, y ∈ V, x + y ∈ V ;
A2: For all x, y, z ∈ V, (x + y) + z = x + (y + z);
A3: There is an element 0 ∈ V satisfying x + 0 = x, for all x ∈ V ;
A4: For each x ∈ V , there is an element −x satisfying x + (−x) = 0;
A5: For all x, y ∈ V, x + y = y + x.

Scalar multiplication
M1: For all x ∈ V and α ∈ R, αx ∈ V ;
M2: For all x ∈ V, 1x = x;
M3: For all α, β ∈ R, α(βx) = (αβ)x;

Distributive laws
D1: For all α, β ∈ R and x ∈ V, (α + β)x = αx + βx;
D2: For all α ∈ R and x, y ∈ V, α(x + y) = αx + αy.

Examples of real vector spaces are Rn, Cn , the set of all real polynomials, the
set of all real infinite sequences, and the set of all functions f : R → R, each with
the appropriate definitions of addition and scalar multiplication.

Complex vector spaces are defined similarly, except that the scalars are elements
of C, rather than R. More generally, the scalars can come from any field, such as the
set Q of rational numbers, the integers Zp modulo p, where p is a prime number,
or the finite field Fq , where q is a power of a prime.
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Subspaces

A non-empty subset W of a vector space V is a subspace of V if W is itself a
vector space with respect to the operations of addition and scalar multiplication in
V . For example, the subspaces of R3 are {0}, the lines and planes through 0, and
R3 itself.

When X and Y are subspaces of a vector space V , their intersection X ∩ Y is
also a subspace of V , as is their sum X + Y = {x + y : x ∈ X, y ∈ Y }.

When V = X + Y and X ∩ Y = {0}, we call V the direct sum of X and Y , and
write V = X ⊕ Y .

Bases

Let S = {x1, x2, . . . , xr } be a set of vectors in a vector space V . Then any vector
of the form

α1x1 + α2x2 + · · · + αr xr ,

where α1, α2, . . . , αr are scalars, is a linear combination of x1, x2, . . . , xr . The set
of all linear combinations of x1, x2, . . . , xr is a subspace of V called the span of
S, denoted by 〈S〉 or 〈x1, x2, . . . , xr 〉. When 〈S〉 = V , the set S spans V , or is a
spanning set for V .

The set S = {x1, x2, . . . , xr } is linearly dependent if one of the vectors xi is a
linear combination of the others – in this case, there are scalars α1, α2, . . . , αr , not
all zero, for which

α1x1 + α2x2 + · · · + αr xr = 0.

The set S is linearly independent if it is not linearly dependent – that is,

α1x1 + α2x2 + · · · + αr xr = 0

holds only when α1 = α2 = · · · = αr = 0.
A basis B is a linearly independent spanning set for V . In this case, each vector

x of V can be written as a linear combination of the vectors in B in exactly one
way; for example, the standard basis for R3 is {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and a
basis for the set of all real polynomials is {1, x, x2, . . .}.

Dimension

A vector space V with a finite basis is finite-dimensional. In this situation, any
two bases for V have the same number of elements. This number is the dimension
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of V , denoted by dim V ; for example, R3 has dimension 3. The dimension of a
subspace of V is defined similarly.

When X and Y are subspaces of V , we have the dimension theorem:

dim(X + Y ) = dim X + dim Y − dim(X ∩ Y ).

When X ∩ Y = {0}, this becomes

dim(X ⊕ Y ) = dim X + dim Y.

Euclidean spaces

Let V be a real vector space, and suppose that with each pair of vectors x and y
in V is associated a scalar 〈x, y〉. This is an inner product on V if it satisfies the
following properties: for any x, y, z ∈ V ,
� 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0;
� 〈x, y〉 = 〈y, x〉;
� 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉.

The vector space V , together with this inner product, is called a real in-
ner product space, or Euclidean space. Examples of Euclidean spaces are R3

with the dot product as inner product, and the space V of real-valued contin-
uous functions on the interval [−1, 1] with the inner product defined for f, g
in V by 〈f, g〉 = ∫ 1

−1 f(t)g(t) dt . Analogously to the dot product, we can define
the metrical notions of length, distance and angle in any Euclidean space, and
we can derive analogues of the Cauchy-Schwarz inequality and Pythagoras’s
theorem.

An orthogonal basis for a Euclidean space is a basis in which any two distinct
basis vectors are orthogonal. If, further, each basis vector has length 1, then the
basis is an orthonormal basis. If V is a Euclidean space, the orthogonal complement
W ⊥ of a subspace W is the set of all vectors in V that are orthogonal to all vectors
in W – that is,

W ⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈ W }.

Linear transformations

When V and W are real vector spaces, a function T : V → W is a linear transfor-
mation if, for all v1, v2 ∈ V and α, β ∈ R,

T (αv1 + βv2) = αT (v1) + βT (v2).

If V = W , then T is sometimes called a linear operator on V .
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The linear transformation T is onto, or surjective, when T (V ) = W , and is
one-one, or injective, if T (v1) = T (v2) only when v1 = v2.

The image of T is the subspace of W defined by

im(T ) = {w ∈ W : w = T (v), for some v ∈ V };
note that T is onto if and only if im(T ) = W .

The kernel, or null space, of T is the subspace of V defined by

ker(T ) = {v ∈ V : T (v) = 0W };
note that T is one-one if and only if ker(T ) = {0V }.

Defining the rank and nullity of T by

rank(T ) = dim im(T ) and nullity(T ) = dim ker(T ),

we obtain the rank-nullity formula:

rank(T ) + nullity(T ) = dim V .

Algebra of linear transformations

When S : U → V and T : V → W are linear transformations, we can form their
composition T ◦ S : U → W , defined by

(T ◦ S)(u) = T (S(u)), for all u ∈ U.

The composition of linear transformations is associative.
The linear transformation T : V → W is invertible, or non-singular, if there

is a linear transformation T −1, called the inverse of T , for which T −1 ◦ T is the
identity transformation on V and T ◦ T −1 is the identity transformation on W .
Note that a linear transformation is invertible if and only if it is one-one and onto.

The matrix of a linear transformation

Let T : V → W be a linear transformation, let {e1, e2, . . . , en} be a basis for V
and let {f1, f2, . . . , fm} be a basis for W . For each i = 1, 2, . . . , n, we can write

T (ei ) = a1i f1 + a2i f2 + · · · + ami fm,

for some scalars a1i , a2i , . . . , ami . The rectangular array of scalars

A =




a11 a12 · · · a1n

a21 a22 · · · · a2n

· · · ·
am1 am2 · · · amn






Introduction 15

is the matrix of T associated with the given bases. The scalar ai j is the ij-entry of
A, and we abbreviate the above array by writing A = (ai j ).

Since the matrix A has m rows and n columns, we call A an m × n matrix; a
matrix for which m = n is a square matrix of order n. The diagonal of a square
matrix A = (ai j ) consists of the entries aii down the leading (top-left to bottom-
right) diagonal.

Operations on matrices

Given a matrix A = (ai j ) and a scalar κ , we can define the scalar multiple κA =
(κai j ); note that 1A = A.

Given two m × n matrices A = (ai j ) and B = (bi j ), we define their sum A + B
to be the matrix C = (ci j ), where ci j = ai j + bi j ; matrix addition is commutative
and associative.

Given an m × k matrix A = (ai j ) and a k × n matrix B = (bi j ), we define
their product AB to be the m × n matrix C = (ci j ), where ci j = �kaikbk j ; matrix
multiplication is associative, but not commutative in general. The matrix product
AA is written A2, with similar notation for higher powers of A.

Given two matrices A = (ai j ) and B = (bi j ) of the same size, we define their
Kronecker product A ⊗ B to be the matrix C = (ci j ), where ci j = ai j bi j .

Given an m × n matrix A = (ai j ), we can interchange the rows and columns to
form the n × m matrix AT = (a ji ) called its transpose. It follows that

(AT )T = A and (κA)T = κ(A)T , for any scalar κ,

and that, for matrices A and B of appropriate sizes,

(A + B)T = AT + BT and (AB)T = BT AT .

The trace tr(A) of a square matrix A is the sum of the diagonal entries of A; for
matrices A and B of appropriate sizes,

tr(A + B) = tr(A) + tr(B) and tr(AB) = tr(BA).

Types of matrices

A zero matrix 0 is a matrix in which each entry is 0; for matrices A and 0 of the same
size, A + 0 = 0 + A = A. An all-1 matrix J is a matrix in which each entry is 1.

A square matrix A = (ai j ) is symmetric if AT = A (so ai j = a ji for all i and j),
and anti-symmetric or skew-symmetric if AT = −A (so ai j = −a ji for all i and j).

A diagonal matrix A is a square matrix in which every non-diagonal entry is
0. The identity matrix I is the diagonal matrix with 1s on its diagonal; for square
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matrices A and I of the same order, AI = IA = A. A permutation matrix is a
matrix obtained from I by permuting the rows or columns.

An upper triangular matrix is a square matrix in which every entry below and
to the left of the diagonal is 0; a lower triangular matrix is defined similarly.

A block matrix is a matrix arranged in submatrices Bi j called blocks, as follows:



B11 B12 · · · B1s

B21 B22 · · · · B2s

· · · ·
Br1 Br2 · · · Brs




A circulant matrix A = (ai j ) is an n × n matrix in which each successive row
is obtained by moving the preceding row by one position to the right; thus, for
each i and j , ai j = ai+1, j+1, where the subscripts are taken modulo n.

A square matrix A is invertible if there is a matrix B for which AB = BA = I;
the matrix B is the inverse of A, denoted by A−1. Note that (A−1)−1 = A, and that,
for square matrices A and B of the same order, (AB)−1 = B−1A−1.

Determinants

Let A = (ai j ) be an n × n square matrix. The determinant of A, written det A or
|A|, is the sum ∑

(sgn s) a1s(1) a2s(2) . . . ans(n),

taken over all permutations s of {1, 2, . . . , n}, where sgn s is 1 if s is an even
permutation, and −1 if s is odd; for example, when n = 3, the permutations 123,
231 and 312 are even, and 132, 213 and 321 are odd, and so

a11 a12 a13

a21 a22 a23

a31 a32 a33


 = a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31.

Note that, for any square matrices A and B,
� det A = det AT ;
� det AB = det A det B;
� if det A �= 0, then det A−1 = (det A)−1.

Given a square matrix A, let the minor Mi j be the determinant of the matrix
obtained from A by deleting the i th row and the j th column, and let the cofactor
Ai j = (−1)i+ j Mi j . Then

det A =
∑

i

ai j Ai j =
∑

j

ai j Ai j .
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The matrix adj A = (Ai j ) is the adjoint matrix, and if det A �= 0, then

A−1 = (det A)−1(adj A).

Change of basis

Let T : V → W be a linear transformation, let {e1, e2, . . . , em} and {e′
1, e′

2, . . . ,

e′
m} be bases for V , and let {f1, f2, . . . , fn} and {f1

′, f2
′, . . . , fn

′} be bases for W . If
the matrix of T associated with the bases {e1, e2, . . . , em} and {f1, f2, . . . , fn} is
A, then the matrix of T associated with the bases {e′

1, e′
2, . . . , e′

m} and {f1
′, f2

′, . . . ,
fn
′} is Q−1AP, where P = (pi j ) and Q = (qi j ) are the transition matrices defined

by e′
j = ∑

i pi j ei and f j
′ = ∑

i qi j fi .
Now let T : V → V be a linear transformation, and let {e1, e2, . . . , em} and

{e′
1, e′

2, . . . , e′
m} be bases for both V and W . If the matrix of T associated with the

basis {e1, e2, . . . , em} in V and W is A, then, by the above result, the matrix of T
associated with the basis {e′

1, e′
2, . . . , e′

m} in V and W is P−1AP, where P = (pi j ) is
the transition matrix defined by e′

j = ∑
i pi j ei . Two matrices A and B are similar

if B = P−1AP, for some invertible matrix P.

Eigenvalues and eigenvectors

If A is a square matrix, then the polynomial det(λI − A) is the characteristic poly-
nomial of A and the equation det(λI − A) = 0 is its characteristic equation. The
roots of this equation are the eigenvalues of A; a repeated root is a multiple eigen-
value, and a non-repeated root is a simple eigenvalue. The sum of the eigenvalues
of A is equal to the trace of A. When A is a symmetric matrix, the eigenvalues of
A are all real. The set of eigenvalues of A is the spectrum of A.

Every square matrix satisfies a number of polynomial equations; for example, if
A is an n × n matrix, then the matrices I, A, A2, . . . , An2

are linearly dependent and
so there is a polynomial equation connecting them. The unique monic polynomial
of lowest degree satisfied by A is the minimal polynomial of A. The Cayley-
Hamilton theorem states that every matrix satisfies its characteristic equation.
It follows that the minimum polynomial divides the characteristic polynomial;
moreover, the minimum polynomial and the characteristic equation share the same
irreducible factors.

Let T : V → V be a linear transformation. Regardless of the basis used, all
matrices associated with T have the same eigenvalues: these are the scalars λ for
which T (v) = λv, for some non-zero vector v, and each such vector is an associated
eigenvector. For a given eigenvalue λ the set of all such eigenvectors, together with
0, is a subspace of V , called the eigenspace associated with λ.
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Diagonalizing matrices

When v1, v2, . . . , vr are eigenvectors associated with distinct eigenvalues λ1,

λ2, . . . , λr , the set {v1, v2, . . . , vr } is linearly independent. Eigenvectors associ-
ated with the same eigenvalue λ may be linearly dependent or independent. If we
can find a basis of eigenvectors, and if P is the matrix with these eigenvectors as
columns, then P−1AP is a diagonal matrix. Conversely, if A is any square matrix
and if we can find a matrix P for which P−1AP is a diagonal matrix, then there
is a basis of eigenvectors, and these eigenvectors form the columns of P; in this
case, we say that A is diagonalizable. Not all square matrices are diagonalizable:
for example, the matrix (

1 1
0 1

)

is not diagonalizable, since every eigenvector is a multiple of (1 0) and so there
is no basis of eigenvectors.

Every symmetric matrix A has an orthonormal basis of eigenvectors, and so is
diagonalizable. Moreover, the corresponding transition matrix P is then an orthog-
onal matrix (P−1 = PT ), the matrix PT AP is diagonal, and the matrix A is called
orthogonally diagonalizable.

Even when we cannot diagonalize a given matrix, we can always choose a basis
so that the resulting matrix can be decomposed into block diagonal form, with
square matrices B1, B2, . . . , Bk arranged down the diagonal, and zeros elsewhere.
There are various existence and uniqueness theorems concerning such decompo-
sitions.

Quadratic forms

A quadratic form is an expression of the form q(x) = xT Ax, where x is a column
vector and A is a symmetric matrix; for example,

q(x) = 2x2
1 + 3x2

2 − 4x2
3 + x1x2 − 6x1x3

is a quadratic form corresponding to the symmetric matrix

A =

 2 1/2 −3

1/2 3 0
−3 0 −4


 .

A quadratic form q is positive definite if q(x) > 0, and positive semidefinite if
q(x) ≥ 0, for every non-zero vector x.
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3. Group theory

This section introduces some basic material about permutation groups and auto-
morphism groups of graphs and explains the notation used for groups. Further
information can be found in the books by Cameron [1] and Dixon and Mortimer
[2] and the many references cited therein.

Groups

A group is a set G with a binary operation ◦ satisfying the conditions:
� for all g, h, k ∈ G, (g ◦ h) ◦ k = g ◦ (h ◦ k) (associative law);
� there exists an element 1 ∈ G (the identity) such that 1 ◦ g = g ◦ 1 = g for all

g ∈ G;
� for each g ∈ G, there is an element g−1 ∈ G (the inverse of g) such that

g ◦ g−1 = g−1 ◦ g = 1.
We usually write g ◦ h more briefly as gh.

If in addition we have the condition:
� for all g, h ∈ G, g ◦ h = h ◦ g (commutative law)
then the group G is Abelian (or commutative).

Groups are important here because the set of automorphisms of a graph (with
the operation of composition of mappings) is a group. In many cases, the group
encodes important information about the graph; and in general, the use of symmetry
can be used to do combinatorial searches in the graph more efficiently.

Homomorphisms

A homomorphism from a groupG1 to a groupG2 is a function φ : G1 → G2 for which
φ(gh) = φ(g)φ(h), for all g, h ∈ G1. Note two things about this definition. First, in
the defining equation φ(gh) = φ(g)φ(h), the operation gh on the left is the group
operation in G1, while the operation φ(g)φ(h) on the right is the group operation in
G2. Second, it is common among algebraists to write homomorphisms on the right,
so instead of φ(g), we write gφ. The advantage of this is that the composition of
φ with a homomorphism ψ : G2 → G3 is now φψ , where g(φψ) = (gφ)ψ .

An isomorphism from G1 to G2 is a homomorphism that is one-to-one and onto.
If there is an isomorphism from G1 to G2, then the groups G1 and G2 are isomorphic.
Algebraists regard isomorphic groups as being essentially the same, and do not
carefully distinguish between them.
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Subgroups

A subgroup of a group is a subset that forms a group in its own right with respect
to the same operation. If H is a subgroup of G (sometimes written H < G), then
there are two natural partitions of G:
� the partition into sets Hx = {hx : h ∈ H}, called right cosets of H;
� the partition into sets xH = {xh : h ∈ H}, called left cosets of H.
The number of right (or left) cosets is the index of H in G.

Let φ : G1 → G2 be a homomorphism, and let 1 denote the identity element of
G2. Then the set

N = {g ∈ G1 : gφ = 1}
is the kernel of φ. The kernel of a homomorphism is a subgroup of G1, and has the
additional property that

g−1ng ∈ N , for all g ∈ G1, n ∈ N .

Such a subgroup is called a normal subgroup. It turns out that every normal sub-
group is the kernel of a homomorphism, and that a subgroup is normal if and only
if the partitions of the group into right and left cosets of the subgroup coincide (so
that we can simply speak of cosets).

Let N be a normal subgroup of G. Then we define G/N to be the set of cosets
of N in G, and define an operation on G/N by the rule

(N x)(N y) = N xy.

It can be shown that this operation is indeed well defined (that is, independent of
the chosen representatives x and y of the cosets) and defines a group, which is
called the quotient group or factor group, also denoted by G/N .

Every group G has two trivial normal subgroups: the whole group G and the
identity {1}. A group with no other normal subgroups is simple; any other group
is composite.

Composition series

An important structural result about finite groups is the Jordan–Hölder theorem.

Jordan-Hölder theorem Let G be a finite group. Then the following hold:

(a) there is a chain

{1} = Gr < Gr−1 < · · · < G1 < G0 = G
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of subgroups of G such that, for 1 ≤ i ≤ r,Gi is a normal subgroup of Gi−1

and the factor group Gi−1/Gi is simple.
(b) for any two such chains, the multisets of isomorphism types of simple factor

groups are the same.

The series in (a) is a composition series for G, and the simple factor groups are the
composition factors.

This theorem indicates that the simple groups are the ‘building blocks’ from
which arbitrary groups can be constructed. Thus finite group theory falls into two
parts, concerned with answering the questions
� what are the finite simple groups?
� how can they be put together to build arbitrary groups?

Finite simple groups

The first question above has recently been completely solved. It is not possible
here to give any hint of the proof, and the result can be stated only in broad terms.

There are four classes of finite simple groups:
� If p is a prime number, then the cyclic group Zp of order p (which can be

realized as the group of rotations of a regular p-gon) is simple; indeed, it has
no subgroups at all except for itself and the identity.

� For n ≥ 2, the set of permutations of {1, 2, . . . , n} that have even parity (that is,
are products of even numbers of transpositions) forms a normal subgroup An

of Sn with index 2, called the alternating group. For n ≥ 5, the alternating
group is simple.

� There is a large collection of groups of Lie type, closely related to groups of
matrices over finite fields. The simplest to describe are the groups PSLn(q),
obtained from the group SLn(q) of all n × n matrices over the finite field Fq of
q elements which have determinant 1. The set of scalar matrices of determinant
1 forms a normal subgroup Z of SLn(q), and the group PSLn(q) is the quotient
group SLn(q)/Z . The group PSLn(q) is simple for n ≥ 2 in all except two
cases, PSL2(2) and PSL2(3) (which happen to be isomorphic to S3 and A4,
respectively). The other groups of this type are harder to describe.

� There are just twenty-six further finite simple groups; these are the sporadic
groups.

The Classification of finite simple groups asserts the following.

Classification theorem Any finite simple group is cyclic of prime order, or an
alternating group, or a group of Lie type, or one of the twenty-six sporadic groups.
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Permutation groups

A permutation of the set � is a bijective mapping g : � → �. We write the image
of the point v ∈ � under the permutation g as vg, rather than g(v). The composition
g1g2 of two permutations g1 and g2 is the permutation obtained by applying g1

and then g2 that is,

v(g1g2) = (vg1)g2 for each v ∈ �.

A permutation group on � is a set G of permutations of � satisfying the
following conditions:
� G is closed under composition: if g1, g2 ∈ G then g1g2 ∈ G;
� G contains the identity permutation 1, defined by v1 = v for v ∈ �.
� G is closed under inversion, where the inverse of g is the permutation g−1

defined by the rule that vg−1 = w if wg = v.
The degree of the permutation group G is the cardinality of the set �.

The simplest example of a permutation group is the set of all permutations of
a set �. This is the symmetric group, denoted by Sym(�). More generally, an
action of G on � is a homomorphism from G to Sym(�). The image of the
homomorphism is then a permutation group. The action is faithful if its kernel is
{1} – that is, if distinct group elements map to distinct permutations. If the action
is faithful, then G is isomorphic to a permutation group on �.

Products

Let G1 and G2 be permutation groups on �1 and �2 respectively. We define two
products:

The direct product G1 × G2 acts on the disjoint union �1 ∪ �2. Each element of
the group is an ordered pair (g1, g2), with g1 ∈ G1, g2 ∈ G2, and acts by the rule

v(g1, g2) =
{
vg1 if v ∈ �1,

vg2 if v ∈ �2.

It also has an action as a permutation group on the Cartesian product �1 × �2,
where

(v1, v2)(g1, g2) = (v1g1, v2g2), for v1 ∈ �1, v2 ∈ �2.

The wreath product G1 � G2 is a permutation group on �1 × �2. Its elements are
compositions of two types of permutations:
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� for each function f : �2 → G1, the permutation given by

(v1, v2) f = (v1 f (v2), v2);

� for each element g ∈ G2, the permutation given by

(v1, v2)g = (v1, v2g).

It also has an action as a permutation group on the set of all functions from �2

to �1. We do not define this here, but note that it arises in connection with the
automorphism groups of the Hamming graphs in Chapter 7, Section 5.

The same (abstract) group may act as a permutation group on many different
sets. Two actions of G on sets �1 and �2 are isomorphic if there is a bijection f
from �1 to �2 that ‘commutes with the action of G’ – that is,

(v f )g = (vg) f, for all v ∈ �1 and g ∈ G.

More generally, the permutation groups G1 on �1 and G2 on �2 are equivalent if
there are a bijection f from �1 to �2 and an isomorphism φ from G1 to G2 such
that

(v f ) (gφ) = (vg) f, for all v ∈ �1 and g ∈ G1.

Note that, although isomorphic actions are equivalent, two actions of the same
group may be equivalent without being isomorphic.

Automorphism groups of graphs

Let G = (V, E) be a simple graph, possibly directed and possibly containing loops.
An automorphism of G is a permutation g of V with the property that {vg, wg}
is an edge if and only if {v, w} is an edge – or, if G is a digraph, that (vg, wg) is
an arc if and only if (v, w) is an arc. Now the set of all automorphisms of G is a
permutation group Aut(G), called the automorphism group of G.

The definition of an automorphism of a multigraph is a little more complicated.
The most straightforward approach is to interpret a multigraph as a weighted graph.
If av,w denotes the multiplicity of vw as an edge of G, then an automorphism is
a permutation of V satisfying avg,wg = av,w. Again, the set of automorphisms is a
group.

We note the following results:

Theorem
� A simple undirected graph and its complement have the same automorphism

group.
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� The automorphism group of the complete graph Kn or the null graph Nn is the
symmetric group Sn.

� The 5-cycle C5 has ten automorphisms, realized geometrically as the rotations
and reflections of a regular pentagon.

This last group is the dihedral group D10. More generally, Aut(Cn) is the dihedral
group D2n , for n ≥ 3.

We can describe the automorphism group of a disconnected graph in terms of
the group products introduced in the last section.

Theorem Let G be a graph whose connected components are n1 copies of G1, n2

copies of G2, . . . , nr copies of Gr , where G1, G2, . . . , Gr are pairwise non-
isomorphic connected graphs. Then

Aut(G) = (Aut(G1) � Sn1 ) × (Aut(G2) � Sn2 ) × · · · × (Aut(Gr ) � Snr ).

This theorem illustrates the notions of both direct and wreath product. First,
if r = 1, then any automorphism is a composition of n1 independently chosen
automorphisms of G1 (acting on the components) and an arbitrary permutation
of the components – that is, the group is Aut(G1) � Sn1 . For general values of r ,
automorphisms of the subgraphs consisting of copies of each Gi can be chosen
independently and combined, giving the direct product.

Orbits and stabilizers

Let G be a permutation group on �. The relation ∼ on �, defined by

v ∼ w if w = vg for some g ∈ G,

is an equivalence relation, and its equivalence classes are the orbits of G. G is
transitive if it has just one orbit; thus, G is transitive if, for any v, w ∈ �, there
exists g ∈ � such that vg = w.

The stabilizer Gv of a point v ∈ � is the set

H = {g ∈ G : vg = v};
it is a subgroup of G. Moreover, if w is a point in the same orbit as v, then the
set

{g ∈ G : vg = w}
is a right coset of H in G. This correspondence is a bijection between the orbit
of v and the set G/H of right cosets of H in G. It is, moreover, an isomorphism
between the actions of G on the orbit of v and on the set G/H, where the group
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acts by right multiplication on the latter set. It is thus possible to identify � with
the union of the coset spaces of a family of subgroups of G, one subgroup for each
orbit of G.

Group actions

Given a subgroup H of a group G, there is an action of G as a permutation group
on the set of right cosets of H: this action is transitive. However, the induced
permutation group may not be isomorphic to G, since there may be different
elements of G inducing the same permutation (or, equivalently, a non-identity
element of G inducing the identity permutation). Indeed, the stabilizer of the coset
Hg is the conjugate g−1Hg of H, so the kernel of the action (the subgroup fixing
all cosets) is the core of H, the intersection of all the conjugates. We say that H is
core-free if ⋂

g∈G
g−1Hg = {1};

thus, the action is faithful if and only if H is core-free.
In particular, if H is the identity subgroup, then it is core-free. In this case, the

cosets are just the singleton subsets of G, and we lose nothing by identifying them
with the elements of G. We obtain the action of G on itself by right multiplication,
where the element g induces the permutation x �→ xg of G. This action was used
by Cayley to show that every group is isomorphic to a permutation group.

Transitivity

Let G = (V, E) be a graph or digraph, and let G be a group of automorphisms of
G (a subgroup of the automorphism group Aut(G)). G is G-vertex-transitive, or
G acts vertex-transitively on G, if G is transitive on the set V ; edge-transitivity is
defined similarly. The graph G is G-symmetric if G acts transitively on the set of
ordered pairs (v, w) of adjacent vertices. (If G is a digraph, this is equivalent to
edge-transitivity, but for an undirected graph it is a little stronger, since it implies the
existence of an element of G that interchanges the two ends of an edge.) Finally, G
is vertex-transitive (or edge-transitive, or symmetric) if the appropriate transitivity
holds with G = Aut(G). The term arc-transitive is sometimes used as a synonym
for ‘symmetric’. Also, if G is G-symmetric, we call (G,G) a symmetric pair. For
example, the pentagon C5 is a symmetric graph, and (C5, D10) is a symmetric
pair. The cyclic subgroup of order 5 acts vertex-transitively, but not symmetrically,
on C5.
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Orbitals and rank

In the 1960s, Sims introduced graph-theoretic methods into the study of permuta-
tion groups, as follows.

Let G be a permutation group on �. Then there is a natural action of G on
� × �, the coordinate-wise action:

(v, w)g = (vg, wg),

for g ∈ G, v, w ∈ �. An orbit of G in this action is an orbital, and the number of
orbitals is the rank. Orbitals are of two types:
� a diagonal orbital is one of the form O = {(v, v) : v ∈ A}, where A is an orbit

of G in �;
� a non-diagonal orbital is one consisting of ordered pairs of distinct elements.
If the degree is greater than 1, there is at least one orbital of each type, and so the
rank is at least 2. It is equal to 2 if and only ifG is 2-transitive (or doubly transitive) –
that is, for any two pairs (v1, v2) and (w1, w2) of distinct elements of �, there is
an element g ∈ G such that v1g = w1 and v2g = w2.

There is a natural pairing of the orbitals: the orbital O∗ paired with O is
{(w, v) : (v, w) ∈ O}. If O = O∗, the orbital O is self-paired; trivially, a diagonal
orbital is self-paired.

Sims defined the orbital graph G(O) associated with an orbital O as an undi-
rected graph if O is self-paired and a directed graph otherwise, as follows: the
vertex-set is �, and the edges are all pairs vw for which (v, w) ∈ O . If O is diag-
onal, then G(O) just has a loop at every vertex in the corresponding orbit; and if
O is not self-paired, then G(O∗) is the converse digraph of G(O).

Graphs admitting a given group

Sims’ construction of orbital graphs can in a sense be reversed. Let G be a permu-
tation group on �. Which simple graphs or digraphs G with vertex-set � admit
G as a group of automorphisms? It is clear that, for any such graph, the set of
ordered pairs of adjacent vertices is preserved by G, and so is a union of orbitals.
Conversely, any union of orbitals is the arc set of a digraph G for which G is a
subgroup of Aut(G).

The construction is very flexible. If we want to exclude loops, then we consider
only non-diagonal orbitals. If we insist that the graphs are undirected, then we take
only unions that contain both or neither of each pair O, O∗ of orbitals. It is also
very practical: instead of having to list all the edges in order to specify a graph, we
need give only a set of orbit representatives. This fact is exploited in Chapter 10.
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This construction can be interpreted within the group. If A is an orbit of G on
�, and if H = Gv is the stabilizer of the point v ∈ A, then (as noted earlier) there is
a bijection between A and the set of right cosets of H in G, as follows: to the point
w ∈ A corresponds the set {g ∈ G : vg = w}. So we can identify � with the set
of all such cosets. Now each orbital O of G is contained in A1 × A2, for some
orbits A1, A2 of G on �. If Hi is the stabilizer of a point vi ∈ Ai , for i = 1, 2, then
the orbit O consists of all pairs (H1x,H2 y) of cosets such that x ∈ H1gH2 y –
that is, H1x ⊆ H1gH2 y, for some element g ∈ G. Now the double coset H1gH2

corresponds to this orbit. The construction can be reversed: to the double coset
H1gH2 corresponds the above set of pairs of cosets (a subset of A1 × A2), and
this set is an orbit of G.

So any graph on the vertex-set � which admits G as a group of automorphisms
can be represented by a family of subgroups of G (the stabilizers of vertices in
the G-orbits in �), together with a family of double cosets of these subgroups,
corresponding to the G-orbits on � × � that are edges of the graph.

The description becomes simpler when G is vertex-transitive, and even more
so when G is symmetric. First note that, if G is transitive on �, then the stabilizer
H of a point of � is core-free in G. So any vertex-transitive graph has the form

G(G,H,S),

where H is a core-free subgroup of G, and S is the union of a set of double cosets
of the form HxH; in fact S = {g ∈ G : vg ∼ v}, where H = Gv . The graph is
undirected if, for all x ∈ S, we have x−1 ∈ S. The connected component contain-
ing v consists of the vertices whose corresponding cosets belong to the subgroup
generated by S . Such a graph is a coset graph.

Now the graph G(G,H,S) is G-symmetric if and only if S consists of just one
double coset HgH. It is also undirected if and only if g−1 ∈ HgH. This leads to
the following result of Sabidussi:

Theorem Let G be an undirected G-symmetric graph. Then G is isomorphic to
(G,H,HgH), for some subgroup H and some element g of G, where H = Gv and
vg ∼ v for some vertex v, and g−1 ∈ HgH. This isomorphism is an equivalence
of G-actions. Moreover, G is connected if and only if 〈H, g〉 = G.

Note that we may assume, without loss of generality, that the order of g is a power
of 2 and that g interchanges v and vg.

The fact that the given symmetric graph G is isomorphic to a coset graph for the
given group G suggests the need for a clear notion of equivalence of symmetric
pairs. An equivalence between symmetric pairs (G,G) and (G ′,G ′) consists of
a graph isomorphism f : G → G ′ and a group isomorphism φ : G → G ′ such
that, for all vertices u of G and all g ∈ G, ((u) f )g = (u(gφ)) f . We then write
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(G,G) ∼= (G ′,G ′). Thus, every symmetric pair (G,G) is equivalent to the sym-
metric pair (G∗,G), where G∗ is the coset graph G(G,H,HgH).

Primitivity and double transitivity

Let G be a transitive permutation group on �. G is primitive on � if the only
equivalence relations on � that are invariant under the action of G are the trivial
ones – the relation of equality, and the ‘universal’ relation with a single equivalence
class. Now the following assertions hold:
� a 2-transitive group is primitive;
� G is primitive on � if and only if a stabilizer H = Gv is a maximal proper

subgroup of G, for v ∈ �;
� If G is primitive on �, and N is a non-trivial normal subgroup of �, then N is

transitive on �.
Motivated by the second assertion, we call a permutation group G on � quasi-
primitive if all of its non-trivial normal subgroups are transitive. Thus, a primitive
group is quasiprimitive.

If G is transitive on �, then there is a single diagonal orbital {(v, v) : v ∈ �};
the corresponding orbital graph consists of a loop at each vertex. Sims proved the
following result:

Theorem The transitive permutation group G on � is primitive if and only if every
non-diagonal orbital graph is connected.

For, let G(O) be the orbital graph corresponding to the orbital O containing
(v, w). It can be shown that, if H = Gv and vg = w, then the connected com-
ponent of G(O) containing v is the orbit of the subgroup 〈H, g〉. So, if G is
primitive, then H is a maximal subgroup of G, and so 〈H, g〉 = G for all g /∈ H;
thus all non-diagonal orbital graphs are connected. Conversely, if G is not primi-
tive, then there is a proper subgroup K of G with H < K. So, if g ∈ K, g /∈ H, and
w = vg, then the orbital graph containing the edge (v, w) is neither diagonal nor
connected.

Many classifications of particular classes of (quasi)primitive groups relevant to
graph theory have been obtained, using the Classification of finite simple groups.
Among these are:
� the 2-transitive groups;
� the primitive permutation groups with rank 3;
� the primitive permutation groups of odd degree, other than those of ‘affine

type’.



Introduction 29

One of the main tools in applying this powerful theorem is the O’Nan-Scott Theo-
rem, which describes the structure of the socle (the product of the minimal normal
subgroups) of a (quasi)primitive permutation group. See Chapter 7, Section 3, for
an account of this theorem.

References

1. P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts 45, Cambridge
Univ. Press, 1999.

2. J. D. Dixon and B. Mortimer, Permutation Groups, Springer, 1996.
3. S. Lipschutz, Linear Algebra, Schaum’s Outline Series, McGraw-Hill, 1974.
4. D. B. West, Introduction to Graph Theory (2nd ed.), Prentice-Hall, 2001.
5. R. J. Wilson, Introduction to Graph Theory (4th ed.), Pearson, 1996.



1
Eigenvalues of graphs

MICHAEL DOOB

1. Introduction
2. Some examples
3. A little matrix theory
4. Eigenvalues and walks
5. Eigenvalues and labellings of graphs
6. Lower bounds for the eigenvalues
7. Upper bounds for the eigenvalues
8. Other matrices related to graphs
9. Cospectral graphs
References

This chapter gives a survey of some of the relationships between the proper-
ties of a graph and the spectrum of its adjacency matrix. First we give some
working examples and use them to illustrate the necessary matrix theory
background. Next, the eigenvalues of a graph are related to the path struc-
ture. Then we examine the construction of eigenvalues via graph labellings.
The implications of bounding the eigenvalues (from both above and below)
are also explored. Finally, we examine the question of whether a graph is
determined by its spectrum. In addition, we note some relationships between
a graph and other matrices related to the adjacency matrix.

1. Introduction

The eigenvalues of a graph are the eigenvalues of its usual (0-1)-adjacency matrix.
The relationships between the algebraic properties of these eigenvalues and the
usual (topological and geometric) properties of graphs have been studied quite
intensively. At first blush it seems implausible that such eigenvalues would have
any relationship with such properties of a graph. In this chapter we shall show

30
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that this is not the case. We shall also lay the groundwork for some deeper results
appearing in subsequent chapters by giving a general background for the theory
and presenting some useful computational tools.

Eigenvalues of other matrices (Laplacian, Seidel matrices, etc.) associated with
a graph are also of interest, and when we talk of such eigenvalues we will specif-
ically note the type of matrix under consideration. Relationships between these
matrices and the adjacency matrix will be discussed.

A good introduction to the some of the earlier results concerning eigenvalues of
graphs is given in [25]. More advanced work is discussed in [10] and [15]. A list of
all the graphs with up to seven vertices, with their eigenvalues and characteristic
polynomials, appears in [22].

2. Some examples

It is always good to have some particular graphs with which to work, so first we
give some examples and their eigenvalues. We start with a specific example, the
graph Q3 in Fig. 1.

The adjacency matrix A is a square matrix of order 8:

A =




0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0




.

The characteristic polynomial of this matrix is easily computed:

det(xI − A) = x8 − 12x6 + 30x4 − 28x2 + 9 = (x − 3)(x + 3)(x − 1)3(x + 1)3,

and so the eigenvalues of Q3 are 3, −3, 1 and −1, with respective multiplicities
1, 1, 3 and 3.

1 6

8 3

7

2

4

5

Fig. 1.
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Table 1.

Graph Eigenvalues Respective multiplicities

Kn n − 1, −1 1, n − 1
Kr,s

√
rs, 0, −√

rs 1, r + s − 2, 1
Cn 2 cos

(
2kπ

n

)
, k = 1, 2, . . . , n 2, 1, 1, . . . , 1, 2 for n even

1, 1, . . . , 1, 2 for n odd
Pn 2 cos

(
kπ

n+1

)
, k = 1, 2, . . . , n 1, 1, . . . , 1

L(Kr ) 2r − 4, r − 4, −2 1, r − 1, r (r − 3)/2
L(Kr,r ) 2r − 2, r − 2, −2 1, 2(r − 1), (r − 1)2

L(Kr,s) r + s − 2, r − 2, s − 2, −2 1, s − 1, r − 1, (r − 1)(s − 1)

Qd d − 2k, k = 0, 1, . . . , d
(

d
k

)
, k = 0, 1, . . . , d

CP(r ) or Kr (2) 2r − 2, 0, −2 1, r, r − 1

Table 1 gives some more examples. By the end of this chapter, we shall have
verified all of them. In this table, note that two graphs have the same spectrum only
if they are isomorphic. This is not true in general, as the following examples show.
The first pair of non-isomorphic graphs, shown in Fig. 2, is the smallest one with
the same eigenvalues: they are 2, 0 and −2, with respective multiplicities 1, 3 and
1. We see from this example that, in general, connectivity cannot be determined
from the eigenvalues alone.

The next graphs, shown in Fig. 3, are the smallest connected pair with the same
eigenvalues. These two graphs have diameters 2 and 4. Hence, in general, the
diameter of a graph cannot be determined from the eigenvalues.

The trees in Fig. 4, are the smallest pair with the same eigenvalues: ± 1
2 ±

√
13
2 ,

each of multiplicity 1, and 0 with multiplicity 4. These trees have very different

Fig. 2. Characteristic polynomial: p(x) = x5 − 4x3

Fig. 3. Characteristic polynomial: p(x) = x6 − 7x4 − 4x3 + 7x2 + 4x − 1
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Fig. 4. Characteristic polynomial: p(x) = x8 − 7x6 + 9x4

degrees. Hence, in general, we cannot determine much about the degree sequence
from the eigenvalues of a graph.

From these examples we see that there are several properties of graphs that are
not determined by their eigenvalues; more will be said about this in Section 9. On
the other hand, there are other properties (for example, the number of edges and
the number of triangles in a graph) that are determined by the eigenvalues. Some
of these will be given in Section 4. The sorting of graph properties into those
determined by the eigenvalues or not continues to be of research interest.

3. A little matrix theory

Since the adjacency matrix of a graph is real and symmetric, we may use known
results from the theory of matrices to our advantage. We will state some of them
without proofs, which may be found in [14] or [20]. The first is sometimes called
the principal axis theorem.

Theorem 3.1 (Principal axis theorem) If A is a real symmetric matrix of or-
der n, then A has n real eigenvalues and a corresponding orthonormal set of
eigenvectors.

If U is a matrix with an orthonormal set of eigenvectors as columns, then
UT = U−1 and UT AU = D, where D is the diagonal matrix whose entries are the
corresponding eigenvalues. This gives a diagonalization theorem.

Theorem 3.2 If A is a real symmetric matrix, then there exists a matrix U such
that UT AU = D. In addition, the minimum polynomial is

∏
(x − λi ), where the

product is taken over the distinct eigenvalues.

The next theorem, the Perron-Frobenius theorem, gives information about the
largest eigenvalue of a matrix with non-negative entries.

Theorem 3.3 (Perron-Frobenius theorem) If A is a non-negative matrix
with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, then |λ1| ≥ |λk |, for k = 1, 2, . . . , n, and
the eigenvalue λ1 has an eigenvector with all entries non-negative. If A is
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indecomposable, then the eigenvalue λ1 is simple (λ1 > λ2), and the eigenvec-
tor has all entries positive.

The adjacency matrix of a graph is indecomposable precisely when the graph
is connected. Hence the largest eigenvalue of a connected graph is simple.

It is a straightforward observation that the spectrum of a graph is the union of
the spectra of its connected components. So, unless otherwise stated, we assume
that all graphs under consideration are connected.

The following result is known as the Interlacing theorem.

Theorem 3.4 (Interlacing theorem) Let A be a real symmetric matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and let µ1 ≥ µ2 ≥ · · · ≥ µn−1 be the eigenval-
ues of a principal submatrix of A. Then λi ≥ µi ≥ λi+1, for i = 1, 2, . . . , n − 1.

This theorem is of major importance in the study of graph eigenvalues. A principal
submatrix corresponds to an induced subgraph with one fewer vertex. This result
can be visualized as interlacing the eigenvalues on the real axis, as shown in Fig. 5.

The Interlacing theorem and an easy induction yield the following result for
induced subgraphs:

Corollary 3.5 If H is an induced subgraph of G, if µ1 ≥ µ2 ≥ · · · ≥ µm are
the eigenvalues of H, and if λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of G, then
λi+n−m ≤ µi ≤ λi , for i = 1, 2, . . . , m.

4. Eigenvalues and walks

The oldest, and perhaps the most fundamental, relationship between the eigenval-
ues of a graph and its geometric properties concerns walks – particularly, closed
walks. Suppose that A is the adjacency matrix of a graph. Then the powers of A
enumerate the walks in that graph.

Theorem 4.1 If a graph G has adjacency matrix A, then for k = 0, 1, . . . , the
ij-entry of Ak is the number of vi -v j walks of length k.

eigenvalues of G

eigenvalues of G – {υi}

Fig. 5.
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Proof The case k = 0 is trivial, but will be useful later in this section; the case
k = 1 is the definition of the adjacency matrix. For larger values of k, the proof
follows by an easy induction that uses nothing more than the definition of matrix
multiplication. �

This theorem is often applied to enumerate closed walks of length k. These
correspond to diagonal entries in Ak , and so the number of closed walks of length
k is the sum of the diagonal entries, which in turn is equal to tr (Ak).

Corollary 4.2 If A is the adjacency matrix of a graph G with degree sequence
d1, d2, . . . , dn, then
� A2

i i = deg vi ;
� the number of edges of G is given by

|E(G)| = 1
2

n∑
i=1

deg vi = 1
2 tr (A2);

� the number of triangles in G is 1
6 tr (A3).

From this we see that the number of edges and the number of triangles in a graph
are determined by its eigenvalues. This argument does not extend to k-cycles, with
k > 3: the first example of cospectral graphs in Section 2 shows that the number
of 4-cycles cannot be determined by the eigenvalues alone. However, the degree
sequence adds enough extra information to determine the 4-cycles.

Corollary 4.3 If d1, d2, . . . , dn is the degree sequence of G, then the number of
4-cycles in G is 1

8 (trA4 + trA2 − 
n
i=1d2

i ).

We can also use Theorem 4.1 to bound the diameter of a graph by the number
of distinct eigenvalues.

Theorem 4.4 If a graph G has diameter D and t distinct eigenvalues, then

D ≤ t − 1.

Proof Suppose not. Then there exist two vertices vi and v j such that the distance
between them is exactly t . Thus At

i j > 0, but Ak
i j = 0 for k = 1, 2, . . . , t − 1. So if

q(x) is any polynomial of degree t , the i j-entry of q(A) must be non-zero. But, by
Theorem 3.2, the minimum polynomial is of degree t ; when evaluated at A, this
polynomial has every entry equal to 0, and hence we have a contradiction. �

The graphs Kn, Kr,s, Cn, Pn, L(Kr ), L(Kr,r ), Qd and CP(r ), in the table of
examples in Section 2, all attain the bound of the last theorem, while L(Kr,s) does
not whenever r �= s. Distance-regular graphs (described later in this chapter) meet
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this bound too; however, there is no known general characterization of graphs that
attain this bound.

Matrix equations involving the minimum and other polynomials are often used
to reveal information about the graph, and vice versa. For example, the complete
graph Kn must have A2

i j = n − 2 if i �= j , and A2
i i = n − 1. Thus

A2 − (n − 2)A = I,

and

x2 − (n − 2)x − 1 = (x − (n − 1))(x + 1)

is the minimum polynomial. Since the trace of A is 0, the eigenvalues are n − 1
(simple) and −1 (n − 1 times). Conversely, if a graph with n vertices has the same
eigenvalues as Kn , then the minimum polynomial forces the adjacency matrix to
satisfy A2 − (n − 2)A = I, which makes the graph regular with degree n − 1, and
hence Kn . We say that Kn is characterized by its spectrum.

Another polynomial is used in the case of regular connected graphs. In this
case, the adjacency matrix A and the all-1 matrix J commute. If the degree of the
graph is r , then the all-1 vector j is an eigenvector of A (with eigenvalue r ) and
of J (with eigenvalue n). Any other eigenvector of A is orthogonal to j, and so
is also an eigenvector of J (with eigenvalue 0). If we consider the interpolating
polynomial

h(x) = n
∏ x − λi

r − λi
,

where the product is taken over all distinct eigenvalues that are not equal to r ,
then h(r ) = n and h(λ) = 0 for any other eigenvalue λ. Using our orthonormal
basis of eigenvectors, we see that h(A) − J is a symmetric matrix that annihilates
any vector, and hence h(A) − J = 0, or h(A) = J. This polynomial is called the
Hoffman polynomial.

Strongly regular graphs

A graph is strongly regular with parameters (n, r, λ, µ) if it has n vertices, is regular
of degree r , has each pair of adjacent vertices mutually adjacent to λ other vertices,
and has each pair of non-adjacent vertices mutually adjacent to µ other vertices.
By convention, we exclude any graph in which each component is complete (that
is, µ = 0), so that all strongly regular graphs are connected. An example of a
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strongly regular graph is the Petersen graph: it clearly has parameters (10, 3, 0, 1).
Strongly regular graphs are considered in detail in Chapter 8.

For any strongly regular graph there are only three types of entries in the
adjacency matrix: those for which two vertices are adjacent, those for which two
vertices are non-adjacent, and the diagonal. We know that the entry in A2 is λ, µ

and r in each of these cases. From this it is clear that

A2 + (µ − λ)A + (µ − r )I = µJ.

Hence we have essentially the Hoffman polynomial, and we know that the eigen-
values of the graph are r and the two roots of

x2 + (µ − λ)x + (µ − r ).

This means that strongly regular graphs attain the diameter bound of Theorem 4.4.
Once we have the eigenvalues, it is trivial to compute their multiplicities. If the

distinct eigenvalues of the graph are r, λ2 and λ3, with respective multiplicities 1,
m2 and m3, then we have

m2 + m3 = n − 1 and m2λ2 + m3λ3 = −r,

since the adjacency matrix of any graph has trace 0. These multiplicities must
be integers, and, since λ2 �= λ3, they are determined by the equations displayed
above. The integrality of m2 and m3 has been an especially useful tool for showing
the non-existence of potential strongly regular graphs with certain parameters.

We have thus verified the spectra of L(Kn), L(Kr,r ), Kr,r and CP(r ), as pre-
sented in Section 2, since these graphs are strongly regular.

A regular graph of degree r and diameter d can have at most

1 + r + r (r − 1) + · · · + r (r − 1)d

vertices. A graph that attains this bound is called a Moore graph of diameter d. A
Moore graph of diameter d = 2 is strongly regular with parameters (r2 + 1, r, 0, 1).
One of the oldest existence questions in spectral graph theory arises from these
graphs: for which r do these Moore graphs exist?

We follow the logic given above: the eigenvalues are r plus the two solutions
of

x2 + x − (r − 1) = 0

– that is,

1
2 (−1 ± √

4r − 3).
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Then

λ2 + λ3 = −1 and λ2 − λ3 = √
4r − 3.

In addition,

m2 + m3 = r2 and m2λ2 + m3λ3 = −r.

Hence,

(m2 − m3)
√

4r − 3 = r (r − 2).

If
√

4r − 3 is not an integer, then m2 = m3 and r = 2, so that the graph is C5.
Otherwise,

√
4r − 3 is an odd integer, 2t + 1, so that 2t + 1 divides

16r (r − 2) = (2t + 1)2(4t2 + 4t − 1) − 15.

Hence 2t + 1 divides 15, and so t = 0, 1, 2 or 7 – which in turn implies that
r = 1, 3, 7 or 57. The case r = 3 gives the Petersen graph, and the case r = 7
also yields a single graph, called the Hoffman-Singleton graph. What happens
in the final case r = 57 (a question raised in 1960 in [17]) has remained un-
solved, despite much effort over several decades. The Petersen graph contains
two copies of C5, the Hoffman-Singleton graph has 50 vertices and contains 10
copies of the Petersen graph. The graph with r = 57, if it exists, would have 3250
vertices.

Much more will be said about strongly regular graphs in Chapter 8.

Distance-regular graphs

Strongly regular graphs can be generalized to distance-regular graphs with di-
ameter greater than 2. We define ni (v) to be the number of vertices at distance
i from v, and for two vertices v and w at distance k from each other, pk

i j (v, w)
is the number of vertices at distance i from v and distance j from w. If ni (v)
is the same for all v, and if pk

i j (v, w) is the same for all vertices v and w at
distance k from each other, then the graph is distance-regular. A strongly regular
graph with parameters (n, r, λ, µ) is such a graph with n1(v) = r, n2(v) =
n − r − 1, p1

11 = λ and p2
11 = µ. The d-dimensional cube Qd is distance-regular

with diameter d.
A distance-regular graph of diameter d has an associated intersection array, an

idea introduced in [2]. It has parameters ci = pi
i−1,1, bi = pi

i+1,1 and ai = pi
i1 =

r − bi − ci , for i = 0, 1, . . . , d. It turns out that the eigenvalues of A are the same
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as the eigenvalues of the tridiagonal matrix


a0 b0 0 0 · · · 0 0
c1 a1 b1 0 · · · 0 0
0 c2 a2 b2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · ad−1 bd−1

0 0 0 0 · · · cd ad




.

Since the order of this matrix is only d + 1, there can be at most d + 1 eigenvalues.
By Theorem 4.4, the graph must have at least d + 1 eigenvalues. Hence all distance-
regular graphs attain the diameter bound of Theorem 4.4.

We conclude this section with two important distance-regular graphs.
The Hamming graph H (d, l) has the d-tuples (x1, x2, . . . , xd ) as its vertices,

where 1 ≤ xi ≤ l. Two vertices are adjacent if, as d-tuples, they agree in all but one
coordinate. This graph has diameter d, since the distance between two vertices is the
number of coordinates in which the corresponding d-tuples differ. The eigenvalues
are kl − d, with multiplicity

(d
k

)
, for k = 0, 1, . . . , d. Notice that if l = 2, we have

the cube graph Qd .
The Johnson graph J (d, l) has vertices corresponding to the

(n
d

)
subsets of

{1, 2, . . . , l}. Two vertices are adjacent if, as subsets, their intersection is of size
d − 1. This graph has diameter d, since the distance between two vertices is k if
and only if the corresponding subsets have intersection of size d − k. Notice that
if d = 2, we have the graph L(Kl).

The book [4] is an encyclopaedic reference on distance-regular graphs.

5. Eigenvalues and labellings of graphs

The columns of the adjacency matrix A correspond to the vertices of the graph. If A
acts on a vector x, then the entries of that vector can have the same correspondence,
so a vector may be used to label the vertices. When we use an eigenvector, the
eigenvalues will reflect the geometric structure of the graph.

Theorem 5.1 If A is the adjacency matrix of a graph G with vertices {v1, v2, . . . ,

vn}, and the vector x is viewed as a labelling of the vertices of G, then, for k =
1, 2, . . . , n, (Ax)k is the sum of the labels on the vertices adjacent to vk .

This result is convenient for direct calculation. For example, consider the cycle
Cn , and let εk = e2iπk/n (an nth root of unity). If the vertices in order around the
cycle are v1, v2, . . . , vn , let x = (x1, x2, . . . , xn) be defined by letting x j = ε

j
k .
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Then (Ax) j = x j−1 + x j+1 (subscripts taken modulo n), and

x j−1 + x j+1

x j
= e2iπ ( j−1)k/n + e2iπ ( j+1)k/n

e2iπ jk/n
= e−2iπk/n + e2iπk/n = ε−1

k + εk .

Hence, Ax = (ε−1
k + εk)x and, on letting k range from 1 to n, we obtain all the

eigenvalues of Cn . Notice that the roots of unity εk and εn−k yield the same eigen-
value, and so, unless k = n or n/2, this eigenvalue has multiplicity 2; otherwise,
the multiplicity is 1.

Similar labellings can be used to find the eigenvalues of a path. Consider the
path Pn and the cycle C2n+2. Let x be any eigenvector of Pn and use that vector to
label the first n vertices of C2n+2. Label the next vertex 0, the next n vertices with
−x in reverse order, and the last vertex 0. It is now easy to verify that we have an
eigenvector of C2n+2. If we shift the labels one step around the cycle (labelling
the first vertex 0, the next n vertices by x, the next one 0, and the final n by −x in
reverse order), we get a second independent eigenvector. Hence the eigenvalues of
Pn correspond to the double eigenvalues of C2n+2. This technique first appeared
in [25].

We can also use eigenvalue labellings to deduce an easy result about bipartite
graphs. If G has a bipartition (S, T ), and if x is an eigenvector with corresponding
eigenvalue λ, then we can replace the label xi with −xi for each vertex in S to
get an eigenvector with corresponding eigenvalue −λ. Hence, λ and −λ have the
same multiplicity, and the spectrum is symmetric about 0. Conversely, if G has a
spectrum that is symmetric about 0, then the trace of A2k+1 is 0 and the graph has
no odd cycles, and so G is bipartite. This yields one of the oldest results concerning
the spectra of graphs.

Theorem 5.2 A graph is bipartite if and only if its spectrum is symmetric
about 0.

Now suppose that vi and v j are non-adjacent vertices with the same neighbours,
and suppose that x is an eigenvector with eigenvalue λ. If 
 is the sum of the labels
on the neighbours of vi and v j , then clearly

λxi = (Ax)i = 
 = (Ax) j = λx j ,

and hence λ(xi − x j ) = 0. This yields the following result about the symmetry of
the eigenvectors of a graph.

Corollary 5.3 If v and w are non-adjacent vertices with the same neighbours,
and if x is an eigenvector with eigenvalue λ, then either v and w have the same
label or λ = 0.
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We can apply this result to Kr,s . If λ �= 0, then any eigenvector x gives labels that
can have only two possible values, say y and z. We can then say that λy = sz and
λz = r y, and in particular, y �= 0 and z �= 0. Hence rsyz = szr y = (λy)(λz) =
λ2 yz. So λ2 = rs, and the only non-zero eigenvalues are ±√

rs. Since Kr,s is
connected and has trace 0, these two non-zero values are simple eigenvalues.

A similar result can be obtained for adjacent vertices. Suppose that vi and v j

are adjacent vertices with the same neighbours, and that x is a eigenvector with
eigenvalue λ. Again, let 
 be the sum of the labels on the neighbours of vi and v j .
Then


 + x j = (Ax)i = λxi and 
 + xi = (Ax) j = λx j ,

so that (λ + 1)(xi − x j ) = 0.

Corollary 5.4 If v and w are adjacent vertices with the same neighbours, and if
x is an eigenvector with eigenvalue λ, then either v and w have the same label or
λ = −1.

We can apply this result to the complete graph Kn with one edge deleted.
Suppose that G has n vertices, all of which are pairwise joined except for v1 and
v2, and suppose that x is an eigenvector with eigenvalue λ. For λ = 0, we see
from Corollary 5.4 that x3 = x4 = · · · = xn , but Corollary 5.3 tells us nothing.
However, (Ax)1 = 0 tells us that the common value is 0, and then x1 = −x2; thus
λ = 0 has multiplicity 1. For λ = −1, we see from Corollary 5.3 that x1 = x2, but
Corollary 5.4 tells us nothing. However,

−x1 = (Ax)1 =
n∑

i=3

xi = 0 = (Ax)2 = −x2,

and so x1 = x2 = ∑n
i=1 xi . On the other hand, (Ax)3 = −x3 implies that

∑n
i=1 xi =

0. Hence the eigenspace is{
(x1, x2, . . . , xn) : x1 = x2 = 0 =

n∑
i=3

xi

}
,

which has dimension n − 3. For any other eigenvalue λ, x1 = x2 = a and x3 =
x4 = · · · = xn = b. Hence λa = (n − 2)b and λb = (n − 3)b + 2a. Elimination
gives

λ = 1
2

(
n − 3 ±

√
(n + 1)2 − 8

)
.

Thus we have completely determined the spectrum.
Starting with a matrix A, the Rayleigh quotient is defined using the usual inner

product for any non-zero vector x as 〈Ax, x〉/〈x, x〉. Since the Rayleigh quotients
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of x and cx are identical for c �= 0, we can restrict our attention to vectors of unit
length when convenient.

We first observe that if A is the adjacency matrix of a graph, then the Rayleigh
quotient takes on precisely all values between the largest and smallest eigenvalues.

Theorem 5.5 Let G be a graph with adjacency matrix A and with eigenvaluesλ1 ≥
λ2 ≥ · · · ≥ λn. Then 〈Ax, x〉/〈x, x〉 takes on precisely the values in the interval
[λn, λ1]. In addition, 〈Ax, x〉/〈x, x〉 = λ1 or λn only if x is an eigenvector.

Proof Let y be any non-zero vector, and let {x1, x2, . . . , xn} be an orthonormal
basis of eigenvectors for A. Then y = ∑

ri xi and

〈Ay, y〉
〈y, y〉 =

〈
A

(∑
ri xi

)
,
∑

ri xi
〉

〈∑
r j x j ,

∑
r j x j

〉 =
∑ r2

i λi∑
r2

j

=
∑ r2

i∑
r2

j

λi .

The coefficients of λi are all non-negative and add to 1 – that is, the Rayleigh
quotient is a convex combination of the eigenvalues. Hence, the Rayleigh quotient
of every non-zero vector is in the interval [λn, λ1], each value in that interval is
attained by the Rayleigh quotient for some vector, and the extreme values of the
interval are attained only by eigenvectors. �

Observe also that if λ1 is the largest eigenvalue of a connected graph G, x is
a corresponding eigenvector, and 〈Ay, y〉/〈y, y〉 = λ1, then we can write y as a
convex combination of eigenvectors of G. Since λ1 is simple, this means that
y = rx for some real number r �= 0, and so y has all of its coordinates positive or
all of its coordinates negative.

Corollary 5.6 If H is a proper induced subgraph of a connected graph G, if H has
maximum eigenvalue µ, and if G has maximum eigenvalue λ, then µ < λ.

Proof We know that µ ≤ λ, from Theorem 3.4. If z is an eigenvector of H with
eigenvalue µ, we can extend z to y by adding 0 as entries corresponding to vertices
not in H ; then 〈Ay, y〉/〈y, y〉 = µ. If µ = λ, then by the observation in the previous
paragraph, all the coordinates of y are non-zero. This can happen only if H = G,
and so µ < λ. �

Corollary 5.7 If e is an edge of a connected graph G, then the largest eigenvalue
of G is strictly greater than the largest eigenvalue of G − e.

Proof Let H = G − e. If H is disconnected, then its maximum eigenvalue is
attained on one of the components, which is a proper induced subgraph, so Corol-
lary 5.6 applies. If H is connected, let x be an eigenvector of H corresponding
to its largest eigenvalue µ. If the deleted edge joins vi and v j , and if A is the
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adjacency matrix for G, then the largest eigenvalue of G is bounded below by
〈Ax, x〉/〈x, x〉 = µ + 2xi x j . Since x has only positive or only negative entries, the
largest eigenvalue of G must be greater than that of H . �

The classic proof of the Perron-Frobenius theorem brackets the largest eigen-
value of a non-negative matrix by considering the values of (Ax)i/xi (i = 1, 2, . . . ,

n), where x is a vector with non-negative coordinates. The largest eigenvalue λ1

satisfies

min
i

{
(Ax)i

xi

}
≤ λ1 ≤ max

i

{
(Ax)i

xi

}
.

The proof actually shows that if we maximize the left value and minimize the right
value over x ≥ 0, then we get the same value from both cases. If we let j be the all-1
vector and A be the adjacency matrix of a graph G with degrees d1, d2, . . . , dn ,
then we get

min
i

di ≤ λ1 ≤ max
i

di .

On the other hand, if we use Theorem 5.5 with the same vector j, we get 1
n

∑n
i=1 di ≤

λ. This results in the following theorem.

Theorem 5.8 If G is a graph with degrees d1, d2, . . . , dn and maximum eigenvalue
λ1, then

1

n

n∑
i=1

di ≤ λ1 ≤ max
i

di .

Equality is attained if and only if the graph is regular.

In other words, the maximum eigenvalue lies between the average degree and the
maximum degree, and equals both values if and only if the graph is regular.

6. Lower bounds for the eigenvalues

Finding lower bounds for the eigenvalues of graphs has been a recurring theme
in the study of graph spectra. In this section we use λ(G) to denote the smallest
eigenvalue.

Proposition 6.1 Let G be a connected graph with least eigenvalue λ(G). Then
� λ(G) ≤ 0, with equality for a null graph;
� if G is not null, then λ(G) ≤ −1, with equality if and only if G is complete;
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� if G is neither complete nor null, then λ(G) ≤ −√
2, with equality if and only if

G = K1,2;
� if G is neither complete nor K1,2, and if λ(G) ≥ −1.5, then G is

(In fact, λ(G) = − 2
3

√
10 sin( 1

3 arccos(
√

10
100 ) + π

6 ) + 1
3 ≈ −1.4811943, for this

graph.)

Proof Since the trace of any adjacency matrix is 0, λ(G) ≤ 0. If a graph has an
edge, then that edge is a two-vertex induced subgraph with least eigenvalue −1.
Theorem 3.5 implies that λ(G) ≤ −1. If G is not a complete graph, then K1,2 is
an induced subgraph with least eigenvalue −√

2. Among the graphs G with four
vertices, the one given in the last statement is the only one with least eigenvalue
λ(G) ≥ −1.5. �

So we now know that the graphs G with λ(G) ≥ −1.5 are pretty sporadic. The
situation for −2 ≤ λ(G) ≤ −1.5 is just the opposite. First, we make an observation
that motivated the original study of graphs for which −2 ≤ λ(G).

The vertex-edge incidence matrix of a graph is a (0, 1)-matrix with rows corre-
sponding to the vertices, columns corresponding to the edges, and an entry equal
to 1 if and only if its row and column correspond to an incident vertex and edge.

Theorem 6.2 Any line graph L(G) satisfies λ(L(G)) ≥ −2.

Proof Let K be the vertex-edge incidence matrix of G. Evidently,

KKT = 2I + A(L(G)).

Since KKT is positive semidefinite, it has non-negative eigenvalues. �

Two non-isomorphic graphs with more than four vertices have non-isomorphic
line graphs. So, in a sense, the number of graphs satisfying −2 ≤ λ(G) < 1.5 is
the same as the number of all line graphs.

Not all graphs satisfying −2 ≤ λ(G) are line graphs. For example, if G is a
cocktail party graph CP(r ), then λ(G) = −2, even though for any r > 2, G is not a
line graph. So the determination of all graphs with −2 ≤ λ(G) is more complicated,
but, as it turns out, leads to one of the most beautiful results in the study of graph
spectra.

Suppose that G is a graph with n vertices and adjacency matrix A, and assume
that −2 ≤ λ(G). Then A + 2I is positive semidefinite, and hence is of the form
KKT for some appropriate matrix K with n rows; the number of columns is the
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rank of A + 2I. Let k1, k2, . . . , kn be the n rows of K. Then ki · k j = 1 if vi and
v j are adjacent, ki · k j = 0 if they are not, and ki · ki = 2. So we may think of
these vectors as having length

√
2 and meeting at angles of 60◦ or 90◦. Now if we

have a set of vectors, and two vectors u and v meet at 60◦, then we can add four
other vectors −u, −v, u − v and −u + v, to get three equiangular lines in the form
of a ‘star’, as shown in Fig. 6. So if we start with vectors k1, k2, . . . , kn , then we
can add vectors when needed to complete the star. Since there can only be a finite
number of vectors with each pair meeting at 60◦, 90◦ or 120◦, we can repeat this
process a finite number of times until it eventually stops at some set �. This new
set of vectors is called star closed.

Notice that � has the following properties:
� � is finite;
� if x and cx ∈ �, then c = ±1;
� if x, y ∈ �, then 2〈x, y〉/〈x, x〉 is an integer;
� if x ∈ � and if H is the hyperplane orthogonal to x, then � is closed under

reflections by H : in other words, x, y ∈ � implies that y − 2 〈x,y〉
〈x,x〉x is also in �.

Sets of vectors satisfying these properties are called root systems and have been
studied extensively, especially since they are used to classify real semisimple Lie
algebras. Our set � has the additional property that all vectors have the same
length. All such root systems are known: complete expositions can be found in
[3, Ch. 6] and [7]. The complete list of such root systems is shown in Table 2, along
with one set of generating vectors; see also Chapter 3, Section 5. Since v ∈ � if
and only if −v ∈ �, it is customary to count the number of lines in a root system.
The standard basis is denoted by {e1, e2, . . . , en}, where (ei ) j is 1 if i = j , and 0
otherwise. The beauty of this result is that the arguments are reversible: starting
from the graph theory we can classify all the root systems. The details may be
found in [6].

When the adjacency matrix of a graph satisfies A = KKT − 2I, where the rows
of K are taken from a root system, we say that the root system represents the graph.

Suppose that G is a bipartite graph with bipartition (X, Y ). For an edge joining
vi ∈ X and v j ∈ Y , consider the vector ei − e j . Let K be the matrix with all such
vectors as rows. Then KKT = 2I + A(L(G)).
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Table 2.

Name Generating vectors Number of lines

An {ei − e j : 1 ≤ i < j ≤ n + 1} 1
2 n(n + 1)

Dn {ei ± e j : 1 ≤ i < j ≤ n} n(n − 1)

E6
A5 ∪ {e7 − e8} ∪ {

1
2

∑8
i=1 εi ei : εi = ±1,∑6

i=1 εi = ε7 + ε8 = 0
} 36

E7 A7 ∪ {
1
2

∑8
i=1 εi ei : εi = ±1,

∑8
i=1 εi = 0

}
63

E8 D8 ∪ {
1
2

∑8
i=1 εi ei : εi = ±1,

∏8
i=1 εi = 1

}
120

Conversely, if KKT has the rows of K taken from the root system An , then any
row is of the form ei − e j ; for each such ei − e j , join vi and v j . This graph G has
vertices corresponding to the columns of K. Multiplying a row vector by −1 when
necessary allows each column to have entries with the same sign. Let the columns
with positive entries form one set of the bipartition, and the columns with negative
entries form the other one. The graph is then bipartite and KKT = 2I + A(L(G)).

Theorem 6.3 A graph is represented by An if and only if it is the line graph of a
bipartite graph.

It is easy to see that any line graph can be represented by Dn . If the edge joins
vi and v j , let ei + e j be a row of K; then KKT − 2I = A(L(G)). Notice that the
columns of K correspond to the vertices of G.

If we construct K by taking the vectors e1 ± e j ( j = 2, 3, . . . , n + 1) as 2n
rows, then KKT − 2I = A(CP(n)). Since CP(n) is not a line graph for n > 2, we
see that graphs other than line graphs may be represented by Dn .

The generalized line graph L(G, a1, a2, . . . , an) is defined for a graph G with
n vertices. It starts with disjoint copies of L(G) and CP(a1), CP(a2), . . . , CP(an).
Then every vertex in CP(ai ) is joined to each vertex in L(G) whose corresponding
edge in G has vi as an endpoint.

Now consider the following construction of K. The rows for the line graph
L(G) are constructed as before: for each edge viv j , let ei + e j be a row of K. For
each CP(ai ), add the vectors ei ± en+a1+···+ai−1+ j , for j = 1, 2, . . . , ai . (The last
subscript is just an artifact to increase the column count by 1 each time that a new
pair of vectors is appended to K.) Upon completion of the construction, we have

KKT = 2I + A(L(G, a1, a2, . . . , an)).

Conversely, if we have a set of vectors R taken from Dn , where the inner
product of any two of them is 0 or 1, we can construct a generalized line graph
in the following way. For 1 ≤ i �= j ≤ n, it may be that two vectors of the form
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±ei ± e j are in R: we take all such vectors and put them aside. For the remaining
vectors, if ±ei ± e j and ±e j ± ek are two vectors in R, then i �= k and the ±e j

terms have the same sign. Now use these remaining vectors as rows of K. We can
multiply a column by −1 without changing the inner product of any two rows.
Since all entries in a column have the same sign, we may assume with no loss of
generality that all of these vectors are of the form ei + e j . Now let the vertices of
G correspond to the non-zero columns of K, and join vi and v j if ei + e j is a row
of K. Then KKT = 2I + A(L(G)) (so far).

Now we go back to the vectors we put aside. They come in pairs and are of the
form ei ± e j or ±ei + e j ; we need consider only the case ei ± e j since the other
case is symmetric. We append these vectors as rows of K. Note that the ±e j are the
only non-zero entries in the j th column since an inner product of −1 is forbidden.
The column containing ei may contain other entries, but if it does, then the column
corresponds to a vertex in G. The rows corresponding to the newly added vectors
that are non-zero in the i th column must induce a CP(ai ) subgraph in KKT − 2I.
Finally, we observe that each vertex in the CP(ai ) is adjacent to vi . Thus

KKT = 2I + A(L(G, a1, a2, . . . , an)).

Theorem 6.4 A graph is represented by Dn if and only if it is a generalized line
graph.

Using the table of generating vectors for root systems given previously, we
immediately deduce the inclusions E6 ⊂ E7 ⊂ E8; hence, we have the following
theorem.

Theorem 6.5 If λ(G) ≥ −2, then G is a generalized line graph or G is represented
by E8.

Since E8 is finite, all but a finite number of graphs with λ(G) ≥ −2 are general-
ized line graphs. Of those that are not, it is known that the largest has 36 vertices. If
we consider graphs with λ(G) > −2, then KKT is non-singular, and hence K has
six, seven or eight rows according as G is represented by E6, E7 or E8. In fact, there
are 20 such graphs on six vertices, 110 graphs on seven vertices, and 443 graphs
on eight vertices. These were originally found by a mixture of theoretical analysis
and computer search (see [13] and [11]). Further details appear in Chapter 2.

7. Upper bounds for the eigenvalues

In the previous section we saw how to use root systems to find graphs with eigen-
values bounded from below by −2. A similar analysis can be used to find graphs
with eigenvalues bounded from above by 2.
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i

j

k

Fig. 7. The graph T (i, j, k)

To proceed, we define the graph T (i, j, k), shown in Fig. 7: take three paths
Pi , Pj and Pk and add a new vertex adjacent to one end-vertex of each path. The
graph is then a tree with i + j + k + 1 vertices, three pendant vertices and one
vertex of degree 3.

Now we form a matrix K from a set of vectors, where the inner product of any
two vectors is 0 or −1. We can then define the adjacency matrix of G by the equation

KKT = 2I − A(G)

and we will have a graph whose eigenvalues are bounded from above by 2. Such
sets of vectors have been fully studied: they are called fundamental sets of roots.

Theorem 7.1 If G is a graph with largest eigenvalue λ1 = 2, then G is one of the
following graphs: Cn, K1,4, T (2, 2, 2), T (3, 3, 1), T (5, 2, 1) or

Actually, it is an easy exercise in vertex labelling to show that each of these
graphs has maximum eigenvalue 2, and to show that no other graphs can be so
labelled (see [27]). Thus the results concerning fundamental sets of roots can be
derived directly from graph theory.

From Corollary 5.7 we now know all graphs with largest eigenvalue less than 2.

Corollary 7.2 If G is a graph with largest eigenvalue λ1 < 2, then G is a path
Pn, T (1, 1, r ), T (1, 2, 4), T (1, 2, 3) or T (1, 2, 2).

We can say more about graphs with largest eigenvalue greater than 2. In [9],
graphs are described whose largest eigenvalue is bounded above by (2 + √

5)1/2 ∼
2.058171. It turns out that all such graphs are trees of the form T (i, j, k) or
S( j, k, l), where the latter graph appears in Fig. 8. Notice that the graph given
in the conclusion of Theorem 7.1 is S(1, k, 1).
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j k l

Fig. 8. The graph S( j, k, l)

Theorem 7.3 If G is a graph with largest eigenvalue λ1 and if 2 < λ1 <

(2 + √
5)1/2, then G is one of the following:

� T (1, 2, k), with k > 5;
� T (1, j, k), with 2 < j < k;
� T (2, 2, k), with 2 < k;
� T (2, 3, 3);
� S( j, k, l), for ( j, l) �= (1, 1) and large enough k.

The exact value of ‘large enough’ in this theorem has been determined (see [5]).
Finding bounds for the second largest eigenvalue λ2 has also been of interest.

Obviously λ2(Kn) = −1, for n > 1. Smith [27] showed what happens for λ2 ≤ 0.

Theorem 7.4 λ2(G) ≤ 0 if and only if G is a complete multipartite graph.

Proof Consider the three graphs shown in Fig. 9. Each has two positive eigenval-
ues, so by Theorem 3.4 none can be a subgraph of a graph G with λ2(G) ≤ 0. Since
the graph is connected, the only possibility is for G to be a complete multipartite
graph. �

Graphs withλ2(G) ≤ 1 can be partially described in terms of their complements:
these have eigenvalues bounded from below by −2, or have just one eigenvalue
λn with λn < −2. Details can be found in [8].

Graphs with λ2(G) ≤ √
2 − 1 and λ2(G) ≤ (

√
5 − 1)/2 have also been de-

scribed in terms of minimal forbidden subgraphs – that is, graphs not satisfying
the eigenvalue bound and minimal with respect to inclusion. It is known that
the possible values of λ2(G) are dense in (

√
(2 + √

5, ∞), but nowhere dense in
(−∞,

√
2 − 1). Further details appear in [12], [18] and [26].

There are several fascinating interrelations between λ2(G) and other areas of
mathematical interest. In particular, this eigenvalue is related to expanders and
superconcentrators [1] and to Ramanujan graphs [19].

Fig. 9.
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8. Other matrices related to graphs

There are other matrices obtained from graphs whose eigenvalues are interesting:
as with the adjacency matrix, the rows and columns correspond to the vertices
of the graph. One such is the Seidel matrix: it is 0 on the diagonal, −1 for ad-
jacent vertices, and 1 for non-adjacent vertices. Another is the Laplacian: it has
deg vi in the i th diagonal position, −1 for adjacent vertices, and 0 for non-adjacent
vertices. Finally, the complement of a graph has an adjacency matrix with 0 on the
diagonal, 0 for vertices adjacent in the original graph, and 1 for vertices similarly
non-adjacent.

For a regular graph G of degree r , each of these matrices can be written in the
form αJ + βA + γ I. For the Seidel matrix, α = 1, β = −2 and γ = −1; for the
Laplacian, α = 0, β = −1 and γ = r ; for the complement of G, α = 1, β = −1
and γ = −1. It is easy to compute the eigenvalues of these matrices; to avoid
trivialities, we assume that β �= 0.

Theorem 8.1 If G is regular of degree r and has eigenvalues λ1 = r > λ2 ≥ · · · ≥
λn, then the matrix αJ + βA + γ I has eigenvalues αn + βr + γ and βλi + γ , for
i = 2, 3, . . . n.

Proof A regular graph has r as an eigenvalue with j as an eigenvector; this vector
gives the first eigenvalue. Any other eigenvector x of G is orthogonal to j, so
Jx = 0 and the result follows. �

For non-regular graphs this theorem is no longer true. However, the slippage in
the multiplicity is at most 1.

The largest eigenvalue of a graph is called the dominant one; any other eigen-
value is called subdominant.

Theorem 8.2 Let G be a graph with λ as a subdominant eigenvalue of multiplicity
mλ. Then αJ + βA + γ I has βλ + γ as an eigenvalue with multiplicity m, where
mλ − 1 ≤ m ≤ mλ + 1.

Proof Let H be the hyperplane orthogonal to vector j, and let Eλ be the eigenspace
of the eigenvalue λ. Then

dim(H + Eλ) + dim(H ∩ Eλ) = dim H + dim Eλ.

If Eλ ⊆ H , then dim(H + Eλ) = n − 1 and dim(H ∩ Eλ) = mλ. This implies that
the argument used for the regular case still applies, and so m = mλ. Otherwise, we
have dim(H + Eλ) = n and dim(H ∩ Eλ) = mλ − 1. The argument used in the
regular case now implies that m ≥ mλ − 1.
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If C = αJ + βA + γ I, then

A = −β−1αJ + β−1C − β−1γ I.

Using the argument of the previous paragraph on the new matrix, we get mλ ≥
m − 1. Hence mλ − 1 ≤ m ≤ mλ + 1. �

This result applies immediately to complements and to the Seidel matrix of a
non-regular graph. Although it does not apply to the Laplacian directly, we can
still say something for bipartite graphs. If G is bipartite, we let K be a variant
of the vertex-edge incidence matrix, as follows. Let (X, Y ) be the partition of the
vertices. For each edge viv j (vi ∈ X, v j ∈ Y ), let ei − e j be a column of K: this is
the same An representation that we used to prove Theorem 6.3. Then KKT = L,
the Laplacian of G. All the entries in a given row have the same sign. Hence,
KT K = 2I + A(L(G)). Now L has 0 as a simple eigenvalue (see Section 4), and
KKT and KT K have the same non-zero eigenvalues.

Theorem 8.3 If G is a bipartite graph with line graph L(G) and Laplacian L, then
µ(> 0) is an eigenvalue of L if and only if µ − 2 (> −2) is an eigenvalue of L(G).

The validity of this theorem for paths was first observed by Haemers [16].

9. Cospectral graphs

From the moment it was realized that different graphs could have the same spec-
trum, the hunt for such graphs was on, and many families of cospectral graphs have
been found. Broadly speaking, two types of constructions are used: one uses op-
erations on graphs (complements, products, etc.) to produce new cospectral ones,
while the other adroitly pastes different graphs together. We look at each of these.

Using graph operations

One easy way to construct cospectral graphs is due to Hoffman (see [21]). Take
two non-isomorphic cospectral regular graphs G1 and G2, and consider the graph
formed by taking k copies of G1 and s − k copies of G2. Let Hk be the complement
of this graph. By Theorem 8.1, the graphs Hk (k = 0, 1, . . . , s) are cospectral. Thus
we can have arbitrarily large sets of non-isomorphic cospectral graphs.

Given graphs G and H with vertex-sets {v1, v2, . . . , vn} and {w1, w2, . . . , wm},
the Cartesian product G � H of G and H has as its vertices the pairs {(vi , w j ) :
i = 1, 2, . . . , n, j = 1, 2, . . . , m}. Two vertices (v, w) and (v′, w′) are joined if
either v = v′ and w and w′ are joined in H , or w = w′ and v and v′ are joined in G.
We use ⊗ to denote the Kronecker product of matrices. This product is associative
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and so may be extended to the product of more than two factors; for example, the
d-dimensional cube is the Cartesian product of d copies of K2.

It is easy to see that

A(G � H ) = (A(G) ⊗ I) + (I ⊗ A(H )).

Let x be an eigenvector of G with eigenvalue λ, and y be an eigenvector of H with
eigenvalue µ. Then, using the properties of the Kronecker product,

((A(G) ⊗ I) + (I ⊗ A(H )))(x ⊗ y)

= (A(G) ⊗ I)(x ⊗ y) + (I ⊗ A(H ))(x ⊗ y)

= (A(G)x ⊗ Iy) + (Ix ⊗ A(H )y)

= (λx ⊗ y) + (x ⊗ µy)

= λ(x ⊗ y) + µ(x ⊗ y) = (λ + µ)(x ⊗ y).

Thus, the eigenvalues of G � H are just the pairwise sums of the eigenvalues of
G and H .

An attractive feature of this product is that the factorization is essentially unique
(see [22]). We may take two cospectral graphs G1 and G2 and form Hk , the
Cartesian product of k copies of G1 and s − k copies of G2. Then the graphs
Hk (k = 0, 1, . . . , s) are all cospectral.

The Shrikhande graph is defined in [4]. It is strongly regular with the same
parameters as L(K4,4). When G1 is the Shrikhande graph and G2 is L(K4,4), then
the graphs Hk (k = 1, 2, . . . , s) are distance-regular with the same parameters,
and therefore cospectral; they are known as Doob graphs. These graphs imply that
arbitrarily large families of cospectral distance-regular graphs with large diameter
exist. Similar constructions for creating cospectral distance-regular graphs can be
found in [4].

This concept can be extended to NEPS (non-extended p-sum) graphs. For this,
we start with n graphs G1, G2, . . . , Gn and a set of vectorsB = {(β1, β2, . . . , βn) :
βi = 0 or 1}. The vertex-set of the NEPS graph is the Cartesian product of the
vertex-sets of G1, G2, . . . , Gn , just as in the Cartesian product of graphs. Two ver-
tices are adjacent if, as n-tuples, there is a vector (β1, β2, . . . , βn) ∈ B so that the co-
ordinates of the n-tuples agree exactly where βi = 1. When B = {e1, e2, . . . , en},
the NEPS is the ordinary Cartesian product. If A1, A2, . . . , An are the respective
adjacency matrices of G1, G2, . . . , Gn , and A is the adjacency matrix of the NEPS
product, then

A =
∑

(β1,...,βn )∈B
Aβ1

1 ⊗ Aβ2
2 ⊗ · · · ⊗ Aβn

n .
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If x1, x2, . . . , xn are eigenvectors of A1, A2, . . . , An with eigenvalues λ1, λ2, . . . ,

λn , then

A(x1 ⊗ x2 ⊗ · · · ⊗ xn) =
∑

(β1,...,βn )∈B
Aβ1

1 ⊗ · · · ⊗ Aβn
n (x1 ⊗ · · · ⊗ xn)

=
∑

(β1,...,βn )∈B

(
λ

β1
1 x1 ⊗ λ

β2
2 x2 ⊗ · · · ⊗ λβn

n xn
)

=
∑

(β1,...,βn )∈B
λ

β1
1 λ

β2
2 . . . λβn

n (x1 ⊗ x2 ⊗ · · · ⊗ xn).

It follows that we can compute the eigenvalues of the NEPS graphs from the
eigenvalues of the factors. More use of the NEPS graphs will be made in Chapter 3,
Section 7.

Pasting graphs together

A second method of constructing cospectral graphs is by pasting smaller graphs
together. One way is to take two graphs, designate a special vertex (or root) in
each of them, and then identify these two vertices. We denote this new graph by
G · H , the roots being understood from the context. Further, we denote by PG(x)
the characteristic polynomial of the adjacency matrix of G.

Suppose that {v1, v2, . . . , vn} is the vertex-set of G and that {w1, w2, . . . , wm}
is the vertex-set of H . Without loss of generality we may assume that v1 and w1 are
to be identified as a single vertex u. The rows of the adjacency matrix of the new
graph can be ordered by u, v2, v3, . . . , vn, w2, w3, . . . , wm . Then the adjacency
matrix has A(G − {v1}) and A(H − {w1}) as blocks on the diagonal.

Let B = xI − A(G · H ). We evaluate

det B =
∑

σ

(−1)sgnσ b1,σ (1)b2,σ (2) . . . bm+n−1,σ (m+n−1),

by summing over all permutations σ of the vertices of G · H . Let S1 be the set of
permutations σ such that σ (u) = u or σ (u) is a vertex in G. Similarly, let S2 be
the set of permutations such that σ (u) = u or σ (u) is a vertex in H . Then∑

σ∈S1

(−1)sgnσ b1,σ (1)b2,σ (2) . . . bm+n−1,σ (m+n−1) = PG(x)PH−w1 (x).

Similarly,∑
σ∈S2

(−1)sgnσ b1,σ (1)b2,σ (2) . . . bm+n−1,σ (m+n−1) = PG−v1 (x)PH (x).

This covers all the permutations, but counts those for which σ (u) = u twice: this
latter case gives x PG−v PH−w. In short, we have the following theorem.
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wυ

Fig. 10. The graph H

Theorem 9.1 If G · H is formed by identifying the vertex v in G with the vertex
w in H, then

PG·H (x) = PG(x)PH−w(x) + PG−v(x)PH (x) − x PG−v(x)PH−w(x).

Schwenk [23] provides the example in Fig. 10: the graph H is to be used with
roots v and w. One may compute that

PH−v(x) = PH−w(x) = x2(x2 − 2)(x4 − 4x2 + 2).

If we take any graph G with root u, then we may form G · H by identifying u
with v, or u with w, and the two resulting graphs are cospectral. If G happens to
be a tree, then the two resulting graphs are cospectral non-isomorphic trees. By
iterating this process with the same root, we can get arbitrarily large families of
cospectral trees.

Schwenk [24] has also shown that, as the number of vertices gets large, the
probability that a tree contains a copy of H approaches 1; hence almost all trees
have a cospectral mate. One may ask whether the same is true for graphs in general,
but unfortunately almost nothing is known about the answer to this question.
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Graphs and matrices enjoy a mutually beneficial relationship. On one level
this relationship provides different viewpoints and conceptualizations of the
same idea: but it is more than the simple translation of results in one frame-
work into the other. Matrices, and the associated linear algebra, provide
an important tool in graph theory, sometimes the only known tool. On the
other hand, graphs provide a way to understand and take advantage of ma-
trix structure. In this chapter we provide a glimpse of graphs and matrices
working together.

1. Introduction

Matrices provide models for graphs (or models for the same phenomena mod-
elled by graphs) that often illuminate their structure and allow the application of
elementary but powerful linear algebraic techniques to their study. Conversely,
associated with a matrix are graphs that capture in various ways the combinatorial
structure of the matrix. Different graphs may reveal or emphasize different aspects
of a matrix’s structure. Taking this structure into account often leads to sharper
theorems, improved inequalities and, sometimes, non-existence conclusions.

56



2 Graphs and matrices 57

Let G be a graph (or a multigraph, general graph, digraph, weighted di-
graph, . . . ). The basic idea behind matrices associated with graphs is the follow-
ing. Let the vertices of G be listed in some order – say, v1, v2, . . . , vn; the par-
ticular ordering is of no significance, but we have to choose one. We define a
matrix A = (ai j ) of order n, where the ij-entry is associated with the ordered pair
of vertices (vi , v j ). If G is a graph, then

ai j =
{

1, if vi and v j are joined by an edge
0, otherwise.

As we saw in Chapter 1, the matrix A is the adjacency matrix of G and is a
symmetric (0, 1)-matrix with zeros on the main diagonal.

It is an easy matter to modify the definition of A to take into account these
different variations of the graph G. If G is a multigraph, then we let ai j be the
multiplicity of the edge joining vi and v j , and the adjacency matrix A is a non-
negative integer matrix with zeros on the main diagonal. If loops are permitted,
then A is a general non-negative integer matrix. If G is a digraph so that edges have
a direction, then ai j does not equal a ji in general, and A is a general (0, 1)-matrix,
or a general non-negative integer matrix if edges are allowed to have multiplicity
greater than 1. Finally, if G is a weighted graph (or digraph) where edges have
weights, then we let ai j be the weight (positive, negative, zero or complex) of the
edge from vi to v j .

Now we have closed the connection between graphs and matrices in that A can
be an arbitrary real or complex matrix. Moreover, we can reverse our constructions:
starting with a square matrix A we can define a graph of one of the types discussed
above whose adjacency matrix is A. So, in a sense, weighted graphs and matrices
are interchangeable; for more on this theme, see [4].

As examples, consider the matrices

A =




0 1 1 0 1
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
1 0 1 1 0




and B =




0 1 1 0 2
0 1 0 2 0
3 1 0 1 1
0 1 1 0 1
1 0 1 1 1




.

The matrix A is a symmetric (0, 1)-matrix of order 5 with zeros on the main
diagonal. Thus A is the adjacency matrix of a graph with 5 vertices. The matrix
B is a non-negative integer matrix with maximum entry equal to 3, and is the
adjacency matrix of a digraph each of whose edges has multiplicity at most 3 (or
a weighted digraph with weights 0, 1, 2 and 3).
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2. Some classical theorems

In this section we briefly mention some of the classic results that illustrate the
powerful and beautiful relationship between graphs and matrices.

As we saw in Chapter 1, one of the earliest theorems to exploit the combinatorial
structure of a matrix was the Perron-Frobenius theorem, concerning the spectral
structure of a square non-negative matrix A (see [16] and [22]). Without any
assumptions on A, the following theorem holds.

Theorem 2.1 (Perron-Frobenius theorem) Let A be a non-negative matrix of
order n. Then A has a non-negative eigenvalue ρ such that every eigenvalue λ

of A satisfies |λ| ≤ ρ. Moreover, A has an entry-wise non-negative eigenvector x
corresponding to the eigenvalue ρ.

The spectral radius of a complex square matrix is the largest modulus of its
eigenvalues. Thus, the number ρ in Theorem 2.1 is the spectral radius of the
matrix A.

Let G be the weighted digraph with adjacency matrix A. One particular assump-
tion on the digraph G leads to more detail concerning the eigenvalue structure of
A. Recall that a digraph is strongly connected if, for each ordered pair (vi , v j ) of
distinct vertices, there is a directed path in G from vi to v j .

Theorem 2.2 Let A be a non-negative matrix of order n ≥ 2, such that the digraph
G corresponding to A is strongly connected. Then the spectral radius ρ of A is
positive and has multiplicity 1; in addition, A has an entry-wise positive eigenvec-
tor x corresponding to the eigenvalue ρ. The eigenvalues λ of A with |λ| = ρ are
ρe2π i j/k ( j = 1, 2, . . . , k), where k is the greatest common divisor of the lengths
of the cycles of G. The only non-negative eigenvectors of A are positive multiples
of x.

Let x = (x1, x2, . . . , xn)T . The equation Ax = ρx implies that

n∑
j=1

n∑
i=1

ai j x j = ρ

n∑
j=1

x j ,

showing that ρ is a weighted average of the column sums s1, s2, . . . , sn of A. Hence

min {s1, s2, . . . , sn} ≤ ρ ≤ max {s1, s2, . . . , sn}.
In particular, this equation implies that if A is a (0, 1)-matrix corresponding to a
digraph G, then the spectral radius of A lies between the minimum and maximum
of the in-degrees of G. Since A and AT have the same eigenvalues, a similar
conclusion holds with ‘in-degree’ replaced by ‘out-degree’.
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A recent application of the digraph of a complex matrix A = (ai j ) of order
n to the localization of eigenvalues of A originates in Gerŝgorin’s theorem. This
theorem asserts that the eigenvalues of A lie in that part of the complex plane given
by the union

n⋃
i=1

{z ∈ C : |z − aii | ≤ Ri }

of n closed discs, where Ri = ∑
j �=i |ai j | (i = 1, 2, . . . , n). If A is irreducible, then

a boundary point of this region can be an eigenvalue of A only if it is a boundary
point of each of the n discs. A better inclusion region takes into account the cycles
of G (see [3] and [7]).

Theorem 2.3 Let A = (ai j ) be a complex matrix of order n with corresponding
digraph G. The n eigenvalues of A lie in that part of the complex plane given by
the union

⋃
γ

{
z ∈ C :

∏
γ

|z − aii | ≤
∏
γ

Ri

}
. (1)

(Here
⋃

γ denotes the union over all cycles γ of G, and
∏

γ denotes the product
over those i for which vi is a vertex of γ .) If G is strongly connected, then a
boundary point of (1) can be an eigenvalue of A only if it is a boundary point of
each of the regions in its definition.

Let G be a bipartite graph. Recall that the vertices of G can be partitioned into
two sets X and Y such that each edge has one vertex in X and one vertex in Y; the pair
{X, Y } is a bipartition of the vertices of G. We choose a listing x1, x2, . . . , xr for
the vertices in X and a listing y1, y2, . . . , ys for the vertices in Y, and concatenate
these to get a listing x1, x2, . . . , xr , y1, y2, . . . , ys of the vertices of G. Then the
adjacency matrix A of G has the form

A =
(

Or B
BT Os

)

where B is an r × s matrix, and Or and Os are zero matrices of orders r and s,
respectively. The matrix B is called the biadjacency matrix of G, and depends on
the listing chosen for the vertices in X and Y. Using our previous observations, we
deduce that bipartite graphs and (rectangular) (0, 1)-matrices are interchangeable,
as are bipartite multigraphs and (rectangular) non-negative integral matrices, and
weighted bipartite graphs and real or complex (rectangular) matrices. Adopting
matrix terminology, we say that the bipartite graph is r × s, and is square if r = s.
If the bipartite graph G is connected, then the bipartition {X, Y } is unique, and thus
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squareness is an intrinsic property of G. If G is not connected, then it has more
than one bipartition, some of which may satisfy r = s.

A matching M in a graph G is a collection of independent edges. It is a perfect
matching provided that each vertex of G belongs to some edge in M. Thus, a graph
with an odd number of vertices cannot have a perfect matching. The graph G is
matching covered provided that each edge belongs to at least one perfect matching.
An m × n bipartite graph has a perfect matching only if it is square.

Let G be a square bipartite graph. To each edge of G we assign a weight,
where the weights are algebraically independent numbers over the rational field
Q. We call the biadjacency matrix A of this weighted bipartite graph a generic
biadjacency matrix over Q. A theorem of Frobenius (see [16] and [17]) connects
the structure of a bipartite graph and the determinant of its biadjacency matrix.

Theorem 2.4 Let A be a generic biadjacency matrix corresponding to a square
bipartite graph G. Then G is connected and matching covered if and only if det A
is an irreducible polynomial in the polynomial ring obtained from Q by adjoining
the non-zero elements of A.

Another connection between bipartite graphs and matrices concerns scaling the
rows and columns of a non-negative matrix so that all row and column sums are 1
(see [6] and [43]). Such a matrix is doubly stochastic.

Theorem 2.5 Let A be a real matrix of order n corresponding to a square bipartite
graph G. Then G is matching covered if and only if there exist positive diagonal
matrices D1 and D2 such that D1AD2 is doubly stochastic.

With any multigraph G we can also associate a matrix that records the incidences
between the vertices and edges. Let v1, v2, . . . , vn be the vertices of G in some
order, and let e1, e2, . . . , em be the edges in some order. We arbitrarily assign an
orientation to each edge from one of its vertices (the tail) to the other (the head).
The (oriented) incidence matrix of G, corresponding to the given orientation of G,
is the n × m matrix B = (bi j ) in which

bi j =



1, if vi is the tail of e j

−1, if vi is the head of e j

0, otherwise.

Each column of B contains exactly one 1 and exactly one −1. Note that BBT =
D − A, where A is the adjacency matrix of G and D is the diagonal matrix whose
diagonal entries are the degrees of the vertices of G. The matrix BBT is the
Laplacian matrix L of G. The following theorem relates the connectedness of a
graph to the algebraic properties of its Laplacian matrix (see Chapter 4 and [7]).
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Theorem 2.6 Let G be a multigraph with n vertices. Then the rank of the Laplacian
matrix L is at most n − 1, with equality if and only if G is connected. If G is
connected, then the number of spanning trees of G is the modulus of the determinant
of any submatrix of L of order n − 1.

We conclude this section by remarking that Seidel [39] has introduced another
matrix into the study of graphs. This is the (0, 1, −1)-matrix S = Jn − In − 2A,
where A is the adjacency matrix of a graph G with n vertices and Jn is the all-1
matrix of order n. The matrix S can be obtained from A by replacing each 1 by
−1 and each 0 not on the main diagonal by 1. This matrix has been useful in the
study of strongly regular graphs (see Chapter 8).

3. Digraphs

We can view any graph G as a digraph, by regarding each edge joining two vertices
as two arcs, one in each direction. If A is the adjacency matrix of G, then A is also
the adjacency matrix of G viewed as a digraph. It is for this reason that we focus
on digraphs in this section.

Let A = (ai j ) be a matrix of order n, and let G be the weighted digraph corre-
sponding to A. The weight of a directed walk is the product of the weights of its
arcs. A directed vi -v j walk is a directed walk in G from vertex vi to vertex v j .

From the definition of matrix multiplication we deduce that, for each positive
integer k, the ij-entry of Ak is the sum of the weights of all the directed vi -v j

walks of length k in G. If A is a (0, 1)-matrix, then the i j-entry of A is the number
of directed vi -v j walks of length k. In particular, there is a directed vi -v j walk
of length k if and only if the i j-entry of Ak is not 0. This last conclusion holds
whenever A is a non-negative matrix, an assumption that prevents any cancellation
in summing products of weights.

Let A be a non-negative matrix. Then A is primitive if there is a positive integer
k for which each element of Ak is positive – that is, Ak is a positive matrix. Note
that if Ak is positive, then so is Al for each integer l > k. It follows from the above
discussion that A is primitive if and only if there exists a positive integer k for
which there are directed vi -v j walks of length k, for each i and j .

Let P be a permutation matrix of order n, corresponding to the permutation
i1, i2, . . . , in of {1, 2, . . . , n}. Thus P has 1s in positions ( j, i j ) (for 1 ≤ j ≤ n)
and 0s elsewhere. The matrix PAPT is obtained from A by permuting rows so
that they are in the order i1, i2, . . . , in , and then permuting columns so that they
are also in the order i1, i2, . . . , in: thus, the matrix PAPT is obtained from A
by simultaneous permutations of its rows and columns. Note that A and PAPT

represent the same digraph G, but with a different ordering of its vertices.
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The matrix A is reducible if there exists a permutation matrix P such that

PAPT =
(

A1 O
A21 A2

)
, (2)

where A1 and A2 are matrices of positive orders n1 and n2. Assume that A is
reducible and (2) holds. Then the vertex-set V of G can be partitioned into two
non-empty subsets V1 and V2 of sizes n1 and n2, so that all arcs between V1 and V2

are directed from V2 to V1, and thus (V2, V1) is a directed cut of G. Conversely, a
directed cut of G implies that PAPT has the form given in (2) for some permutation
matrix P. Thus A is reducible if and only if the digraph G has a directed cut,
and irreducible otherwise. Irreducibility of a matrix is equivalent to the strong
connectivity of its digraph. We observe that a digraph is strongly connected if and
only if it has no directed cut.

Defining v ≡ w on the vertex-set V to mean that G has a directed v-w walk
and a directed w-v walk, we obtain an equivalence relation that partitions V into
equivalence classes V1, V2, . . . , Vk . Each induced digraph G[Vi ] is a maximal
strongly connected subdigraph of G, called a strong component of G. Let G∗ be
the digraph whose vertices are the sets V1, V2, . . . , Vk , with an arc from Vi to Vj

if and only if there is an arc in G from some vertex in Vi to some vertex in Vj

(i �= j). Then G∗ cannot have any closed directed walks. It follows that the sets
V1, V2, . . . , Vk can be ordered as Vi1 , Vi2 , . . . , Vik in such a way that there is an
arc from Vi p to Viq in G∗ only if 1 ≤ q < p ≤ k. Ordering the vertices of V so that
those in Vi1 come first, then those in Vi2 , Vi3 , . . . , Vik , we deduce that there is a
permutation matrix P for which

PAPT =




A1 0 · · · 0
A21 A2 · · · 0

...
...

. . .
...

Ak1 Ak2 · · · Ak


 , (3)

where A1, A2, . . . , Ak are irreducible matrices. The matrices A1, A2, . . . , Ak ,
which correspond to the strong components of the digraph G, are uniquely de-
termined up to simultaneous permutations of their rows and columns. The matrix
in (3) is called the Frobenius normal form of A, and A1, A2, . . . , Ak are called
the irreducible components of A. In general, the Frobenius normal form of A is
not unique. The uniqueness depends on the digraph G∗ – that is, on the zero or
non-zero character of the subdiagonal blocks Ai j . If, for example, all the subdiag-
onal blocks are zero matrices, then the irreducible components can appear in any
order along the diagonal of (3).
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If G is a graph, then the matrix A is symmetric, and (3) reduces to

PAPT =




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ak


 ,

where A1, A2, . . . , Ak are symmetric irreducible matrices that correspond to the
connected components of G. Thus the symmetric matrix A is irreducible if and
only if G is connected.

Now assume that A is an irreducible matrix of order n – that is, G is a strongly
connected digraph. The index of imprimitivity of A and of G is the greatest
common divisor of the lengths of the cycles of G, or equivalently, of the lengths of
the closed directed walks in G. Since G is strongly connected, it must have a cycle
if n > 1. The properties of strongly connected digraphs collected in the follow-
ing lemma are straightforward to verify and lead to a normal form for irreducible
matrices.

Lemma 3.1 Let G be a strongly connected digraph with index of imprimitivity d.
Then
� d is the greatest common divisor of the lengths of the closed directed walks

containing any particular vertex;
� for each pair of vertices v and w, the lengths of all directed vw-walks are

congruent modulo d;
� the vertex-set of G can be uniquely partitioned into d non-empty sets

U1, U2, . . . , Ud in such a way that each arc of G is directed from some Ui to
Ui+1 (i = 1, 2, . . . , d; Ud+1 = U1), and the length of each directed walk from a
vertex in Ui to a vertex in U j is congruent to j − i (modulo d), for 1 ≤ i, j ≤ d.

The sets U1, U2, . . . , Ud in Lemma 3.1 are called the imprimitivity sets of the
strongly connected digraph G. If |Ui | = ni (i = 1, 2, . . . , d), then there is a per-
mutation matrix P for which

PAPT =




0n1 A12 0 · · · 0
0 0n2 A23 · · · 0
...

...
...

. . . 0
0 0 0 · · · Ad−1,d

Ad1 0 0 · · · 0nd




. (4)

The following lemma is due to Schur (see [7] for a proof).
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Lemma 3.2 A non-empty set of positive integers that is closed under addition
contains all but a finite number of positive multiples of its greatest common divisor.

We next show that primitive matrices are exactly those irreducible matrices
with index of imprimitivity 1.

Theorem 3.3 Let G be a strongly connected digraph with at least two vertices.
Then the index of imprimitivity of G is 1 if and only if there is an integer N such
that, for any two vertices vi and v j , there are directed vi -v j walks of each length
l ≥ N ; equivalently, an irreducible non-negative matrix A is primitive if and only
if its index of imprimitivity is 1.

Proof Let d be the index of imprimitivity of G and assume that there is an integer
N such that, for any two vertices vi and v j , there is a directed vi -v j walk of
each length l ≥ N . Then there are directed v1-v2 walks and directed v2-v1 walks
of lengths N and N + 1. Hence G has closed directed walks of lengths 2N and
2N + 1, and so d = 1.

Now assume that d = 1, and let c1, c2, . . . , cp be the distinct lengths of the
cycles of G. The strong connectivity of G implies that, for any two vertices vi

and v j , there is a directed vi -v j walk that meets a cycle of each of the lengths
c1, c2, . . . , cp. By Lemma 3.2, there are directed v j -vi walks of length l, for every
sufficiently large integer l.

Now suppose that A is a non-negative irreducible matrix. Since the i j-entry of
Al is positive if and only if there is a directed vi -v j walk in the associated digraph,
the theorem follows. �

If G is a connected graph with symmetric adjacency matrix A, then viewing
G as a digraph, we see that G has a directed cycle of length 2; thus the index of
imprimitivity of A is 1 or 2, and A is primitive if and only if G has a cycle of odd
length – that is, G is not bipartite.

In our discussion of primitive non-negative matrices, we may restrict ourselves
to (0, 1)-matrices. Let A be a primitive (0, 1)-matrix of order n. The exponent of
A, denoted by exp A, is the smallest positive integer t for which At is positive.
In terms of primitive digraphs, the exponent is the smallest positive integer t for
which there is a directed viv j -walk of length t, for all i and j.

There has been considerable work done on determining exponents and related
parameters. The following is a theorem of Dulmage and Mendelsohn [12].

Theorem 3.4 Let A be a primitive (0, 1)-matrix of order n, and let l be the length
of a shortest cycle in its digraph G. Then

exp A ≤ n + l(n − 2).
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Proof Consider the matrix Al and its digraph Gl . There is an arc in Gl from vertex
vi to vertex v j exactly when there is a directed vi -v j walk of length l in G. Let L
be the set of vertices of Gl that have loops. Then L has at least l elements, and
the loops at vertices of L imply that there is a directed walk in Gl of length n − 1
from each vertex in L to each vertex v j . Hence in G there is a directed walk of
length l(n − 1) from each vertex in L to each vertex v j . For each vertex vi there is
a directed walk in G from vi to some vertex in L of length li ≤ n − l, and hence
a directed vi -v j walk of length n − l + l(n − 1) = n + l(n − 2). Hence An+l(n−2)

is a positive matrix. �

Since a primitive digraph with n ≥ 2 vertices must have a cycle of length
l ≤ n − 1, we get the following result of Wielandt [47].

Corollary 3.5 The maximum exponent of a primitive matrix of order n (≥ 2) is
(n − 1)2 + 1.

Proof It follows from Theorem 3.4 that the exponent of a primitive matrix of order
n does not exceed (n − 1)2 + 1. The digraph obtained from a cycle of length n by
inserting a chord between some pair of vertices at distance 2 on the cycle can be
shown to have exponent (n − 1)2 + 1. �

It can also be shown that, up to isomorphism, the digraph in the proof is the unique
digraph with n vertices with exponent equal to (n − 1)2 + 1 (see, for example,
[7]). The maximum exponent of a primitive symmetric (0, 1)-matrix A of order
n (≥ 2) equals 2n − 2, with equality if and only if the graph of A is a path with a
loop at one end (see [42]).

The notion of primitivity has been generalized (see [15]). A coloured digraph is
a digraph G in which each arc is labelled by one of a set {c1, c2, . . . , ct} of colours.
Given a directed walk α in G, we let �α denote the column vector whose i th coordi-
nate is the number of arcs of α with colour ci . Fix one vertex v, and define a relation
on the vertices of G by vi ∼ v j whenever there exist directed walks αi and α j from
v to vi and v to v j , respectively, for which �αi = �α j . It is easy to verify that, if G is
strongly connected, this relation is an equivalence relation and is independent of v.

The coloured digraph G is called primitive if there is exactly one equivalence class
for ∼. Let γ1, γ2, . . . , γs be the cycles of G, let L be the subgroup of Zt generated
by {�γi : i = 1, 2, . . . , s}, and let M be the t × s matrix whose i th column is �γi .

Theorem 3.6 Let G be a strongly connected coloured digraph with n vertices and
at least one arc of each of t colours. Then the following statements are equivalent:
(1) The coloured digraph G is primitive.
(2) L = Zt .
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(3) The greatest common divisor of the determinants of the t × t submatrices of
M is 1.

(4) There exists a non-negative integer vector h = (h1, h2, . . . , ht )T such that,
for any two vertices vi and v j , there is a directed vi -v j walk with hk arcs of
colour ck, for k = 1, 2, . . . , t .

Proof The theorem follows from the truth of the implications (1) ⇒ (2), (2) ⇐⇒
(3), (2) ⇒ (4), and (4) ⇒ (1).

First assume that (1) holds. Let ei be the t × 1 vector whose i th entry is 1
and whose other entries are 0. The digraph D has an arc vw of colour ci . Since
D is primitive, there exist a directed v-w walk α and a directed w-v walk β

for which �α = �β. Since each closed directed walk of G can be decomposed
into cycles, both �α and �β + ei belong to L . Hence, ei ∈ L for all i, and (2)
holds.

The equivalence of (2) and (3) is a standard result concerning integer matrices,
and can be found in [32].

To show that (2) ⇒ (4), assume that (2) holds. Since G is strongly con-
nected, there is a closed directed walk γ that passes through each vertex of D.

Since L = Zt , there exist s × 1 integer vectors x( j) such that Mx( j) = e j ( j =
1, 2, . . . , t).

Let x be a non-negative integer vector such that x ≥ nx( j) (entry-wise) for
j = 1, 2, . . . , t, and let h = �γ + tMx. We claim that, for any two vertices v

and w, there exists a directed v-w walk α with �α = h. To see this, let p be a
path from v to w with �p = (p1, p2, . . . , pt )T . Then �p = M(

∑t
j=1 p j x( j)), and

hence

h = �γ + �p + M

(
t∑

j=1

(x − p j x( j))

)
.

Note that, for each i , the i th entry ni of
∑t

j=1(x − p j x( j)) is a non-negative integer.
Thus, the directed walk α that starts at v, follows γ back to v, along the way goes
ni times around γi (i = 1, 2, . . . , t), and then follows p to w, has �α = h. Hence
(4) holds.

Clearly (4) implies (1). �

The equivalence of (1) and (4) implies that if t = 1, so all arcs are coloured the
same, then G is primitive as a coloured graph if and only if it is primitive as an
uncoloured graph. The notion of exponents of coloured digraphs is introduced and
studied in [41].
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4. Biclique partitions of graphs

We next illustrate how elementary but powerful linear algebra can be used in
the study of questions that concern the partitioning of the edges of a graph into
certain types of subgraphs. A ‘biclique partition’ of a graph G is a partition of
the edge-set of G into complete bipartite subgraphs. More formally, we make the
following definitions. A biclique of a graph G is a subgraph whose edges form a
complete bipartite subgraph. Given two disjoint subsets X and Y, B(X, Y ) denotes
the biclique consisting of all edges joining a vertex in X and a vertex in Y. A
biclique partition of G is a collection

B(X1, Y1), B(X2, Y2), . . . , B(Xk, Yk) (5)

of bicliques whose edges partition the edges of G. Since a single edge can form a
biclique, every graph has a biclique partition. The biclique partition number bp(G)
of G is the smallest number of bicliques that partition G.

Let A be the adjacency matrix of G. Then it is easy to verify that, for a biclique
partition (5) of G,

A = XYT + YXT = (X Y)

(
YT

XT

)
,

where X is the n × k matrix whose i j-entry is 1 if vi ∈ X j , and 0 otherwise, and
Y is defined analogously. Thus, a partition of G into k bicliques corresponds to a
special type of factorization of A as the product of an n × 2k (0, 1)-matrix and a
related 2k × n (0, 1)-matrix.

The matrix XYT is the adjacency matrix of the digraph obtained from G by
orientating each edge in each B(Xi , Yi ) from its vertex in Xi to its vertex in Yi .
Assume that G is the complete graph. A tournament is a digraph obtained by
choosing an orientation for each edge of the complete graph G. Hence, partitions
of the complete graph on n vertices into k bicliques correspond to factorizations
M = XYT of the adjacency matrix M of a tournament as the product of an n × k
(0, 1)-matrix and a k × n (0, 1)-matrix. The following lemma [11] implies that
adjacency matrices of tournaments have special algebraic properties. Additional
properties can be found in [30] and [40].

Lemma 4.1 Let M be the adjacency matrix of a tournament on n vertices. Then
the rank of M is at least n – 1.

Proof Let j be the n × 1 all-1 vector, and let N be the (n + 1) × n matrix obtained
from M by appending jT at the bottom. It suffices to prove that the columns of N
are linearly independent.
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Suppose that Nx = 0. Then Mx = 0 and jT x = 0. Since M is the adjacency
matrix of a tournament, M + MT = Jn − In . Since Mx = 0 and xT j = 0, we have

0 = xT (M + MT )x = (xT j)
2 − xT x = −xT x.

Hence x = 0, and so the columns of N are linearly independent. �

Theorem 4.2 The biclique partition number of Kn is n – 1.

Proof A partition of Kn into k bicliques corresponds to a factorization of the
adjacency matrix M of a tournament on n vertices as the product of an n × k
matrix and a k × n matrix. The bound bp(Kn) ≥ n − 1 follows, since the rank of
M is bounded above by k and below by n − 1. Since Kn can be partitioned into
n − 1 stars, bp(Kn) = n − 1. �

This theorem, due to H. S. Witsenhausen, is known as the Graham-Pollak
theorem and has several different proofs (see [20], [44], [34] and [9]). Interestingly,
each of these proofs is linear-algebraic in nature. More generally, we have the
following result (see [20]).

Theorem 4.3 Let G be a graph with adjacency matrix A. Then

bp(G) ≥ max{n−(A), n+(A)},
where n−(A) and n+(A) are the number of negative and positive eigenvalues of A.

Proof As argued in [21], the interlacing inequalities for eigenvalues of symmetric
matrices (see Chapter 1 and [22]) imply that n+ and n− are subadditive functions –
that is, for symmetric matrices C and D of the same order,

n+(C + D) ≤ n+(C) + n+(D) and n−(C + D) ≤ n−(C) + n−(D).

Let A = XYT + YXT , where X and Y are n × k matrices with j th columns �X j

and �Y j . Then

A =
k∑

j=1

(
�X j �YT

j + �Y j �XT
j

)
.

Since, for each j ,

n+
(

�X j �Y j
T + �Y j �X j

T
)

= n−
(

�X j �Y j
T + �Y j �X j

T
)

= 1,

subadditivity implies that n+(A) ≤ k and n−(A) ≤ k. The theorem now follows
from the correspondence between partitions of G into k bicliques and factorizations
of A as A = XYT + YXT . �
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Note that n−(Jn − In) = n − 1 and n+(Jn − In) = 1, and hence Theorem 4.3
also shows that bp(Kn) ≥ n − 1.

5. Bipartite graphs

As we observed in Section 1, bipartite graphs and rectangular matrices are inter-
changeable. The biadjacency matrix of an r × s bipartite graph with bipartition
{X, Y } is an r × s matrix. Properties of rectangular matrices can therefore be for-
mulated in terms of bipartite graphs; conversely, the structure of bipartite graphs
can be useful in investigations of rectangular matrices or non-symmetric square
matrices.

Let G be an r × s bipartite graph with bipartition {X, Y }, and let A be its
biadjacency matrix. The rows and columns of A are indexed by the elements of
X and Y, respectively, and the edges of G correspond to 1s in A. Given (possibly
empty) subsets U of X and V of Y, the submatrix of A whose row indices are in
U and whose column indices are in V is denoted by A[U, V ]; this submatrix is
the biadjacency matrix of the induced subgraph G[U, V ] of G on the vertex-set
U ∪ V . It is a zero submatrix if and only if each edge of G contains a vertex of
X\U or of Y\V – that is, if and only if (X\U ) ∪ (Y\V ) covers the edges of G.

A matching of G corresponds to a collection of 1s of A with no two 1s in the
same row or column. The matching number m(G) is the largest number of edges
in a matching of G. Since the edges of a matching are pairwise vertex-disjoint, the
number of edges in a matching of G does not exceed the cardinality of each subset
of vertices that covers the edges of G. Hence,

m(G) ≤ min{r + s − (k + l)}, (6)

where the minimum is taken over all pairs (k, l) of non-negative integers for
which A has a k × l zero submatrix. Here we consider the empty 0 × s and r × 0
submatrices as zero submatrices. König’s theorem asserts that equality holds in
(6).

Theorem 5.1 Let G be an r × s bipartite graph with biadjacency matrix A. Then
m(G) equals the minimum of r + s − (k + l), taken over all pairs of integers (k, l)
for which A has a k × l zero submatrix.

Proof Let d(A) denote the maximum sum of the dimensions of a zero submatrix
of A. It follows from the discussion preceding the theorem that

m(G) ≤ (r + s) − d(A).
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To complete the proof, we show by induction on r + s that G has a matching with
r + s − d(A) edges. This is clear if r = 1, s = 1, or A = O, so we assume that
r, s ≥ 2 and A �= O.

First, suppose that A has a zero submatrix A[U, V ] for which |U | + |V | = d(A)
and both U and V are non-empty. Each p × q zero submatrix of A[X\U, Y ] can
be extended to a (p + |U |) × q zero submatrix of A. Hence, by the definition of
d(A),

p + q ≤ d(A) − |U |.
It follows from the inductive hypothesis that G[X\U, Y ] has a matching M1 with
r − |U | edges. Similarly, G[U, Y\V ] has a matching M2 with s − |V | edges.
Hence, M1 ∪ M2 is a matching of G with r + s − |U | − |V | = r + s − d(A)
edges.

Next, suppose that each zero submatrix A[U, V ] of A with |U | + |V | = d(A)
has either U = ∅ or V = ∅. Without loss of generality we may assume that the
top-left entry of A is 1. Let B = A[X\{x1}, Y\{y1}]. Since each zero submatrix
of A whose dimensions sum to d(A) is vacuous, the dimensions of each zero
submatrix of B sum to at most d(A) − 1. Hence, by induction, the induced subgraph
G[X\{x1}, Y\{y1}] has a matching M ′ of size (r − 1) + (s − 1) − (d(A) − 1) =
r + s − d(A) − 1. Thus, M ′ along with the edge joining x1 y1 is a matching of G
with r + s − d(A) edges. �

Now assume that G is an r × r bipartite graph – that is, G is square. A perfect
matching of G corresponds to a permutation matrix P with P ≤ A (entry-wise).
König’s theorem implies that G has a perfect matching if and only if the dimensions
of each zero submatrix of A sum to at most r.

Suppose further that G is a d-regular graph with d > 0. Then each row and
column of A has precisely d 1s. Consider a zero submatrix A[U ,V ] of A. Then
the sum (r − |V |)d of the elements of A in the columns indexed by Y\V is at
least the sum |U |d of the elements of A in the rows indexed by U. It follows that
|U | + |V | ≤ r , and hence that G has a perfect matching M. Removing the edges
of M results in a (d − 1)-regular bipartite graph. Hence, by induction, the edges of
the d-regular bipartite graph G can be partitioned into d perfect matchings: such
a partitioning is called a 1-factorization of G. In matrix terms, a square matrix
(0, 1)-matrix A with constant row and column sums is the sum of permutation
matrices.

Theorem 5.1 also implies the following fundamental result of Birkhoff about
doubly stochastic matrices.

Theorem 5.2 The set of all doubly-stochastic matrices of order n is the convex
hull of the set of permutation matrices.
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Proof The set of doubly stochastic matrices (regarded as a subset of Rn2
) is closed

under convex combinations, and contains the permutation matrices of order n.

Let S = (si j ) be an n × n doubly-stochastic matrix, and let G be the n × n
bipartite graph with an edge joining xi and y j if and only if si j �= 0. We prove that
S is a convex combination of permutation matrices, by induction on the number
of non-zero entries of S. Theorem 5.1 implies G has a perfect matching

M = {x1 yi1 , x2 yi2 , . . . , xm yim }.
Let P be the permutation matrix corresponding to M, and let ε = min{s1i1 , s2i2 , . . . ,

smim }. If ε = 1, then M = P. Otherwise, (S − εP)/(1 − ε) is a doubly-stochastic
matrix with fewer non-zero entries than S, and the theorem now follows by
induction. �

Theorem 2.4 refers to bipartite graphs that are connected and matching-covered,
and we now give a matrix interpretation of these requirements. Let A be an r × s
matrix and let G be the associated bipartite graph obtained by ignoring the weights.
Then G is disconnected if and only if there exist permutation matrices P and Q
such that PAQ has the form (

A1 0
0 A2

)
,

for some matrices A1 and A2. An r × r matrix is fully indecomposable if the sum
of the dimensions of each of its non-empty zero submatrices is at most r − 1.

Assume that G is connected. Applying Theorem 5.1 to the subgraph obtained
by deleting a vertex in each part of the bipartition of G, we deduce that a connected
square bipartite graph is matching-covered if and only if its biadjacency matrix is
fully indecomposable.

Let G be a bipartite graph with a perfect matching M , and let A be its biadjacency
matrix. Using the Frobenius normal form for matrices and digraphs, we can derive
a normal form for G and A. Since G has a perfect matching M , there exists a
permutation matrix S with S ≤ A (entry-wise). Each diagonal entry of AST is 1.
Let P be a permutation matrix such that

P(AST )PT =




A1 0 · · · 0
A21 A2 · · · 0

...
...

. . .
...

Ak1 Ak2 · · · Ak


 (7)

is the Frobenius normal form of AST , where A1, A2, . . . , Ak are irreducible.
Since the diagonal entries of each Ai are 1, Theorem 5.1 implies that each Ai
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is fully indecomposable. Thus there exist permutation matrices P and Q such that
PAQ has the form given in (7). The matrices A1, A2, . . . , Ak are uniquely deter-
mined by A up to (not necessarily simultaneous) permutations of their rows and
columns, and are called the fully indecomposable components of A. The matrix
A is fully indecomposable if and only if it has only one fully indecomposable
component.

6. Permanents

Let G be a square bipartite graph with adjacency matrix A = (ai j ) of order n. As
already observed, Theorem 5.1 implies that G has a perfect matching if and only
if A does not have a zero matrix, the sum of whose dimensions is n + 1. Since
the perfect matchings of G are in one-to-one correspondence with the permuta-
tion matrices P for which P ≤ A (entry-wise), the number of perfect matchings
of G equals the number of permutations i1, i2, . . . , in of {1, 2, . . . , n} for which
a1i1 a2i2 . . . anin = 1.

More generally, if A = (ai j ) is a real matrix of order n, the permanent of A is
defined by

per A =
∑

i1,i2,...,in

a1i1 a2i2 . . . anin ,

where the summation extends over all permutations i1, i2, . . . , in of {1, 2, . . . , n}.
It can be shown that per A = per PAQ, for all permutation matrices P and Q.

If G is a bipartite graph, then the permanent of A equals the number of perfect
matchings of G. If G is a weighted bipartite graph, we define the weight of a
perfect matching M of G to be the product of the weights of the edges of M. Then
per A is the sum of the weights of the perfect matchings of G.

The permanent resembles the determinant, but unlike the determinant, which
can be computed in polynomial time using Gaussian elimination, there is no known
way to compute the permanent efficiently. In fact, Valiant (see [45] and [46]) has
shown that computing the permanent of a (0, 1)-matrix – that is, computing the
number of perfect matchings of a bipartite graph – is a #P-complete problem. Thus
computing the permanent is computationally equivalent to many other difficult
counting problems.

The permanent also has meaning for digraphs. A cycle cover of a digraph
is a collection of directed vertex-disjoint cycles containing all the vertices. Let
A = (ai j ) be a (0, 1)-matrix, and let G be the corresponding digraph. The fact that
each permutation of {1, 2, . . . , n} can be written uniquely as a product of disjoint
permutation cycles implies that the permanent of A counts the number of cycle
covers of G.
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We now turn to bounds on the permanent. Let A = (ai j ) be a non-negative
matrix of order n, and let ri = ∑n

j=1 ai j and s j = ∑n
i=1 ai j be the row and column

sums of A. Then an elementary bound is

per A ≤ min

{
n∏

i=1

ri ,

n∏
i=1

si

}
. (8)

Now assume that permutations have been applied to A, so that

r1 ≤ r2 ≤ · · · ≤ rn and s1 ≤ s2 ≤ · · · ≤ sn; (9)

then a theorem of Ostrand [33] gives the lower bound

per A ≥ max

{
n∏

i=1

max{1, ri − i + 1},
n∏

i=1

max{1, si − i + 1}
}

,

provided that per A �= 0. If t = min{r1, r2, . . . , rn, s1, s2, . . . , sn}, we deduce that
per A ≥ t! or per A = 0.

Again, assuming that (9) holds, a theorem of Jurkat and Ryser [23] gives

per A ≤
n∏

i=1

min{ri , si },

thereby improving the bound (8). Following a conjecture of Minc, Brégman [2]
proved, and later Schrijver [38] proved more elegantly, that

per A ≤ min

{
n∏

i=1

(ri !)
1/ri ,

n∏
i=1

(si !)
1/si

}
, (10)

Now assume that G is k-regular, so that A has exactly k 1s in each row and
column. Then (10) implies that

per A ≤ (k!)n/k .

Suppose that k is a divisor of n, and that Jk is the all-1 matrix of order k. Then the
matrix

A =




Jk 0 · · · 0
0 Jk · · · 0
...

...
. . .

...
0 0 · · · Jk




has permanent equal to (k!)n/k . This implies the truth of a conjecture of Ryser.

Theorem 6.1 Let n be a positive integer, and, let k be a divisor of n. Then the
maximum number of 1-factors of a k-regular n × n bipartite graph is (k!)n/k .
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Let β(n, k) be the maximum number of perfect matchings in a k-regular n × n
bipartite graph. Then the value β(n, k) is given by Theorem 6.1, whenever k
divides n. Also β(n, n − 1) equals the nth derangement number. In addition,
β(n, 2) = 2�n/2�, with equality if and only if G has n/2 connected components
isomorphic to K2,2 if n is even, and �n/2� − 1 components isomorphic to K2,2

and one isomorphic to a 6-cycle if n is odd. If n ≥ 8, the (n − 2)-regular n × n
bipartite graphs achieving β(n, n − 2) are the bipartite complements of the graphs
achieving β(n, 2). If k = 3 and n is not divisible by 3, then we have

β(3m + 1, 3) = 6m−19 (m ≥ 1), β(5, 3) = 13,

and β(3m + 2, 3) = 6m−292 (m ≥ 2).

We also have β(4m + 1, 4) = 24m−144, for m ≥ 1. For references and further
discussion of the above results, see [7]. Finally, McKay and Wanless [31] have
shown that if n = kd, with d ≥ 5, then those bipartite graphs achieving β(n, n − k)
are the bipartite complements of those achieving β(n, k).

In a series of papers culminating with [37], Schrijver obtained an exponential
lower bound for the number of perfect matchings of k-regular bipartite multi-
graphs – that is, for the permanent of a non-negative integral matrix of order n
with all row and column sums equal to k. Let λ∗(n, k) be the minimum number of
perfect matchings of a k-regular n × n bipartite graph, and let

θk = lim inf
n→∞ λ∗(n, k)1/n.

The number θk gives the best exponential lower bound θn
k for the number of perfect

matchings of k-regular bipartite graphs. Schrijver proved that θk = (k − 1)k−1/

kk−2, from which the following result can be deduced.

Theorem 6.2 Every k regular n × n bipartite multigraph has at least(
(k − 1)k−1

kk−2

)n

perfect matchings.

By Theorem 6.2,

per A ≥
(

(k − 1)k−1

kk−2

)n

,

for each non-negative integral matrix A of order n with all row and column sums
equal to k. For such a matrix A, the matrix (1/k)A is doubly stochastic. Van
der Waerden conjectured, and Egoryčhev [13] and Falikman [14] independently
proved, a sharp lower bound for the minimum permanent of doubly stochastic
matrices.
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Theorem 6.3 If A is a doubly stochastic matrix of order n, then

per A ≥ n!

nn
,

with equality if and only if A is (1/n)Jn.

In general, the lower bound of Theorem 6.3 for the number of perfect matchings
in a regular bipartite graph is weaker than that of Theorem 6.2.

Since the definition of per A is similar to that of det A, and since there are
good algorithms for computing the determinant, it is natural to consider whether
there is a simple transformation that converts A to another matrix A′ for which
per A = det A′. This possibility is considered in the next section.

7. Converting the permanent into the determinant

A signed digraph is a weighted digraph Gs with weights ±1. Thus, its adjacency
matrix is a (0, 1, −1)-matrix As = (ai j ). Like the permanent of a (0, 1)-matrix, the
determinant of As can be expressed in terms of cycle covers.

The weight wt(γ ) of a cycle γ of Gs is the product of the weights of its arcs, and
the weight of a cycle cover of Gs is the product of the weights of its cycles. Each
cycle cover τ of Gs determines a permutation of {1, 2, . . . , n} whose permutation
cycles correspond to digraph cycles, but not every permutation of {1, 2, . . . , n}
corresponds to a cycle cover of G. The sign of a permutation τ is (−1)n−k , where k
is the number of cycles, and we denote this by (−1)τ . The signed weight s(τ ) of a
cycle cover τ is the product of the weight of τ and its sign. Using the correspondence
between cycle covers of Gs and non-zero terms in the determinant expansion of
As , we have the formula

det As =
∑
σ∈Sn

(−1)σ
n∏

i=1

aiσi =
∑

τ∈C(Gs )

s(τ ),

where C(Gs) is the set of cycle covers of Gs .
Now let G be the digraph obtained from Gs by ignoring the signs of its arcs,

and let A be the adjacency matrix of G. Since the cycle covers of Gs are the same
as those of G, the triangle inequality implies that

per A =
∑

τ∈C(G)

1 ≥ |
∑

τ∈C(Gs )

s(τ )| = |det As |, (11)

with equality if and only if the cycle covers of Gs all have the same signed weight.
This suggests a possible way of computing the permanent of a (0, 1)-matrix A:
replace certain 1s of A by −1s so as to obtain a matrix As with the property that
all cycle covers of Gs have the same signed weight, and then calculate |det As |.
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An assignment of this type may not be possible. For example, consider J3,
the all-1 matrix of order 3. Then per J3 = 6, and by Hadamard’s inequality for
determinants, the absolute value of the determinant of each 3 × 3 matrix of ±1s
is at most 33/2, which is less than 6. It is thus impossible to use this technique to
convert the computation of per J3 into the computation of the determinant of a Js

3.
In the case that A is a (0, 1)-matrix, per A �= 0 can be efficiently checked using

König’s theorem. If per A �= 0 and such an assignment is possible, we say that A
is convertible. More precisely, a square (0, 1)-matrix A is convertible if per A �= 0
and it is possible to assign minus signs to some non-zero elements of A to obtain
a matrix As such that per A = |det As |; such a matrix As is a conversion of
A. Note that the conversion As applies not only to the permanent of A, but to the
permanent of any matrix obtained from A by replacing its 1s by arbitrary numbers.
More generally, we call an assignment of minus signs to some of the elements of
A a signing of A.

The matrix J3 has no conversion, but the matrix

As =
(

1 −1
1 1

)

is a conversion of J2. We say that a bipartite graph G is convertible if its biadjacency
matrix is convertible.

To test whether a signing As is a conversion of A, we need not examine all cycle
covers of A. The following basic theorem of Bassett, Maybee and Quirk [1] asserts
that if In ≤ A (entry-wise) (which implies that there is a loop at each vertex of Gs),
then one need check only the weights of the cycles of Gs . We note that if per A �= 0,
then there exists a permutation matrix P such that In ≤ PA. Clearly, As is a conver-
sion of A if and only if PAs is a conversion of PA. Also, if D is a diagonal matrix
each of whose diagonal entries is 1 or −1, then AsD is a conversion of AD if and
only if As is a conversion of A. Thus there is no loss of generality in assuming that
In ≤ A, and that each element on the main diagonal of As is −1.

Theorem 7.1 Let A be a (0, 1)-matrix with In ≤ A, and let As be a signing of A
with every diagonal entry −1. Then As is a conversion of A if and only if each
cycle in the signed digraph of As has weight −1.

Proof Let G be the digraph of A, and let Gs be the signed digraph of As .
First suppose that As is a conversion of A. Then equality holds in (11), and so

each cycle cover of As has the same signed weight. The cycle cover consisting of
n loops has signed weight (−1)n . If γ is an l-cycle of Gs , then the cycle cover of
Gs consisting of γ and n − l loops has weight (−1)n−1wt(γ ), and so wt(γ ) = −1.

Conversely, suppose that each cycle has weight −1. Let τ be a cycle cover
consisting of l cycles. Since each cycle has weight −1, the signed weight of τ is
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(−1)n−1(−1)l = (−1)n . All cycle covers have the same signed weight (−1)n , and
by (11), As is a conversion of A. �

Given a signed digraph Gs , we consider the unsigned digraph G ′ obtained from
Gs by ignoring the weights and replacing each arc i j with sign +1 by a path
i → vi j → j of length 2, by inserting a new vertex vi j . It is easy to verify that Gs

has no cycles of positive weight if and only if G ′ has no cycles of even length.
Thus, the problem of recognizing whether As is a conversion of A is equivalent
to that of recognizing whether a digraph G ′ has a cycle of even length. This was a
major unsolved problem until recently. We describe the solution to this even-cycle
problem below.

Theorem 7.1 yields another proof that J3 is not convertible. If Gs is a signed
digraph corresponding to a signing As of J3 with diagonal entries −1, then each
arc of G that is not a loop is contained in exactly two cycles and Gs has five
non-trivial cycles, and so not all cycles of Gs can have weight −1.

As another application of Theorem 7.1, we prove a result of Kasteleyn that
every connected matching-covered planar bipartite graph is convertible. If �G is an
orientation of a plane bipartite graph G, and if α is a cycle of G, then a forward
edge of α is an edge whose orientation agrees with the clockwise orientation of α.
The number of forward edges of α is denoted by n(α).

Corollary 7.2 Let G be a 2-edge-connected matching-covered plane bipartite
graph. If there exists an orientation �G of G for which each cycle G that bounds a
face has an odd number of forward edges, then G is convertible.

Proof Suppose that �G is an orientation of G for which each cycle that bounds a face
has an odd number of forward edges. Let M = {x1 y1, x2 y2, . . . , xn yn} be a perfect
matching of G. By reversing the orientation of each edge with one vertex in a given
subset of vertices, we may assume that each edge of xi yi of M is oriented in �G from
xi to yi . Let As = (ai j ) be the signing of the biadjacency matrix of G with ai j = 0
if xi is not joined to y j in G, ai j = −1 if xi → y j in �G, and ai j = 1 if y j → xi

in �G. Let Gs be the signed digraph of As , and let x1, x2, · · · , xk, x1 be a directed
cycle γ of Gs . By Theorem 7.1, it suffices to show that the weight of γ is −1.
Note that

x1 y1x2 y2 . . . xk yk x1 (12)

is a cycle α in the bipartite graph G. Let v, e and f denote the number of vertices,
edges and faces, respectively, in the region R bounded by α, and let α1, α2, . . . , α f

be the cycles in G that bound the faces in R. Each edge in R, but not in α, is a
forward edge in one face of R and a backward edge in another, and each edge in
α belongs to exactly one face bounded by R. This, and the assumption that each
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n(αi ) is odd, imply that

n(α) + e − 2k =
f∑

i=1

n(αi ) ≡ f (mod 2).

Hence, n(α) ≡ e + f (mod 2). By Euler’s theorem for planar graphs, v − e + f =
1. Since G has a perfect matching containing half of the edges of α, v is even. We
conclude that n(α) is odd.

In (12), the vertices of α are either in clockwise or anticlockwise order. In the
former case, each edge of α belonging to M is a forward edge and there are an odd
number of backward edges lying in α but not in M . Since these edges correspond to
edges of γ of weight −1, wt(γ ) = −1. In the latter case, each edge of α belonging
to M is a backward edge, and (13) implies that there are an odd number of forward
edges lying in α but not in M. Since these edges correspond to edges of γ of
weight −1, wt(γ ) = −1. �

The existence of such an orientation �G is easily established by induction on
the number of edges. More generally, the biadjacency matrix of a planar bipartite
graph with a perfect matching is convertible (see [24]). Kasteleyn used this result to
determine the number n pq of ways of tiling a p × q chessboard (with p or q even)
with dominoes. It is easy to see that n pq is the number of perfect matchings of the
planar bipartite graph G pq whose vertices correspond to the squares of the p × q
chessboard and whose edges correspond to adjacent squares. As outlined in [8],
one can use Corollary 7.2 to find a conversion of the biadjacency matrix of G pq ,
and then to calculate the eigenvalues of the conversion to attain the closed formula:

n pq = 2pq/2
p∏

k=1

q∏
l=1

(
cos2

(
πk

p + 1

)
+ cos2

(
πl

q + 1

))1/4

≈ e0.29pq .

This technique, and more sophisticated algebraic techniques, have been used to
give closed formulas for tilings of other objects (see [28]).

The complete bipartite graph K3,3 is non-planar, and since its biadjacency matrix
is J3 it is also not convertible. More generally, Little [29] obtained the following
characterization of convertible matrices. An even subdivision of a bipartite graph
G is a graph H obtained by replacing the edges of G by internally disjoint paths,
each with an even number of vertices.

Theorem 7.3 Let G be a bipartite graph with a perfect matching. Then G is
convertible if and only if G does not contain a spanning subgraph H in which one
component is an even subdivision of K3,3 and other components (if any) are single
edges.

The Heawood graph, which has biadjacency matrix I7 + C7 + C3
7, where C7

is the permutation matrix with 1s in positions (1, 2), (2, 3), . . . , (6, 7), (7, 1), is



2 Graphs and matrices 79

convertible but not planar. In fact,

per
(
I7 + C7 + C3

7

) = det
(
I7 + C7 + C3

7

) = 24.

In 1999, Robertson, Seymour and Thomas [36] gave a different characterization
of convertible graphs, and used it to develop a polynomial-time algorithm for
recognizing convertible matrices, thereby solving the even-cycle problem. Their
characterization asserts that every convertible bipartite graph can be constructed by
piecing together planar bipartite graphs and Heawood graphs in a particular way.

Let G1 and G2 be connected matching-covered bipartite graphs, and let x1 y1

and x2 y2 be edges in G1 and G2, respectively. The 1-join of G1 and G2 is the
bipartite graph obtained from G1 and G2 by identifying x1 with x2 and y1 with
y2, and adjoining all edges of the form xy, where x y1 is an edge of G1 and x2 y
is an edge of G2. A brace is a connected bipartite graph G for which each pair of
disjoint edges of G is contained in a perfect matching of G. Now let G1 and G2 be
braces, and let w1x1 y1z1w1 and w2x2 y2z2w2 be cycles in G1 and G2, respectively.
The 2-join of G1 and G2 is the bipartite graph obtained by identifying w1 with
w2, x1 with x2, y1 with y2, and z1 with z2. It is not difficult to show that every
1-join or 2-join of convertible bipartite graphs is convertible (see [8]). Also, if G
is convertible and if G ′ is a bipartite graph which has a perfect matching and is
obtained from G by deleting some edges, then G ′ is convertible.

Since a matrix is convertible if and only if each of its fully indecomposable
components is convertible, we can restrict ourselves to characterizing convertible
matching-covered bipartite graphs. We now state the characterization of convert-
ible bipartite graphs given in [36].

Theorem 7.4 Let G be a connected matching-covered bipartite graph.
(a) If G is not a brace, then it is convertible if and only if it can be obtained from

the 1-join of convertible graphs by removing a (possibly empty) subset of
edges.

(b) If G is a brace, then it is convertible if and only if it is either a planar
bipartite graph or the Heawood graph, or is a spanning subgraph of a 2-join
of planar bipartite braces.

8. Chordal graphs and perfect Gaussian elimination

A graph G is chordal if each cycle γ of length greater than 3 has a chord – that is,
an edge joining two non-consecutive vertices of γ . In a chordal graph, no induced
subgraph is a cycle of length greater than 3. Complete graphs, in particular cycles
of length 3, are chordal, as are all trees. Chordal graphs are useful data structures
in solving sparse symmetric systems of linear equations.
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A simplicial vertex of a graph G is a vertex v whose neighbours are all joined
to each other. Thus, v is a simplicial vertex of G if and only if the neighbours of v

induce a complete graph. An ordering v1, v2, . . . , vn of the vertices of G is a sim-
plicial (or perfect) elimination ordering if vi is a simplicial vertex of the subgraph
induced by {vi , vi+1, . . . , vn}, for i = 1, 2, . . . , n − 1. Any ordering of the ver-
tices of a complete graph is a simplicial elimination ordering. Any ordering of the
vertices of a tree obtained by successively deleting end-vertices is a simplicial elim-
ination ordering. A cycle of length 4 or more has no simplicial elimination ordering.

Dirac [11] derived two characterizations of chordal graphs. The first is the
existence of a simplicial elimination ordering. The other is in terms of vertex
separators of a pair of non-adjacent vertices v and w – that is, sets of vertices
S, not containing v or w, for which the subgraph induced on the complement
of S is disconnected, with v and w in different components. If no proper subset
of S separates v and w, then S is a minimal vertex separator of v and w. For
non-adjacent vertices v and w, the complement of {v, w} is a vertex separator, and
hence there is a minimal vertex separator of v and w.

Theorem 8.1 Let G be a graph. The following statements are equivalent.
(1) For each minimal vertex separator S of G, the induced subgraph G[S] is a

complete graph.
(2) G is a chordal graph.
(3) G has a simplicial elimination ordering.

Proof (1) ⇒ (2) Assume that (1) holds, and consider a cycle γ = vxwa1 . . . akv

of length greater than 3, so that k ≥ 1. If v and w are adjacent, then γ has a chord.
Otherwise, let S be a minimal vertex separator of v and w. Then S contains x and
at least one of a1, a2, . . . , ak , and so γ has a chord. Thus G is chordal.

(2) ⇒ (1) Assume that G is chordal. Let S be a minimal vertex separator of vertices
v and w, and let Gv and Gw be the connected components of G − S containing
v and w, respectively. The minimality assumption implies that each vertex in S is
adjacent to some vertex in Gv and some vertex in Gw. If S has only one vertex,
then G[S] is a complete graph. Otherwise, let x and y be distinct vertices in S.

Then there exist an x-y path all of whose internal vertices are in Gv , and an y-x
path all of whose internal vertices are in Gw. We may choose such paths to have
smallest length. Hence, there is a cycle γ of length greater than 3, all of whose
vertices (except for x and y) belong to Gv or Gw. Since G is chordal, the cycle
γ has a chord. But our assumptions imply that the only possible chord is an
edge joining x and y. Thus G[S] is a complete graph, and (1) holds.

(3) ⇒ (2) Let γ be a cycle of length greater than 3. The vertex v of γ with the
smallest index in a simplicial elimination scheme has the property that the two
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vertices adjacent to v on the cycle are adjacent to each other, and hence determine
a chord of γ . It follows that G is chordal.

(2) ⇒ (3) To prove that a chordal graph has a simplicial elimination ordering, it
suffices to show that every chordal graph has a simplicial vertex. Any vertex of
a complete graph is a simplicial vertex. We show by induction that each chordal
graph G which is not complete has at least two non-adjacent simplicial vertices.
Let v and w be non-adjacent vertices of G, and let S be a vertex separator of v and
w. Let Gv = G[U ] and Gw = G[W ]. By what we have proved, G[S] is a complete
graph. If the chordal graph G[S ∪ U ] is not complete, then it has two non-adjacent
simplicial vertices, by the induction assumption, at least one of which must be in
U , since G[S] is complete. If G[S ∪ U ] is complete, then any vertex in U is a
simplicial vertex of G. Thus U contains a simplicial vertex of G, and similarly so
does W , and these two vertices are non-adjacent. �

Let A = (ai j ) be a symmetric invertible matrix of order n, all of whose diagonal
entries are non-zero. Gaussian elimination to solve a symmetric system of linear
equations Ax = b proceeds by successively pivoting on a non-zero diagonal ele-
ment (using elementary row operations and the corresponding column operations,
to ‘zero out’ the non-zero elements in the row and column of the pivot element)
until A is reduced to a diagonal matrix. If A is a large sparse matrix, and if the graph
G whose edges correspond to the non-zero off-diagonal elements of A is chordal,
then by following a simplicial elimination ordering of G when choosing pivots
for Gaussian elimination on A, a zero element of A remains zero throughout the
elimination. This is usually described by saying that ‘no fill-in occurs,’ implying,
in particular, that sparseness is preserved. We are also assuming that the elements
on the main diagonal remain non-zero throughout Gaussian elimination. This im-
plies that a data structure for A can be constructed by using only the positions of
the non-zero elements of A, reducing storage requirements substantially.

Bipartite graphs provide a model for Gaussian elimination for non-symmetric
matrices also. We briefly discuss the bipartite analogue of chordal graphs and
simplicial elimination orderings. A bipartite graph with a cycle of length greater
than 3 can never be chordal. A graph G is chordal-bipartite if it is bipartite and
if each cycle of length greater than 4 has a chord. Complete bipartite graphs – in
particular, cycles of length 4 – are chordal-bipartite. Trees are both chordal and
chordal-bipartite.

Let G be a bipartite graph with bipartition {X, Y }. An edge e joining v in X and
w in Y is bisimplicial if the set Yv of neighbours of v, together with the set Xw of
neighbours of w, induces a complete bipartite graph. Let M = (e1, e2, . . . , ek) be
a sequence of edges of G that form a matching, let ei = pi qi (i = 1, 2, . . . , k), and
let Pi = {p1, p2, . . . , pi−1} and Qi = {q1, q2, . . . , qi−1}, for i = 1, 2, . . . , k + 1.
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Then M is a bisimplicial elimination ordering for G if ei is a bisimplicial edge of the
subgraph G − (Pi ∪ Qi ) (i = 1, 2, . . . , k) and the induced subgraph G − (Pk+1 ∪
Qk+1) has no edges. In performing Gaussian elimination on a non-symmetric linear
system Ax = b, a bisimplicial elimination ordering provides a sequence of pivots
on the elements of A corresponding to the edges e1, e2, . . . , ek , for which no fill-in
results. Golumbic and Goss [19] proved the following theorem.

Theorem 8.2 Every chordal bipartite graph has a bisimplicial elimination
ordering.

The converse of Theorem 8.2 is false, as can be seen by the graph consisting of a 6-
cycle and one end-edge incident to each vertex of the cycle. For more information
on chordal bipartite graphs, see [18] and [19].

9. Ranking players in tournaments

Recall that, as its name suggests, a tournament models the results of a round-robin
tournament on a set of n players, in which each player plays each of the others
exactly once and there are no ties. The vertices correspond to the players, and there
is an arc from v to w if v beats w.

Given the results of a round-robin tournament G, it is natural to try to rank the
players. If the vertices of G can be ordered as (vi1 , . . . , vin ), where vi j → vik if
and only if j ≤ k, then G is a transitive tournament and there is no ambiguity
in the ranking: player vi1 is the strongest, vi2 is the second strongest, and so on.
More generally, suppose that G is not strongly connected, so that its adjacency
matrix A is reducible. Then G contains a directed cut (U, W ), and since G is a
tournament, vi → v j for all vi ∈ U and v j ∈ W . Any ranking of the players must
rank those players in U as stronger than those in W. Hence, in ranking the results
of a round-robin tournament, we can restrict our attention to ranking the results of
the subtournaments corresponding to the irreducible components of A.

Suppose now that G is strongly connected. It is well known that there then
exists a Hamiltonian cycle in G. The existence of such a cycle causes any ranking
to have inconsistencies, since any player v can argue that he is at least as good as
any other player w by considering the path from v to w. Yet it is still desirable to
have some ranking of the players.

A first attempt is to rank the players according to the number of games they win.
The score of a vertex vi is its out-degree, and the score vector s of G is the vector
whose i th entry is the score of vi . Thus Aj = s, where j is the n × 1 all-1 vec-
tor. This ranking scheme has two drawbacks. First, by the pigeon-hole principle,
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each strongly connected tournament has at least two players with the same score,
and so there are always ties in the ranking. Second, this ranking scheme assumes
that all wins are valued equally, but a win against a ‘strong’ player should ar-
guably be valued more than a win against a ‘weak’ player. Several ‘power ranking’
methods have been proposed that take into account the strength of each player’s
opponents.

We discuss two such ranking methods. The first is known as the Kendall-Wei
method, and it can be motivated as follows. The vector s = Aj records the scores
of the players, and so its i th entry is a measure of the strength of player vi . The i th
entry

∑
i :i→ j S j of As is the sum of the strengths (according to s) of the players

that vi beats. Thus, As accounts for the strengths of the opponents that player vi

beats. Now the entries of As can be viewed as a measure of the strength of the
players, and we can consider A2s = A(As), the vector whose i th entry is the sum
of the strengths (according to As) of the players that i beats. This can be repeated
to obtain a sequence r1 = s, r2 = As, r3 = Ar2, . . . of strength vectors. We nor-
malize this sequence so that the sum of the entries of each vector is 1 to obtain a
sequence

r′
1 = s/jT s, r′

2 = r2/jT r2, . . . .

It is not difficult to show that the limits ρ = limn→∞ jT r′
n and x = limn→∞ r′

n

exist and satisfy Ax = ρx. We conclude from Theorem 2.2 that ρ is the spectral
radius of A and that x is the unique non-negative eigenvector of A whose entries
sum to 1. We are led to the Kendall-Wei method: rank the players of G according
to the entries of x, with stronger players corresponding to larger entries of x.

The variance of the vector x is defined by

var (x) =
∑
i< j

(xi − x j )
2,

and provides a measure of how evenly matched the players are, according to the
Kendall-Wei method; var(x) is larger when there is a greater disparity among the
strengths of the players. In particular, var(x) = 0 if and only if all the players of G
have equal strength. The following result relates var(x) and ρ (see [30]).

Theorem 9.1 Let G be a strongly connected tournament with adjacency matrix
A. Let ρ be the spectral radius of A, and let x be the positive eigenvector of A
corresponding to ρ with jT x = 1. Then:
(1) var(x) = (n − 1 − 2ρ)xT x;
(2) ρ ≤ (n − 1)/2, with equality if and only if n is odd and G is regular.
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Proof We have

∑
i< j

(xi − x j )
2 = (n − 1)

n∑
i=1

x2
i − 2

∑
i< j

xi x j

= (n − 1)xT x − xT (Jn − In)x

= (n − 1)xT x − xT (A + AT )x

= (n − 1)xT x − 2ρxT x

= (n − 1 − 2ρ)xT x.

Hence (1) holds, and ρ ≤ (n − 1)/2 with equality if and only if var (x) = 0. Since
var (x) = 0 if and only if x = (1/n)j, and since j is an eigenvector of A if and only
if A has constant row sums, (2) holds. �

In the light of Theorem 9.1, it is natural to ask which strongly connected tour-
naments on n vertices have the smallest and largest spectral radii – in other words,
which strongly connected tournaments are the least or most evenly matched, ac-
cording to the Kendall-Wei scheme? Theorem 9.1 implies that, for n odd, the
largest spectral radius is (n − 1)/2, and the tournaments achieving this are the
regular tournaments. Brualdi and Li [5] conjectured that, for n = 2k, the largest
spectral radius occurs when the adjacency matrix has the form

(
B BT

BT + I B

)
,

where B is the adjacency matrix of a transitive tournament with k vertices. In
[27] Kirkland shows that, for sufficiently large k, a tournament of order 2k with
largest spectral radius must have half of its players with score k, and the other
half with score k − 1. Brualdi and Li [5] conjectured that the minimum spec-
tral radius is achieved by the tournament with vi → v j for i and j with i > j + 1,
and vi → vi+1 for i = 1, 2, . . . , n − 1. This conjecture was also proved by
Kirkland [26].

We can also use the positive eigenvector y of AT , with jT y = 1, to rank the
players of a tournament. This corresponds to taking into account the weaknesses
of those players defeating a given player; smaller entries of y correspond to stronger
players. A ranking scheme of Ramanujacharyula [35] ranks the players according
to the strength-to-weakness ratio xi/yi , with larger values corresponding to better
players. More about this ranking scheme can be found in [25].

The method PagerankTM, used by the search engine Google to rank web-pages,
is similar to the Kendall-Wei ranking scheme. Unlike many search engines that
work by searching for web-pages having many words in common with a given
query, Google focuses on links between pages and searches for ‘high-quality’
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pages that are related to the query. The quality of a page is determined by how
many relevant pages refer to it, the quality of those referring pages, how many
relevant pages the page refers to, and the quality of those pages. More precisely,
Google first uses text-matching techniques to generate a set V of web-pages that
are relevant to the query. Then Google forms a weighted digraph G whose vertices
correspond to the elements of V , and where the weight of the edge vw is the
number of times that web-page v links to web-page w.

Let A be the adjacency matrix of G. Then the i th entry of x(1) = AT j measures
how often a relevant site refers to site i . Large entries of x(1) are potential ‘experts’
for the query. Similarly, the i th entry of y(1) = Aj measures the number of relevant
sites referred to by i , and large entries of y(1) correspond to potential ‘information
sources’ for the query. But not all links on the web are of equal value. PagerankTM

takes into account the quality of the sites linked to and from a site. This is done by
considering the sequences and x(i) = AT y(i−1) and y(i) = Ax(i−1) for i ≥ 2. Thus,
for example, the i th entry of x(2) = AT y(1) is the sum of the weights (according
to y(1)) of the sites that refer to page i . It is easy to see that x(2i) = (AAT )

i
j and

y(2i) = (AT A)
i j (i = 1, 2, . . .). Thus, if AT A is irreducible, then the normalized

sequences

x(2i)/jT x(2i) and y(2i)/jT y(2i)

converge to positive eigenvectors u and v of AT A and AAT , respectively.
PagerankTM uses the i th entry of u + v as a measure of the relevant expertise
of site i , and then lists the sites in non-increasing order based on the values of the
entries of u. Hence, Google rests mathematically on the Perron-Frobenius theorem,
with which we began our discussion.
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Spectral graph theory

DRAGOŠ CVETKOVIĆ and PETER ROWLINSON

1. Introduction
2. Angles
3. Star sets and star partitions
4. Star complements
5. Exceptional graphs
6. Reconstructing the characteristic polynomial
7. Non-complete extended p-sums of graphs
8. Integral graphs
References

In this chapter we are concerned with the spectrum of the adjacency matrix
of a finite graph. We present a selection of recent results related to graph
angles, star sets, star partitions, star complements, and graphs with least
eigenvalue −2. In addition, we consider a spectral reconstruction problem,
graphs that are cospectral or almost cospectral, and graphs for which all
eigenvalues are integers.

1. Introduction

The matrices commonly used to specify a finite graph include the Laplacian matrix
(see Chapter 4), the Seidel matrix (see Section 2 below), and the (0, 1)-adjacency
matrix. In this chapter we are concerned with the spectra of adjacency matrices, a
topic that features prominently in Chapters 1 and 2 and in the monographs [12],
[13] and [21]. The subject has continued to attract the attention of researchers, and
it is impossible to review in one short chapter all of the important results obtained
in the last few years. Accordingly, it was necessary to be selective, and the choice
made here reflects the authors’ own interests.
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Some basic facts about graph spectra can be found in Chapter 1 and [46, Ch.
11]. Here we extend the discussion of eigenvalues to related algebraic invariants,
such as the angles between eigenspaces and coordinate axes treated in Section 2.
These lead naturally to the notion of a star partition, which provides a one-to-one
correspondence (in general, not unique) between the eigenvalues and the vertices
of a graph (see Section 3). In such a correspondence the vertices associated with a
common eigenvalue µ are said to form a star set for µ, while the subgraph induced
by the remaining vertices is called a star complement for µ. In Section 4 we
discuss star sets and a technique for constructing the graphs with a prescribed star
complement. This technique makes it possible not only to characterize a number
of graphs, but also to complete the description of all graphs with least eigenvalue
−2. The problem of describing the exceptional graphs that arise here was one of
some 25 years’ standing, and it is discussed in Section 5.

Another long-standing problem concerns the reconstructibility of the charac-
teristic polynomial of a graph from the characteristic polynomials of the vertex-
deleted subgraphs. This has recently been solved for trees, and a proof of the recon-
structibility in this case is given in Section 6. On the other hand, a conjecture from
1983 on ‘almost cospectral’ graphs has recently been disproved. The context is a
construction known as a non-complete extended p-sum of graphs, discussed in Sec-
tion 7. This construction also provides one means of generating graphs for which
every eigenvalue is an integer: these ‘integral graphs’ are discussed in Section 8.

The use of computers is an intrinsic feature of research in discrete mathematics
and, in particular, in the theory of graph spectra. The chapter includes computa-
tional results related to minimal cospectral graphs with the same angles, and to
integral graphs with ten or fewer vertices.

2. Angles

Let G be a graph with vertex-set V (G) = {1, 2, . . . , n} and let A be the adjacency
matrix of G. Thus, A = (ai j ), where ai j = 1 if i and j are adjacent and ai j = 0
otherwise. The eigenvalues of A are graph invariants, because a relabelling of the
vertices results in a matrix similar to A. Accordingly, we may define φG(x), the
characteristic polynomial of G, as det(xI − A). We take the distinct eigenvalues of
A to be µ1, µ2, . . . , µm , where µ1 > µ2 > · · · > µm . These eigenvalues, together
with their respective multiplicities k1, k2, . . . , km , constitute the spectrum of G.

Since in general a graph is not determined by its spectrum (see Chapter 1), we
seek further algebraic invariants which might distinguish cospectral graphs. As
an orthogonally diagonalizable matrix, A is determined by n linearly independent
eigenvectors and the corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn . Accordingly,
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it is natural to turn our attention to eigenspaces, but we must bear in mind that the
coordinates of vectors are permuted when the vertices are relabelled. This presents
no difficulty when all the coordinates coincide, and so, abusing terminology, we
can define the main angles of G as the cosines of the angles between the all-1
vector j and the eigenspaces of A. For i = 1, 2, . . . , m, let Pi be the n × n matrix
which represents the orthogonal projection of Rn onto the eigenspace E(µi ) with
respect to the standard basis {e1, e2, . . . , en} of Rn. Then the main angles of G are
the numbers β1, β2, . . . , βm , where βi = ‖Pi j‖/

√
n. Note that (β1, β2, . . . , βm) =

(1, 0, . . . , 0) if and only if j ∈ E(µ1) – that is, if and only if G is regular. In general,
we say that µi is a main eigenvalue if j /∈ E(µi )⊥.

Given the spectrum of G, a knowledge of the invariant (β1, β2, . . . , βm) is
equivalent (see [39]) to a knowledge of either of two other spectra that appear
in the literature. One is the Seidel spectrum, which is the spectrum of the matrix
J − I − 2A (where J is the all-1 matrix), and the other is the derived spectrum of
G, as defined by Neumaier [37].

We also observe that, given the spectrum of G, a knowledge of the invariant
(β1, β2, . . . , βm) is equivalent to a knowledge of the spectrum of the complement G,
or of the cone over G (obtained from G by adding a vertex adjacent to every vertex
of G). For the observation concerning G, note first that the spectral decomposition
of A is

A = µ1P1 + µ2P2 + · · · + µmPm,

where P2
i = Pi = PT

i (i = 1, 2, . . . , m) and Pi P j = 0 (for i �= j). Now the char-
acteristic polynomial of G is given by:

φG(x) = det((x + 1)I + A − J)

= det((x + 1)I + A) − jT adj((x + 1) I + A)j

= (−1)nφG(−x − 1)
(
1 − jT ((x + 1) I + A)−1j

)

= (−1)nφG(−x − 1)

(
1 − n

m∑
i=1

β2
i

x + 1 + µi

)
. (1)

We place the second observation in a more general context. For � ⊆ V (G), let
G� denote the graph obtained from G by adding a vertex adjacent to the vertices
in �, and let r be the characteristic vector of � – that is, r = ∑

j∈� e j . Then G�

has characteristic polynomial
∣∣∣∣ x −rT

−r xI − A

∣∣∣∣ = xdet(xI − A) − rT adj(xI − A)r

= φG(x)

(
x −

m∑
i=1

‖Pi r‖2

x − µi

)
.
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By [46, Cor. 3.3] we have φG{ j} (x) = xφG(x) − φG− j (x), and so

φG− j (x) = φG(x)
m∑

i=1

α2
i j

x − µi
, (2)

where αi j = ‖Pi e j‖. The numbers αi j are called the angles of G; they are actually
the cosines of the angles between the coordinate axes and the eigenspaces. We may
label the vertices of G so that the columns of the m × n matrix (αi j ) are ordered
lexicographically; then (αi j ) is a graph invariant, called the angle matrix of G.
Since the diagonal entries of Ak are

∑m
i=1 µk

i α
2
i j ( j = 1, 2, . . . , n), the columns

of the angle matrix are all the same if and only if, for each k ∈ N, the number of
j- j walks of length k is independent of the vertex j ; such a graph is said to be
walk-regular (see [30]).

It follows from (2) that, given the spectrum of G, a knowledge of the angles
of G is equivalent to a knowledge of the spectra of the vertex-deleted subgraphs
of G. (This is the context in which to view Theorem 7.3 of [46]; in particu-
lar, if {x1, x2, . . . , xki} is an orthonormal basis for the eigenspace E(µi ), then∑ki

h=l(e1·xh)2 = α2
i1.)

The angles of G satisfy the following relations (see [21, Ch. 4]):

n∑
j=1

α2
i j = ki and

m∑
i=1

α2
i j = 1.

Since the number of j- j walks of length k in G is
∑m

i=1 µk
i α

2
i j (see [46, Thm. 2.4]),

the spectrum and angles of G determine the vertex-degrees in G. It is also the case
that the spectrum and angles determine the numbers of 4-cycles and 5-cycles. On
the other hand, the following example shows that a graph may not be determined
by its angles, main angles and spectrum.

Example 1 The two graphs depicted in Fig. 1 are non-isomorphic, but they are
both 4-regular and have the same eigenvalues, the same angles and the same main
angles. The ten vertices are labelled so that the angle sequences (α1 j , α2 j , . . . , αmj )
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7 10 8
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5 6
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1 10 2

7 9 8

6 5

34

Fig. 1.
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coincide for j = 1, 2, . . . , 10; equivalently, for each j , the graphs obtained by
deleting the vertex j are cospectral.

It has been shown by a computer search (see [15]) that graphs with fewer than
10 vertices are characterized by their eigenvalues and angles. However, there are
58 pairs of cospectral graphs on 10 vertices with the property that the graphs within
each pair have the same angles. Moreover, they also have the same main angles (a
fact for which we do not have an explanation), and no multiple eigenvalue is a main
eigenvalue. By (1), the characteristic polynomial of a complementary graph G is
determined by the characteristic polynomial and the main angles of G, and so the
graphs from 29 of the 58 pairs are the complements of those from the other 29 pairs.

A construction from [21, pp. 113–114] shows that there is an infinite set of
cospectral trees with the same angles. The trees in the smallest example given
there have order 35, but an exhaustive computer search has revealed that there is
just one example among trees with up to 20 vertices (see [15]). The trees from
this pair have 19 vertices, and it is surprising that there are no examples with 20
vertices. The trees in question are displayed in Fig. 2 as T1 and T2. The subtree T
identified by the heavy lines is well known in constructions of cospectral graphs,
mainly because the graphs T − 4 and T − 7 are cospectral.

The vertices in T1 and T2 are labelled so that T1 − i is cospectral with T2 − i, for
i = 1, 2, . . . , 19. Note that T1 − 5 and T2 − 5 both have two components with 10
and 8 vertices, which however are not cospectral. In T1 − 5 the components have
the following spectra (where non-integer eigenvalues are given to three places of
decimals):

±2.074, ±1.414, ±1.414, ±0.835, 0, 0 and ±2.222, ±1.240, ±0.726, 0, 0.

On the other hand, in T2 − 5 the two components have the spectra

±2.222, ±1.414, ±1.240, ±0.726, 0, 0 and ±2.074, ±1.414, ±0.835, 0, 0.

If we delete vertex 6, the components even have different numbers of vertices, yet
T1 − 6 and T2 − 6 are still cospectral.
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If we try to generalize this example, we encounter difficulties. Suppose that we
form the graph H1 by attaching any two rooted graphs K and L at vertices 4 and 7 of
T , and then form H2 by interchanging L and K . The formula for the characteristic
polynomial of a graph obtained by coalescing rooted graphs in this way (see [21, p.
159]) shows that the following pairs are cospectral: H1 and H2, H1 − i and H2 − i
for i = 4, 7 or any vertex i in K or L . However, for other values of i , the pairs are
not cospectral, except for the special graphs K = T1 and L = T2 shown in Fig. 2.

An exhaustive search for cospectral graphs on 10 vertices (see [36]) shows that
there exists a set S of 21 cospectral graphs with 10 vertices and 20 edges. The
complements of these graphs are also cospectral and have 25 edges. Computations
show also that, in both cases, the graphs are distinguished by their angles (see
[10]). We reproduce here some data concerning the graphs in S:

eigenvalues:

4.380, 1.686, 1.162, 0.542, 0, 0, −1.295, −1.526, −2.286, −2.663;

coefficients of the characteristic polynomial:

1, 0, −20, −18, 84, 76, −119, −72, 56, 0, 0;

main angles:

0.956, 0.025, 0.066, 0.151, 0.207, 0.044, 0.109, 0.019, 0.032.

These huge sets of cospectral graphs should perhaps be exploited in experiments
to order graphs by their angles, for the following reason. Experience shows that
it is appropriate to order graphs by their eigenvalues or spectral moments; then
cospectral graphs remain to be ordered, and it is natural to use angles for this
purpose because they determine the vertex-degrees.

Although graphs cannot in general be characterized by eigenvalues and angles,
for certain classes of graphs (for example, trees, unicyclic graphs, bicyclic graphs,
tree-like cubic graphs) it is feasible to construct all the graphs in a given class with
prescribed eigenvalues and angles. Details may be found in [21, Ch. 5].

We conclude this section by noting another consequence of (2). Since Pi �= 0
we can always find a vertex j such that Pi e j �= 0, and then the multiplicity of µi

as an eigenvalue of G − j is ki − 1. Repeated application of this argument shows
that, for each i ∈ {1, 2, . . . , m}, there exists a set Yi of vertices such that

|Yi | = ki and φG−Yi (µi ) �= 0. (3)

We shall see in the next section that there always exists a partition of the vertex-set
V (G) = {Y1, Y2, . . . ,Ym} such that (3) holds for each i . Such a partition is called
a polynomial partition for G.
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3. Star sets and star partitions

Since the column space of Pi is E(µi ), we know that, for each i = 1, 2, . . . , m,

there exists a set Xi of ki vertices such that the vectors Pi e j ( j ∈ Xi ) form a basis
for E(µi ). Such a set is called a star set for µi in G. (This terminology reflects the
fact that the vectors Pi e j ( j = 1, . . . , n) form a eutactic star, as defined by Seidel
[47].) A star partition for G is a partition

V (G) = {X1, X2, . . . , Xm} (4)

such that Xi is a star set for µi . In this situation, if Bi = {Pi e j : j ∈ Xi }, then
B1 ∪ B2 ∪ . . . ∪ Bm is a basis for Rn and is called a star basis associated with G.
Note that G is determined by its spectrum and a star basis. The following result
[21, Thm. 7.2.9] shows that the star partitions for G are precisely the polynomial
partitions for G.

Theorem 3.1 Let G be a graph and X be a subset of V (G). Then for any eigenvalue
µi of G with multiplicity ki , the following statements are equivalent:
(1) {Pi e j : j ∈ X} is a basis of E(µi ).
(2) Rn = E(µi ) ⊕ V, where V = 〈e j : j /∈ X〉.
(3) |X | = ki , and µi is not an eigenvalue of G − X.

We now prove the fundamental existence theorem.

Theorem 3.2 Every graph has a star partition.

Proof Let {x1, x2, . . . , xn} be a basis of Rn , obtained by stringing together arbi-
trary fixed bases of E(µ1), E(µ2), . . . , E(µm); say, E(µi ) has basis {xh : h ∈ Ri },
where {R1, R2,. . ., Rm} is a fixed partition of {1, 2, . . . , n}. Let T be the transition
matrix from the basis {x1, x2, . . . , xn} to the basis {e1, e2, . . . , en}. Thus T = (th j ),
where

e j =
n∑

h=1

th j xh ( j = 1, 2, . . . , n).

On projecting orthogonally onto E(µi ), we have

Pi e j =
∑
h∈Ri

th j xh . (5)

We say that a partition {C1, C2, . . . , Cm} of {1, 2, . . . , n} is feasible if |Ci | = ki ,
for i = 1, 2, . . . , m. For such a partition let Ti be the ki × ki submatrix of T whose
rows are indexed by Ri and whose columns are indexed by Ci . The corresponding
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multiple Laplacian development of det T has the form

det T =
∑ {

±
m∏

i=1

det Ti

}
,

where the sum is taken over all n!/(k1! k2! · · · km!) feasible partitions. Since T
is invertible, some term �m

i=1det Ti is non-zero – say, that determined by the
partition {X1, X2, . . . , Xm}. This partition is a star partition because, in view of
(5), the invertibility of Ti guarantees that each xh(h ∈ Ri ) is a linear combination
of the vectors Pi e j ( j ∈ Xi ). �

This existence theorem may be strengthened as follows: if X is any star set for
an eigenvalue µi , then there exists a star partition (4) with Xi = X (see [21, Thm.
7.4.5]). In any case, we can always label the n vertices of G with the n eigenvalues
of G in such a way (in general, not unique) that the vertices labelled µi constitute
a star set for µi . This is how the vertices are labelled in the examples shown in
Fig. 3. The second example there is one of 750 star partitions of the Petersen graph;
these fall into ten isomorphism classes determined by the automorphism group of
the graph (see [21, Sec. 7.7]).

An important consequence of Theorem 3.2 is that we can associate with any
graph a star basis which is canonical, in the sense that two graphs are isomorphic
if and only if they have the same spectrum and the same canonical basis. To see
why this is possible, note first that a graph has only finitely many star partitions
and hence determines only finitely many star bases; then, as a canonical star
basis, we can take one that is extremal in some lexicographical ordering of bases.
This crude approach is grossly inefficient, involving as it does all permutations of
coordinates, and significant improvements in complexity have been achieved by
the use of a recursive procedure for ordering vertices and star bases simultaneously
(see [21, Ch. 8]). We remark here only that one can always find a star partition in
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polynomial time – this is a consequence of Edmonds’ matroid intersection theorem
[28]. If one could find a canonical star basis in polynomial time, then we would
have a polynomial algorithm for determining whether two graphs are isomorphic.
This graph isomorphism problem was the original motivation for introducing star
partitions, but as we shall see in the next section, it transpires that individual star
sets are important in their own right.

4. Star complements

Let X be a star set for the eigenvalue µ of the graph G, and let H = G − X . We call
H a star complement for µ in G; it is the subgraph of G induced by the complement
X of X in V (G). A star complement for µ is called a µ-basic subgraph in [29].
Here we discuss the influence of a star complement on the structure of a graph (see
[21, Ch. 7]).

Theorem 4.1 Let X be a star set for µ in G.
(a) If µ �= 0, then X is a dominating set in G.
(b) If µ �= −1 or 0, then X is a location-dominating set in G – that is, the

X-neighbourhoods of vertices in X are distinct and non-empty.

In addition to the notation above, let |X | = |V (G)| − t , so that t = |V (H )| =
codim E(µ). It follows from Theorem 4.1 that if µ �= −1 or 0 then |X | < 2t ,
and hence |V (G)| < t + 2t , a bound that can be improved to t + 1

2 (t − 1)(t + 4)
when t > 1 (see [39]). This bound of the form 1

2 t2 + O(t) is asymptotically
best possible as t → ∞, because in the line graph L(Kt ) the eigenspace of −2
has codimension t . When µ = 0, non-adjacent vertices in X with the same X -
neighbourhood are called duplicate vertices; and when µ = −1, adjacent vertices
in X with the same X -neighbourhood are called coduplicate vertices (see [29]).

Since duplicate or coduplicate vertices correspond to repeated rows of µI − A,
it is clear that |V (G)| cannot be bounded in terms of t when µ = −1 or 0. However,
these exceptional values do not normally obstruct our arguments, because we can
specify a graph to within duplicate or coduplicate vertices. A graph without such
vertices is called a core graph. It follows from a theorem of Kotlov and Lovász
[35] that if µ = −1 or 0 and G is a core graph, then |V (G)| = O(2t/2).

In view of the foregoing remarks, there are only finitely many graphs (finitely
many core graphs when µ = −1 or 0) with a star complement of prescribed order,
or equivalently, with an eigenspace of prescribed codimension. (The graphs with
an eigenspace E(µ) (µ �= −1, 0) of codimension at most 5 are determined in [43].)
There are relatively few graphs with a prescribed star complement, and this is the
basis for characterizing graphs by star complements, as illustrated below.
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The next result shows that any graph is determined uniquely by
(i) an eigenvalue µ;

(ii) a star complement H for µ;
(iii) the embedding of H in G.
Given (ii) and (iii), we know all the edges between vertices in X and all the edges
between X and X ; then knowledge of µ enables us to find all the edges between
vertices of X . This establishes the role of a single eigenvalue in determining the
structure of a graph.

Theorem 4.2 (Reconstruction theorem) Let X be a star set for µ in the graph
G. If G − X and G − X have adjacency matrices AX and C, respectively, then G
has an adjacency matrix of the form

(
AX BT

B C

)
,

where

µI − AX = BT (µI − C)−1B. (6)

Proof Clearly the adjacency matrix of G has the form A =
(

AX BT

B C

)
for some

matrix B. We have

µI − A =
(

µI − AX −BT

−B µI − C

)
,

where µI − C is invertible. In particular, if |X | = k then the matrix (−B | µI − C)
has rank n − k. But µI − A has rank n − k, and so the rows of (−B | µI − C) form
a basis for the row space of µI − A. Hence there exists a k × (n − k) matrix L
such that

(µI − AX | −BT ) = L(−B | µI − C).

Now µI − AX = −LB and −BT = L(µI − C), and the result then follows by
eliminating L. �

The converse of Theorem 4.2 is also true: if (6) holds and AX has size k × k, then
the null space of µI − A consists of the vectors

( x
(µI − C)−1Bx

)
, where x ∈ Rk .

We now consider a means of constructing the graphs having H as a star com-
plement for µ, by adding to H a suitable set X of vertices (the star complement
technique). Such a graph is specified by the H -neighbourhoods of vertices in X ,
or equivalently by the columns bu(u ∈ X ) of the matrix B from (6). In view of
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Theorem 4.2 and its converse, we may add the set X if and only if we can add each
pair of vertices in X . Explicitly, by equating entries in (5), we see that X is a star
set for µ if and only if

bT
u (µI − C)−1bu = µ, for all u ∈ X, (7)

and bT
u (µI − C)−1bv ∈ {−1, 0}, for all distinct u, v ∈ X. (8)

To describe all the graphs with H as a star complement forµ, it suffices to determine
those graphs for which X is maximal, since any graph with H as a star complement
for µ is an induced subgraph of such a graph.

Example 2 We illustrate the star complement technique in the simple case when
µ = 1 and H is the 5-cycle 123451. To check (7) and (8), we simply sum the entries
in an appropriate submatrix of (µI − C)−1, which in this case is the circulant matrix
with first row (1, 0, −1, −1, 0). We find from (7) that we may add a single vertex
u to H if its H -neighbourhood N (u) consists of either (a) a single vertex δ(u), or
(b) three consecutive vertices of the 5-cycle. By (8), two distinct vertices u and v

may be added in just four ways as follows (where u ∼ v means that the vertices u
and v are adjacent):
� both are of type (a), δ(u) � δ(v), u ∼ v;
� both are of type (a), δ(u) ∼ δ(v), u � v;
� both are of type (b), |N (u) ∩ N (v)| = 2, u ∼ v;
� u is of type (a), v is of type (b), δ(u) ∼ v, but δ(u) is not the middle vertex of

N (v), u � v.
It follows that at most two vertices of type (b) may be added, and that the maximal
graphs with H as a star complement for the eigenvalue 1 are those shown in Fig. 4
(with 2, 1, 0 vertices of type (b), respectively): in the figure, the vertices of H are
shown in black.

Fig. 4.



3 Spectral graph theory 99

The general problem here is to find all of the graphs having a given graph as a
star complement, or equivalently, to find all of the solutions AX , B, µ of (6) for a
given matrix C. The ‘restricted problem’ is to find the solutions AX , B of (6) for a
given matrix C and a given eigenvalue µ (see Example 2). We give the results of
six such investigations; in some cases we can characterize certain graphs as those
that are maximal extensions of a prescribed star complement.

(1) [41, Thm. 3.6] If H ∼= K1,5 and µ �= −1, then µ = 1 and G is an induced
subgraph of the Clebsch graph (see [7, p. 35]). If H ∼= K1,5 and µ = −1,
then the core subgraph of G is an induced subgraph of one of two graphs
with 15 and 16 vertices.

(2) [34, Thm. 3.1] If H ∼= K2,5, µ �= −1 and |X | > 1, then µ = 1 and G is an
induced subgraph of the Schläfli graph (see [7, p. 32]). All of the regular
graphs with K2,5 as a star complement have been determined.

(3) [42, Thm. 2.2 and Cor. 2.3] If G is r -regular, H ∼= K1,r and 0 < r �= µ, then
r = µ(µ2 + 3µ + 1) and |V (G)| = (µ2 + 3µ)2. Furthermore, if µ = 1, then
G is the Clebsch graph; if µ = 2, then G is the Higman-Sims graph (see [7,
p. 107]).

(4) [33, Thm. 7.3] If H ∼= 6K1 ∪ K1,16, µ = 2 and |X | is maximal, then G is the
McLaughlin graph (see [3, p. 373]).

(5) [2, Thm. 2.4] If H ∼= Ct (t odd, t ≥ 5) and µ = −2, then G is an induced
subgraph of the line graph L(Kt ).

(6) [22, Thm. 2.1] If H ∼= K1,t−3 ∪ 2K1 (t ≥ 4, t �= 8) and µ = −2, then G is an
induced subgraph of a generalized line graph L(Kt−u ; u, 0, 0, . . . , 0), for
0 ≤ u ≤ t − 3 (see [7, p. 52]).

In (5) and (6), µ is equal to the least eigenvalue −2 of G. The star complements
for −2 that can arise in this situation are discussed in [22] and [23]. A connected
graph with least eigenvalue λn ≥ −2 which is not a generalized line graph is called
an exceptional graph, and the problem of determining all the exceptional graphs
has only recently been solved (see [17]). The solution, described in the next section,
uses the star complement technique to find those exceptional graphs that are maxi-
mal, in the sense that any exceptional graph is an induced subgraph of such a graph.

5. Exceptional graphs

If the graph G with adjacency matrix A has least eigenvalue λn ≥ −2, then A + 2I
is the Gram matrix of a set S of n vectors with the property that the angle between
any two of them is 60◦ or 90◦. It is well known that if G is exceptional, then
G is representable in E8 (see [3, Ch. 3] or [7, Ch. 3]): this means that S can be
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taken to be a subset of the root system E8 defined as follows (see also Chapter 1,
Table 2). If {e1, e2, . . . , e8} is an orthonormal basis for R8, then E8 consists of the
112 vectors of the form ±ei ± e j (i �= j), together with the 128 vectors of the form
1
2

∑8
i=1 εi ei , where εi ± 1 and �8

i=1εi = 1. The root system E7 consists of the
vectors in E8 orthogonal to a fixed vector in E8, while E6 consists of the vectors
in E8 orthogonal to a pair of vectors at 60◦.

The connected graphs with least eigenvalue λn > −2 were determined by Doob
and Cvetković [27] in 1979; accordingly, we consider only graphs with least eigen-
value −2. It was proved in [23] that such a graph is exceptional if and only if it
has an exceptional star complement for −2. Such a star complement has least
eigenvalue greater than −2 (by interlacing), and hence is one of 573 graphs of the
following types (see [27]):

type I: one of 20 graphs on 6 vertices representable in E6;
type II: one of 110 graphs on 7 vertices representable in E7, but not E6;
type III: one of 443 graphs on 8 vertices representable in E8, but not E7.

The graphs of type III are one-vertex extensions of graphs of type II, which are in
turn one-vertex extensions of graphs of type I. Vectors in E8 which represent the
additional vertices are referred to below as extension vectors. The 443 graphs of
type III are described in [5]. The 110 graphs of type II are identified in [17] by means
of the list of 7-vertex graphs in [12]. The 20 graphs of type I are identified in [20]:
they belong to the family F of 31 minimal forbidden subgraphs that characterize
generalized line graphs, the other eleven having −2 as their least eigenvalue (see
[14]). Accordingly, a graph is exceptional if and only if its least eigenvalue is greater
than or equal to −2 and it contains a graph of type I as an induced subgraph (see
[23, Prop. 3.1]). Since F was determined in [27] independently of root systems,
the star complement technique may be used to determine the exceptional graphs
without recourse to root systems.

Let G be an exceptional graph with adjacency matrix A, let H be a star comple-
ment for the eigenvalue −2, and let t = 6, 7 or 8. If H is representable in Et , then
so is G, since A + 2I is the Gram matrix of vectors which span a t-dimensional
space (see [6]). If G is a maximal exceptional graph, then H is of type III, since
otherwise G is representable in E7, and then within E8 we could add an extension
vector to obtain a larger exceptional graph.

We say that a graph is H -maximal if it is maximal with respect to the property
of having H as a star complement for the eigenvalue −2. In order to describe the
exceptional graphs representable in E6, it suffices to find the H -maximal graphs
for star complements H of type I; for those representable in E7, but not E6, we
take H to be of type II; while if H is of type III, the H -maximal graphs are
precisely the maximal exceptional graphs. Ten H -maximal graphs arise when H
is of type I, and they are described in [17, Ex. 5]. When H is of type II there are
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39 H -maximal graphs, and some details are given in [23, Sec. 3]. For H of type
III, Lepović used a computer to determine the maximal star sets that can be added
to H (see [29, Algorithm 2.4], and [17]). He found that there are 473 maximal
exceptional graphs in all. Moreover, the results reveal how these graphs can be
constructed independently of a computer search (see [18] and [24]).

To describe some of these graphs, recall from [7, p. 59] that two graphs with the
same vertex-set V are switching-equivalent if, for some partition of V (G) into two
sets P and Q, the non-edges and edges between P and Q are interchanged; for
example, the two graphs of Fig. 1 are switching-equivalent, with P = {1, 2, 7, 8}
and Q = {3, 4, 5, 6, 9, 10}.

First we give the distribution of maximal exceptional graphs over the number
of vertices:

number of vertices: 22 28 29 30 31 32 33 34 36
number of graphs: 1 1 432 25 7 3 1 2 1

The 432 graphs on 29 vertices include 430 cones over graphs switching-equivalent
to the line graph L(K8). Of the other 43 maximal exceptional graphs, 37 are exten-
sions of such cones, with maximum degree 28, while the remaining six graphs have
maximum degree less than 28. None of the maximal exceptional graphs is regular,
but the list includes graphs that are of interest for a variety of reasons. For instance,
several graphs having only integer eigenvalues arise; such graphs are discussed in
Section 8. The examples here include some that have only three distinct eigenval-
ues but are not strongly regular. The two graphs on 34 vertices are cospectral, but
can be distinguished by their angles. All but a few of the graphs have the graph
K1,2 ∪ 5K1 as one of several star complements for −2; in particular, this provides a
means of constructing the maximal exceptional graphs that are not 29-vertex cones.

6. Reconstructing the characteristic polynomial

Here we consider one of four reconstruction problems discussed by Schwenk [45]
(see also [12, Section 3.5] and [46, Section 12]). For any graph G with vertex-set
{1, 2, . . . , n}, letP(G) be the multiset consisting of the characteristic polynomials
φG−i (x) of the vertex-deleted subgraphs G − i (i = 1, 2, . . . , n).

Problem 1 Is it true that, for n > 2, the characteristic polynomial φG(x) of a
graph G is determined uniquely by P(G)?

For n > 2, it is known that φG(x) is determined by the vertex-deleted subgraphs
themselves: this result is due to Tutte [53]. Problem 1 was posed by the first author
at the 18th International Scientific Colloquium in Ilmenau in 1973, and the first
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results were obtained by Gutman and Cvetković [31] (see also [13, p. 267] and [12,
pp. 68–70]). No examples of non-unique reconstruction of the characteristic poly-
nomial are known. Some relations between Problem 1 and the Ulam reconstruction
problem for graphs are described in [21, Sec. 5.4].

Since φ′
G(x) = ∑n

i=1 φG−i (x) (see [13, p. 60]), we can readily determine the
characteristic polynomial φG(x), except for the constant term. If we know just one
eigenvalue of G, then the constant term is determined. In particular, this is the case
if we know a multiple root λ of some polynomial φG−i (x), for then (by interlacing)
λ is an eigenvalue of G.

In [31], Problem 1 was solved affirmatively for regular graphs and for a broad
class of bipartite graphs including trees without a 1-factor. Here we indicate how
the result was extended to the remaining trees in [11] and [16]. We denote by σ (G)
the set of distinct eigenvalues of the graph G.

Theorem 6.1 Let H be a graph of order n (≥ 3) with exactly two connected
components. If these components have different orders, then the characteristic
polynomial of H is determined uniquely by P(H ).

Proof Suppose, by way of contradiction, that there exists at least one graph G �= H
such that φG(x) = φH (x) + a (a �= 0) and φG−i (x) = φH−i (x), for i = 1, 2, . . . , n.
Let H1 and H2 be the two components of H , with Hj of order n j and n1 > n2.
Clearly,

σ (H − i) = σ (H1) ∪ σ (H2 − i) (i ∈ V (H2)). (9)

Since H − i has no repeated eigenvalues, the same is true of H1, and we let
σ (H1) = {λ∗

1, λ
∗
2, . . . , λ

∗
n1

}, where λ∗
1 > λ∗

2 > · · · > λ∗
n1

.
Let v be a fixed vertex of H2. Since |σ (H2 − v)| < n1 − 1, there exists at least

one index i = i0 (1 ≤ i0 ≤ n1 − 1) such that no eigenvalue of H2 − v lies in the
open interval (λ∗

i0+1, λ
∗
i0

). We deduce that

(
λ∗

i0+1, λ
∗
i0

) ∩ σ (H − v) = ∅. (10)

Since φG−v(x) = φH−v(x), we know from (9) that λ∗
i0

and λ∗
i0+1 lie in σ (G − v). By

the interlacing theorem, there exists at least one eigenvalue α of G in the interval
(λ∗

i0+1, λ
∗
i0

). Since φG(α) = 0 and φG(λ∗
i0+1) = φG(λ∗

i0
) = a, there exist at least two

eigenvalues α, β of G in (λ∗
i0+1, λ

∗
i0

).
Finally, using the interlacing theorem again, we see that G − v has at least

one eigenvalue γ ∈ [α, β] ⊆ (λ∗
i0+1, λ

∗
i0

). Since σ (G − v) = σ (H − v), this is a
contradiction to (10). �

In similar vein we have also the following result.
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Theorem 6.2 If H is a disconnected graph with at least three components, then
the characteristic polynomial of H is determined uniquely by P(H ).

Proof Suppose that H has components H1, H2, . . . , Hk (k > 2). We may assume
that all eigenvalues of H are simple, and hence that λ1(H1) > λ1(H2) > · · · >

λ1(Hk). It follows that

(λ1(H1), λ1(H2)) ∩ σ (Hk − v) = ∅ (v ∈ V (Hk)),

and the proof now follows as before. �

In proving the next result, we make use of the fact (see [13, p. 37]) that the
characteristic polynomial of a tree with n vertices has constant term (−1)n/2 or 0,
according as it does or does not have a 1-factor. We write e(G) for the number of
edges of the graph G.

Theorem 6.3 If G is a tree, then its characteristic polynomial is determined
uniquely by P(G).

Proof Suppose, by way of contradiction, that there exists a tree G whose charac-
teristic polynomial is not uniquely determined byP(G). In view of our introductory
remarks, we know that such a tree G has a 1-factor, and so the number of vertices
is even – say n = 2k, where k > 1. Now there exists at least one graph H such
that φH (x) = φG(x) + a (a �= 0) and φH−i (x) = PG−i (x) (i = 1, 2, . . . , n). Such
a graph H is not connected, since otherwise it is a tree, the number of edges being
known from the coefficient of xn−2 in φH (x). Since a �= 0, this tree does not have a
1-factor, and so φH (0) = 0. By [46, Cor. 3.3], if u is the neighbour of an end-vertex
of H , then 0 is a multiple eigenvalue of H − u. Then G has 0 as an eigenvalue,
giving a contradiction.

By Theorems 6.1 and 6.2, H has exactly two connected components H1 and
H2, each with exactly k vertices. Since e(H ) = e(G) = 2k − 1, we know that one
component, say H1, is a unicyclic graph and the other component H2 is a tree. Let
λ∗

1 > λ∗
2 > · · · > λ∗

k be the eigenvalues of H2. If there are a vertex v of H1 and
an index i0 such that (λ∗

i0+1, λ
∗
i0

) ∩ σ (H1 − v) = ∅, then the proof proceeds as in
Theorem 5.1. Otherwise, for any vertex v of H1, the eigenvalues γ1, γ2, . . . , γk−1

of H1 − v interlace those of H2 – that is,

γi ∈ (λ∗
i+1, λ

∗
i ) (i = 1, 2, . . . , k − 1). (11)

Now, because it has no multiple eigenvalues, the unicyclic graph H1 is not a cycle,
and so we may choose v to be an end-vertex. Then H1 − v is unicyclic, and we
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deduce from (11) the contradiction

2(k − 1) = e(H1 − v) =
k−1∑
i=1

γ 2
i <

k∑
i=1

(λ∗
i )2 = 2e(H2) = 2(k − 1).

This completes the proof. �

7. Non-complete extended p-sums of graphs

Next we consider a very general graph operation called the non-complete extended
p-sum of graphs, which we abbreviate as NEPS (see [19]); these graphs were
discussed briefly in Chapter 1.

Let B be a set of non-zero binary n-tuples in {0, 1}n . The NEPS with basis B of
graphs G1, G2, . . . , Gn is the graph with vertex-set V (G1)× V (G2)×· · ·× V (Gn),
where the vertices (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are adjacent if and only if
there exists an n-tuple (β1, β2, . . . , βn) ∈ B such that xi = yi when βi = 0, and xi

is adjacent to yi in Gi when βi = 1.
We identify some special cases where a graph G is the NEPS with basis B of

two graphs G1 and G2:
� if B = {(0, 1), (1, 0)}, then G is the sum G1 + G2 of G1 and G2;
� if B = {(1, 1)}, then G is the product G1 � G2 of G1 and G2;
� if B = {(0, 1), (1, 0), (1, 1)}, then G is the strong product G1 ∗ G2 of G1 and

G2.
(A variety of terms and notations for these particular constructions can be found
in the literature.)

The p-sum of n graphs is a NEPS whose basis consists of all n-tuples with
exactly p entries equal to 1. The 2-sum of three graphs G1, G2 and G3 is denoted
by D(G1, G2, G3).

The foregoing definitions, together with some basic results on NEPS and early
references, can be found in [13]; for a more recent review of results, see [25]. The
proofs of the next two theorems are given in [13, Sec. 2.5].

Theorem 7.1 Let A1, A2, . . . , An be adjacency matrices of graphs G1, G2, . . . ,

Gn, respectively. The NEPS G with basis B of graphs G1, G2, . . . , Gn has as
adjacency matrix the matrix A given by

A =
∑
β∈B

Aβ1
1 ⊗ Aβ2

2 . . . ⊗ Aβn
n . (12)

Here A0
k is the identity matrix of the same size as Ak, A1

k = Ak , and ⊗ denotes the
Kronecker product of matrices.

One consequence of Theorem 7.1 is the following result.
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Theorem 7.2 If pi = |V (Gi )| and if λi1, λi2, . . . , λi pi is the spectrum of Gi

(i = 1, 2, . . . , n), then the spectrum of the NEPS of G1, G2, . . . , Gn with basis
B consists of all possible values �i1,i2,...,in , where

�i1,i2,...,in =
∑
β∈B

λ
β1
1i1

λ
β2
2i2

. . . λ
βn
nin

(ik = 1, 2, . . . , pk ; k = 1, 2, . . . , n). (13)

Together with expressions (12) and (13) we consider the function

f (x1, x2, . . . , xn) =
∑
β∈B

xβ1
1 xβ2

2 . . . xβn
n , (14)

which will be of interest later.
First we quote the following theorem which lists some of the classes of graphs

identified in [25] as being closed under the NEPS operation. An even graph is one in
which each vertex has even degree, a singular graph is one with 0 as an eigenvalue,
and a transitive graph is one whose automorphism group acts transitively on the
vertices.

Theorem 7.3 The following classes of graphs are closed under the NEPS opera-
tion:
(1) regular graphs;
(2) even graphs;
(3) singular graphs;
(4) integral graphs;
(5) transitive graphs;
(6) walk-regular graphs.

Here, (1) and (2) follow from the fact that the vertex-degrees in a NEPS can be
expressed in terms of the vertex-degrees of the graphs on which the operation
is performed, while (3) and (4) follow from Theorem 6.2. (5) follows from the
observation that the automorphism group of a NEPS contains the direct product
of the automorphism groups of the constituent graphs, while (6) follows from the
characterization of walk-regular graphs in terms of angles (see Section 2 and [25,
Remark 3.5]).

It is a well-known fact that the product of two connected bipartite graphs G1 and
G2 is disconnected, with two components. Similar situations arise more generally
in a NEPS, and graph eigenvalues are a good means of investigating the conditions
under which a NEPS is connected or bipartite (see [13, Sec. 7.4]).

Two graphs are almost cospectral if their non-zero eigenvalues (and their
multiplicities) coincide. In [12] it was conjectured that, if a NEPS of bipartite
graphs is disconnected, then its components are almost cospectral. This conjecture
is true for the product of graphs, and we shall show (following [9]) that it is also
true for the 2-sum of three graphs.
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Connectedness properties of the NEPS, from Theorems 7.1 and 7.2, are related
to the function (14), as described in [13]; for a recent treatment, see [49]. In the
case of the 2-sum of three graphs, the function (14) is x1x2 + x1x3 + x2x3, which is
even with respect to the variables x1, x2, x3, in the sense that it remains unchanged
when these variables are simultaneously changed in sign. By [13, Thm. 7.12] we
conclude that the 2-sum of three bipartite graphs is a disconnected graph with two
components. For example, D(K2, K2, K2) = 2K4; geometrically, this says that if
the vertices of D(K2, K2, K2) are represented by the vertices of a cube, then the
2-sum consists of two tetrahedra.

The proof of the following lemma is straightforward.

Lemma 7.4 Let x1, x2, . . . , xr and y1, y2, . . . , ys be non-increasing sequences of
non-zero real numbers. If

r∑
i=1

xk
i =

s∑
j=1

yk
j for all k ∈ N,

then r = s and xi = yi (i = 1, 2, . . . , r ).

We can then prove the following theorem.

Theorem 7.5 Two graphs are almost cospectral if and only if, for each k ∈ N,

they have the same number of closed walks of length k.

Proof Assume first that G and H are two graphs that satisfy the condition con-
cerning walks. If λ1, λ2, . . . , λm and µ1, µ2, . . . , µn are the eigenvalues of G and
H , respectively, then

∑m
i=1 λk

i = ∑n
j=1 µk

j for all k ∈ N. By Lemma 7.4, G and
H are almost cospectral. The reverse implication is immediate. �

We can use Theorem 7.5 to prove in a new way that if G and H are connected
bipartite graphs, then the two components A and B of the product G × H are
almost cospectral. Let (x1, y1), (x2, y2), . . . , (xk, yk) be a closed walk of length k
in A. Then (x1, y2), (x2, y3), . . . , (xk, y1) is a closed walk of length k in B. For
each k ≥ 2, this mapping is a bijection between the sets of closed walks of length
k in the graphs A and B. Since no graph has any closed walks of length 1, we
deduce from Theorem 7.5 that the components A and B are almost cospectral. We
apply the same idea to the 2-sum of three graphs.

Let a1, a2, . . . , an be a finite sequence of real numbers. We count the groups of
mutually equal members successively following one another in this sequence, by
defining the function ψ recursively as follows: ψ(1) = 1, and for i = 2, 3, . . . , n,

ψ(i + 1) =
{
ψ(i), if ai+1 = ai

ψ(i) + 1, otherwise.
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If an = a1 and ψ(n) = k, we redefine those values of ψ(i) equal to k to be 1
instead. Let s be the maximum value of ψ and define bψ(i) = ai (i = 1, 2, . . . , n).
The quasi-cyclic shift of the sequence a1, a2, . . . , an is the sequence obtained from
a1, a2, . . . , an by replacing each ai with bψ(i)+1 (where bs+1 = b1).

Theorem 7.6 The two components of the 2-sum of three bipartite graphs are
almost cospectral.

Proof Let H1 and H2 be the two components, and let

(x1, y1, z1), (x2, y2, z2), . . . , (xk, yk, zk) (15)

be a closed walk of length k (≥ 2) in H1. We construct from (15) a closed walk of
the same length in H2, and this will establish the required one-one correspondence.

The sequence z1, z2, . . . , zk has the properties that zi and zi+1 are either equal
or adjacent (i = 1, 2, . . . , k − 1) and zk = z1.

If not all of the vertices z1, z2, . . . , zk are the same, then the sequence z1, z2, . . . ,

zk determines a closed walk of length at most k in the corresponding graph. Let
w1, w2, . . . , wk be the quasi-cyclic shift of the sequence z1, z2, . . . , zk . It is easy
to see that the sequence

(x1, y1, w1), (x2, y2, w2), . . . , (xk, yk, wk)

is a closed walk of length k in H2.
On the other hand, if z1 = z2 = · · · = zk = z, then

(x1, y2, z), (x2, y3, z), . . . , (xk, y1, z)

is a closed walk in H2 corresponding to (15).
Thus, for each k, the number of closed walks of length k is the same in H1 and

H2. By Theorem 7.5, the two components are almost cospectral. �

It was conjectured that the components of a NEPS of bipartite graphs are always
almost cospectral, but this is not true in general (see [51]). A counter-example is
provided by the graph (P3 × P3) + K2, and modified conjectures are discussed in
[51].

8. Integral graphs

A graph is integral if all its eigenvalues are integers. The quest for integral graphs
was initiated by Harary and Schwenk [32]. The thirteen connected cubic integral
graphs were obtained by Cvetković and Bussemaker (see [8] and [4]), and inde-
pendently by Schwenk [44]. Cvetković [8] proved that the set of connected regular
integral graphs of any fixed degree is finite.
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Radosavljević and Simić [48] determined the thirteen connected non-regular
non-bipartite integral graphs with maximum degree 4. The corresponding problem
for bipartite graphs is not yet solved; see [48] for some details. Recently, Stevanović
[52] determined all 24 connected 4-regular integral graphs without 3 or −3 in the
spectrum.

The search for integral graphs becomes easier if we restrict ourselves to the
product of graphs. If G is connected, non-bipartite, r -regular and integral, then the
product G × K2 is connected, bipartite, r -regular and integral, since the eigenval-
ues of K2 are 1 and −1. Therefore, in determining r -regular integral graphs we
need consider only bipartite graphs, and later extract non-bipartite graphs G from
the decompositions of bipartite graphs of the form G × K2. On the other hand, if
G is bipartite, then G × K2 = 2G and we cannot obtain new graphs by iterating
the product with K2.

A system of Diophantine equations for the spectrum of a connected 4-regular
bipartite integral graph has been obtained in [26]. The equations derive from
an interpretation of the first six spectral moments in terms of the numbers of
short cycles. The system has a finite number of solutions, and according to [26]
the graphs in question have at most 5040 vertices. The non-existence of graphs
with some of the spectra obtained in [26] was established in [50] using graph
angles. A list of the 65 known 4-regular connected integral graphs is given in
[26].

There are exactly 150 connected integral graphs with up to 10 vertices (see [1]),
and we reproduce here some of the details. The numbers in of connected integral
graphs with n vertices are given for n = 1, 2, . . . , 10 in the following table:

n: 1 2 3 4 5 6 7 8 9 10
in : 1 1 1 2 3 6 7 22 24 83

The connected integral graphs with up to five vertices are easily identified from
the table of spectra of connected graphs with up to five vertices, given in [13]: they
are K1, K2, K3, K4, C4, K5, 2K1 ∪ K3 and K1,4.

The six connected integral graphs on six vertices have identification numbers
1, 9, 51, 52, 106 and 109 in the table of connected graphs with six vertices given
in [20]. They are K6, the octahedron 3K2, C3 + K2, K3,3, C6, and the unique tree
with degree sequence (3, 3, 1, 1, 1, 1).

There are seven connected integral graphs on seven vertices, with identifica-
tion numbers 4, 191, 235, 300, 710, 841 and 853 in the table of connected graphs
on seven vertices given in [12]. The connected integral graphs on eight, nine
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and ten vertices are specified in [1] by their adjacency matrices, and also by
pictures in the case of eight or nine vertices. Their spectra are provided in all
cases.

There are no cospectral (non-isomorphic) connected integral graphs on fewer
than eight vertices. There is just one triplet of connected integral graphs on eight
vertices; there are three pairs on nine vertices; and ten pairs, one triplet, two
quadruplets and one quintuplet on ten vertices. None of the graphs in these sets is
regular, and in all cases the cospectral graphs can be distinguished by angles. We
have already noted that the smallest cospectral graphs with the same angles have
ten vertices (see [15]), and we find that there are no integral graphs among the 58
pairs of such cospectral graphs.

There are integral cospectral graphs with fewer than eight vertices, but then at
least one of them is disconnected. These cases include the smallest pair of cospec-
tral graphs, K1,4 and C4 ∪ K1, which have the common spectrum (2, 0, 0, 0, −2).
Also, the subdivision graph S(K1,3) has as a cospectral mate the disconnected
graph C6 ∪ K1, with spectrum (2, 1, 1, 0, −1, −1, −2).

Some cospectral integral graphs have the same main angles as well. This hap-
pens in several pairs: in one pair on nine vertices and in six pairs on ten vertices,
as well as in a triplet on ten vertices. Note that, in each of the two aforementioned
cospectral quadruplets, the main angles are not the same for all four graphs. The
complements of cospectral graphs sharing the same main angles are cospectral.
The complements of graphs from one cospectral quadruplet form two pairs of
cospectral graphs, but not a cospectral quadruplet. Similarly, the complements of
graphs from the other quadruplet do not provide a cospectral quadruplet; in this
case, we obtain only a cospectral triplet. However, among the complements of
graphs in all these sets of cospectral graphs, only the complements of two graphs
on nine vertices are integral. Both complements are disconnected: the first has
three components, two of them being isolated vertices, while the second has two
components, one an isolated vertex. Cospectral integral graphs with cospectral
integral complements were studied for the first time in [38], where an example
with eleven vertices is given. It is interesting that we have the same situation with
isolated vertices as above.

Several other graphs in our lists have integral complements; some of these
complements are disconnected, but we can readily identify the pairs of connected
complementary integral graphs. They include one pair on eight vertices, one on
nine vertices, and four on ten vertices. The smallest such pair consists of the 6-
vertex graphs C6 and C3 + K2. All of these graphs are regular. Self-complementary
graphs also feature in our lists: examples include a non-regular graph of order 8
and two regular graphs of order 9.
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Press, 1997.
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36. M. Lepović, Some statistical data on graphs with 10 vertices, Univ. Beograd, Publ.
Elektrotehn. Fak., Ser. Mat. 9 (1998), 79–88.

37. A. Neumaier, Derived eigenvalues of symmetric matrices, with applications to distance
geometry, Linear Alg. Appl. 134 (1990), 107–120.
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Eigenvalues of Laplace matrices of graphs are related to various combina-
torial properties of graphs. They can be used to extract information about
some parameters that are hard to compute or estimate, most notably those
related to expansion and vertex partitions. The smallest and largest eigen-
value can be expressed as solutions to a quadratic optimization problem. It
turns out that the right generalized setting for this is semi-definite program-
ming, where duality theory leads to powerful applications, one of which is
given in Section 5. A more general setting of weighted graphs is presented,
which brings us also to the study of simple random walks whose transition
matrix can be expressed via the related Laplacian.

1. Introduction

Eigenvalues of graphs have been extensively studied since the early developments
of graph theory in the 1960s (see, for example, Chapter 1, [4], [11], [12] or [23]).
Most of the early works considered eigenvalues of adjacency matrices of graphs.
New developments in the 1980s made it clear that eigenvalues and eigenvectors
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of the related Laplace matrices of graphs enter the theory in several applications
more naturally than eigenvalues of adjacency matrices (see [8], [37] and [40]), and
therefore deserve their own study.

Many properties of eigenvalues of graphs can be expressed in terms of simple
graph invariants, such as vertex degrees or the number of short cycles. Such results
are most interesting from the point of view of linear algebra. However, from
the viewpoint of applications in combinatorics, it is more interesting to study
relations between eigenvalues and ‘hard’ graph invariants. Such an approach was
very successful in the study of distance-regular graphs; we refer to the excellent
monographs [4] and [23]. One of the most fascinating aspects of such applications
is that eigenvalues appear as a tool to prove results that appear to have nothing to
do with the eigenvalues themselves.

Applications of eigenvalue methods in combinatorics, graph theory and combi-
natorial optimization have a long history. For example, eigenvalue bounds on the
chromatic number were formulated by Wilf [48] and Hoffman [28] in the 1960s.
Another early application, in the area of graph partition, is due to Fiedler [17] and
Donath and Hoffman [14]. An important use of eigenvalues is Lovász’s notion of
the ϑ-function [31].

The next important result was the use of eigenvalues in the construction of
superconcentrators and expanders by Alon and Milman [1]. Isoperimetric prop-
erties of graphs and their eigenvalues play a crucial role in the design of various
randomized algorithms. These applications are based on the so-called ‘rapidly
mixing Markov chains’ (see Section 8).

There is an increasing interest in the application of eigenvalues to combinato-
rial optimization problems. For example, an eigenvalue approach was used in the
study of the quadratic assignment problem and general graph partition problems
[43], the max-cut problem [13], and labelling problems ([25] and [29]). Spectral
partitioning, which is based on eigenvectors of Laplace eigenvalues of graphs, has
proved to be a successful heuristic approach in the design of partition algorithms
([25] and [27]), in parallel computation [45], clustering [24], ranking ([25] and
[29]), and in graph drawing [19]. We refer to [40] for additional applications.

Laplace matrices of graphs are closely related to the Laplacian, the second
order differential operator �( f ) = −div(grad f ). This relation yields an important
bilateral link between the spectral geometry of Riemannian manifolds and graph
theory, and makes it possible to use results about graphs in the study of Laplacians
on manifolds and, conversely, to transfer results about Laplacians on manifolds
to graphs. Each of these directions has given rise to exciting new discoveries (see
Buser [7], Brooks [6] and Chung [8]). An interesting approach, using Laplace
matrices and discrete Schrödinger operators to obtain certain minor monotone
graph invariants, has been developed by Colin de Verdière. His remarkable results,
which connect with several central areas of mathematics, are nicely presented in [9].
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In this chapter, only basic information on the Laplace matrices of graphs is
presented. For further and more specialized results, there are several books and
survey papers, such as [4], [8], [9], [11], [33] and [40].

2. The Laplacian of a graph

Let G = (V, E) be an undirected finite graph with n vertices and m edges. We
also consider weighted graphs with a weight function that assigns a non-negative
real weight avw to each pair v, w of vertices. We require that the weights satisfy
the following properties:
� avw > 0 if vw ∈ E, and avw = 0 if vw /∈ E ;
� avw = awv, for all v, w ∈ V .
Unweighted graphs can be viewed as weighted graphs in which avw is the number
of edges between v and w.

In the unweighted case, the degree deg v of a vertex v ∈ V is the number of
edges of G incident with v. In the weighted case, it is defined by

deg v =
∑
w∈V

avw.

Recall that the maximum and minimum vertex degrees in G are denoted by �(G)
and δ(G), respectively.

Given a graph G, its (weighted) adjacency matrix A(G) = (avw) is the n × n
matrix, with rows and columns indexed by V, whose entries are the edge-weights.
The degree matrix D(G) = diag(deg v : v ∈ V ) is the diagonal matrix indexed by
V with the vertex-degrees on the diagonal. The difference

L(G) = D(G) − A(G) (1)

is the Laplace matrix (or Laplacian) of G.

One of the first applications of Laplace matrices of graphs is in the statement
of the well-known matrix-tree theorem (see [4, Ch. 6]).

Theorem 2.1 (Matrix-tree theorem) Let G be a graph and let L = L(G) be its
Laplace matrix. If T is a spanning tree of G, let a(T ) be the product of the edge-
weights of T . For any vertices v and w, the (weighted) number of spanning trees
of G is

τ (G) =
∑

{a(T ) : T a spanning tree of G} = |det Lv
w|,

where Lv
w is the submatrix of L obtained by deleting the column corresponding to

v and the row corresponding to w.
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The most common proofs of Theorem 2.1 use the related oriented incidence
matrix Q of G, which is defined as follows. Orient arbitrarily each edge of G.

Then the matrix Q is the n × m matrix with rows and columns indexed by V and
E, whose (v, e)-entry is −√

avw if v is the initial vertex of e = vw,
√

awv if v is
the terminal vertex of e = wv, and 0 if v and e are not incident. If e is a loop, then
the (v, e)-entry is 0, irrespective of its weight.

Theorem 2.2 Let G be a graph, and let Q be an oriented incidence matrix with
respect to some orientation of its edges. Then

L(G) = QQT .

Theorem 2.2 shows that the product QQT is independent of the chosen orientation
of the edges of G.

Let RV = {f : V → R} be the set of functions from V to R. If f ∈ RV and v ∈ V ,
denote by fv the value of f at the vertex v. With the usual operations of sum and
scalar multiplication, RV becomes a real vector space of dimension n, endowed
with the inner product

〈f, g〉 =
∑
v∈V

fvgv.

The corresponding norm in RV is

‖f‖ = 〈f,f〉1/2 =
(∑

v∈V

f2
v

)1/2

.

The matrix L (and other matrices indexed by the vertices of G) acts on RV as a
linear operator. Its action is determined by the rule of matrix-vector multiplication,
where g = Lf is the function defined by the formula

gv = (Lf)v =
∑
w∈V

Lvwfw =
∑
w∈V

avw(fv − fw) (v ∈ V ).

There is a natural quadratic form associated with L.

Theorem 2.3 〈f, Lf〉 =
∑

vw∈E

avw(fv − fw)2. (2)

Proof Since L = QQT , the definition of Q implies that

〈f, Lf〉 = 〈f, QQT f〉 = 〈QT f, QT f〉 =
∑
e∈E

(QT f)2
e =

∑
vw∈E

avw(fv − fw)2.

�
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For graphs without isolated vertices, there is another common definition of
a graph Laplacian. Since it is related to Markov chains and random walks (see
Section 8), it is also known as the transition Laplace matrix,

L′(G) = D−1/2L(G)D−1/2,

where D is the degree matrix. In particular, we have

L′(G)vw =




1 − avv

deg(v)
, if v = w

− avw√
deg(v) deg(w)

, if vw ∈ E(G)

0, otherwise.

(3)

Observe that L′(G) is symmetric, and that for a d-regular loopless graph,

L(G) = d · L′(G).

Notice also that the Laplace matrix L(G) does not change if we add loops to G,
while the transition Laplace matrix L′(G) is changed by the addition of loops.
Transition Laplace matrices are extensively treated in [8].

3. Laplace eigenvalues

By definition, L(G) is a real symmetric matrix, and equation (2) (together with the
non-negativity of edge-weights) implies that it is positive semi-definite. It therefore
has n non-negative real eigenvalues λi = λi (G), which in this chapter we take in
non-decreasing order

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

These eigenvalues are called the Laplace eigenvalues of the graph G. It is easy
to see that 0 is always an eigenvalue of L(G), and that j = (1, 1, . . . , 1)T is a
corresponding eigenvector.

Theorem 3.1 The multiplicity of 0 as an eigenvalue of L(G) is equal to the
number of connected components of G.

This result implies that λ1(G) = 0 is a simple eigenvalue of L(G) if and only if
the graph G is connected. It is also obvious, after writing L(G) in block diagonal
form, that the Laplace eigenvalues of G are the union of the eigenvalues of its
connected components.

Since the sum of all the eigenvalues equals the trace of the matrix, we have

n∑
i=1

λi (G) =
∑
v∈V

deg(v) = 2|E(G)|, (4)
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where |E(G)| should be replaced by the sum of all edge-weights in the case of
weighted graphs.

If M is a matrix with real eigenvalues, we use the notation λi (M) to denote the
i th smallest eigenvalue of M (respecting the multiplicities). We use the symbol
λmax(M) to denote the maximum eigenvalue of M, and sometimes write λmin(M)
instead of λ1(M).

Let G be a (weighted) k-regular graph. Then equation (1) implies that λ is an
eigenvalue of L(G) if and only if k − λ is an eigenvalue of the weighted adjacency
matrix A(G). More precisely,

λi (L(G)) = k − λn−i+1(A(G)) (i = 1, 2, . . . , n).

This result enables us to use known results about the eigenvalues of the adjacency
matrix of a regular graph in the study of its Laplace eigenvalues. For example, the
eigenvalues of the adjacency matrix of the complete graph Kn are n − 1 and −1
(the latter with multiplicity n − 1), and therefore, λ1(Kn) = 0, and λi (Kn) = n for
2 ≤ i ≤ n. Similarly, the Laplace eigenvalues of the n-cycle Cn are precisely the
numbers

νk = 2 − 2 cos

(
2kπ

n

)
(k = 1, 2, . . . , n). (5)

If G is a simple unweighted graph and G is its complement, then

L(G) + L(G) = nI − J, (6)

where J is the all-1 matrix. The same relation holds in the weighted case if we
define the edge-weights avw of G to be 1 − avw (v, w ∈ V, v 	= w). In order to
have non-negative weights in G, we need 0 ≤ avw ≤ 1 for v, w ∈ V .

Let f1, f2, . . . , fn be an orthogonal system of eigenvectors of L(G) such that
f1 = j and L(G)fi = λi fi , for i = 1, 2, . . . , n. By (6), we get L(G)f1 = 0 and
L(G)fi = (n − λi )fi , for 2 ≤ i ≤ n. This proves the following result.

Theorem 3.2 Suppose that the edge-weights of a graph G satisfy 0 ≤ avw ≤ 1,
and let G be the graph with edge-weights avw = 1 − avw. Then λ1(G) = 0, and
λi (G) = n − λn−i+2(G) for 2 ≤ i ≤ n.

For example, if G = Kr,s , then G = Kr ∪ Ks . So, G has eigenvalues 0 (twice),
r (r − 1 times), and s (s − 1 times). Hence, the Laplace eigenvalues of Kr,s are 0,

s (r − 1 times), r (s − 1 times), and r + s.
Recall that the Cartesian product G � H of graphs G and H has vertex-set

V (G � H ) = V (G) × V (H ), where (v1, v2) is adjacent to (w1,w2) if and only
if v1 = w1 and v2w2 ∈ E(H ), or v2 = w2 and v1w1 ∈ E(G). There is a simple
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description of the Laplace eigenvalues of G � H in terms of the Laplace eigenval-
ues of G and H .

Theorem 3.3 The Laplace eigenvalues of the Cartesian product G � H are pre-
cisely the numbers

λi (G) + λ j (H ),

for i = 1, 2, . . . , |V (G)| and j = 1, 2, . . . , |V (H )|.

The proof of this result relies on the fact that the Laplace matrix is

L(G � H ) = L(G) ⊗ IV (H ) + IV (G) ⊗ L(H ),

where ⊗ denotes the Kronecker product of matrices (see Introduction).
Theorem 3.3 holds also for weighted graphs G and H , if the weight of an edge

of G � H joining the vertices (v1, v2) and (w1, w2) is taken to be equal to the
weight of the edge v1w1 of G if v2 = w2, and equal to the weight of v2w2 in H if
v1 = w1. As a consequence, we obtain

λ2(G � H ) = min{λ2(G), λ2(H )} and λmax(G � H ) = λmax(G) + λmax(H ). (7)

Theorem 3.3 can be used to determine the Laplace spectrum of several well-
known families of graphs. For example, the d-dimensional cube Qd is the Cartesian
product of d copies of K2. Since the Laplace eigenvalues of K2 are 0 and 2, the
Laplace spectrum of Qd consists of the numbers 0, 2, 4, . . . , 2d. The multiplicity
of 2k in the spectrum of Qd is

(d
k

)
.

Similarly, the Laplace eigenvalues of the path Pk are (see [2])

�
(k)
i = 4 sin2

(
π i

2k

)
(i = 0, 1, . . . , k − 1).

Therefore, the grid graph Pm � Pn has Laplace eigenvalues

λi, j = �
(m)
i + �

(n)
j = 4 sin2

(
π i

2m

)
+ 4 sin2

(
π j

2n

)
.

It is natural to ask to what extent the Laplace eigenvalues determine the graph.
Several operations are known that change the graph but not its eigenvalues. This
gives rise to examples of families of cospectral graphs (see, for example, [34]).
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Bounding the Laplace eigenvalues

There are various useful min-max formulas for the eigenvalues of a symmetric
matrix. If M is a real symmetric matrix indexed by V , then

λ1(M) = min

{ 〈Mf, f〉
〈f, f〉 : 0 	= f ∈ RV

}
(8)

= min{〈Mf, f〉 : f ∈ RV , ‖f‖ = 1},

and similarly

λmax(M) = max{〈Mf, f〉 : f ∈ RV , ‖f‖ = 1}. (9)

The Rayleigh characterization (8) has a generalization, the min-max characteri-
zation of the kth smallest eigenvalue λk(M), known also as the Courant-Fisher
formula:

λk(M) = min
U

max
f

{〈Mf, f〉 : ‖f‖ = 1, f ∈ U }, (10)

where the minimum is taken over all k-dimensional subspaces U of RV . Another
way of expressing (10) is

λk(M) = min{〈Mf, f〉 : ‖f‖ = 1, f ⊥ f i , 1 ≤ i < k}, (11)

where f1,f2, . . . , fk−1 are pairwise orthogonal eigenvectors of λ1, λ2, . . . , λk−1,
respectively.

Among the Laplace eigenvalues of a connected graph G, the most important are
the extreme non-zero eigenvalues: the second smallest eigenvalue λ2(G) and the
largest eigenvalue λmax(G). Theorem 3.2 shows that λ2(G) = n − λmax(G), and it
is thus not surprising that the importance of each of these eigenvalues implies that
of the other. For a (weighted) graph G with Laplace matrix L, (11) implies that

λ2(G) = min{〈Lf, f〉 : ‖f‖ = 1, f ⊥ j}, (12)

since j is an eigenvector corresponding to λ1(G): notice that f is orthogonal to j if
and only if the sum of its coordinates is 0.

Expression (12) can be used to get combinatorial upper bounds on λ2(G). For
example:

Lemma 3.4 For any non-adjacent vertices s and t in G,

λ2(G) ≤ 1
2 (deg s + deg t).
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Proof Let f ∈ RV be defined by fv = 1 if v = s, fv = −1 if v = t , and fv = 0
otherwise. Since f ⊥ j, (12) yields

λ2(G) ≤ 〈L(G)f, f〉
〈f, f〉 =

∑
vw ∈ E avw(fv − fw)2∑

v∈V f2
v

= deg s + deg t

2
. �

The proof of Lemma 3.4 illustrates a basic technique for exploiting expressions
such as (12). By inserting an appropriate function into the expression, we can give
the right-hand side a meaningful combinatorial interpretation, and this enables
us to relate combinatorial properties to Laplace eigenvalues. To overcome the
orthogonality restriction on f, Fiedler [18] transformed (12) to a more suitable
expression that does not require f to be orthogonal to j.

Theorem 3.5 For any graph G of order n,

λ2(G) = 2n · min

{ ∑
vw∈E avw(fv − fw)2∑

v∈V

∑
w∈V (fv − fw)2

: f 	= cj, for c ∈ R
}

(13)

and

λmax(G) = 2n · max

{ ∑
vw∈E avw(fv − fw)2∑

v∈V

∑
w∈V (fv − fw)2

: f 	= cj, for c ∈ R
}

. (14)

The eigenvalues λ2(G) and λmax(G) can be bounded in terms of the maximum
and minimum degrees of G.

Theorem 3.6 For any graph G of order n,

λ2(G) ≤ n

n − 1
δ(G) and

n

n − 1
�(G) ≤ λmax(G) ≤ 2�(G).

If G is an unweighted graph, the last inequality of Theorem 3.6 can be strength-
ened to λmax(G) ≤ max{deg v + deg w : vw ∈ E}. If G is connected, then the
equality holds if and only if G is bipartite semi-regular (see [2]). Theorem 3.2
implies that λmax(G) ≤ n, with equality if and only if the complement of G is
disconnected.

Let G be a (weighted) graph, and let G ′ = G + e be the graph obtained from G
by adding an edge e to G (possibly increasing the weight of an existing edge). Then
L(G ′) and L(G) differ by a positive semi-definite matrix of rank 1. It follows by
the Courant-Weyl inequalities (see, for example, [11, Thm. 2.1]) that the following
is true.
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Theorem 3.7 The eigenvalues of G and G ′ = G + e interlace:

0 = λ1(G) = λ1(G ′) ≤ λ2(G) ≤ λ2(G ′) ≤ λ3(G) ≤ · · · ≤ λn(G) ≤ λn(G ′).

Observe that
∑n

i=1(λi (G ′) − λi (G)) = 2, by (4), so that at least one inequality
λi (G) ≤ λi (G ′) is strict. By inserting more than one edge we may lose the inter-
lacing of the eigenvalues.

Theorem 3.8 Suppose that G1 and G2 are graphs with the same vertex-set. Let
G = G1 ∪ G2 be the graph whose edge-weights are the sums of edge-weights of
G1 and G2. Then
� λ2(G) ≥ λ2(G1) + λ2(G2);
� max{λmax(G1), λmax(G2)} ≤ λmax(G) ≤ λmax(G1) + λmax(G2).

Eigenvalues of the transition Laplacian

The eigenvalues λ′
i = λi (L′(G)) of the transition Laplace matrix behave similarly

to the eigenvalues of L(G) : they are all real and non-negative, λ′
1 = 0, and λ′

2 > 0
if and only if G is connected.

Theorem 3.9 Let G be a graph of order n with p isolated vertices. Then
�

∑n
i=1 λ′

i (G) = n − p;
� if G is not the complete graph, then λ′

2(G) ≤ 1;
� λ′

n(G) ≤ 2, and equality holds if and only if G has a non-trivial bipartite
component;

� if G is bipartite, then λ′
i (G) = 2 − λ′

n−i+1(G) for i = 1, 2, . . . , n.

We refer to [8] for more details and further results.

4. Eigenvalues and vertex partitions of graphs

We begin this section with some notation. For each subset S ⊆ V (G), let S̄ =
V (G) − S denote the complement of S in V (G). Given sets of vertices A, B ⊆
V (G), let E(A, B) be the set of edges of G with one end in A and the other in B.
We also let

e(A, B) =
∑
v∈A

∑
w∈B

avw

denote the sum of the weights of the edges in E(A, B), with all edges in G[A ∩ B]
counted twice. Note that, for an unweighted graph, e(S, S̄) counts the number of
edges in the cut E(S, S̄).
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The partition problems discussed here are mainly concerned with finding an
appropriate subset S ⊆ V (G) for which the edge-cut E(S, S̄) satisfies some specific
extremal property. In particular, we focus our attention on the weight of a maximum
cut, the bipartition width and the isoperimetric number. All of these problems are
NP-hard, so that non-trivial bounds are desirable, and potentially very important.

The following lemma relates the weight of an edge-cut to the eigenvalues λ2(G)
and λmax(G).

Lemma 4.1 Let G be a (weighted) graph of order n, and let S ⊆ V (G) with
|S| = s. Then

λ2(G)
s(n − s)

n
≤ e(S, S̄) ≤ λmax(G)

s(n − s)

n
.

Proof Let f ∈ RV be the characteristic function of S : fv = 1 if v ∈ S, and fv = 0
otherwise. Then

∑
v∈V

∑
w∈V

(fv − fw)2 = 2s(n − s)

and

∑
vw∈E

avw(fv − fw)2 = e(S, S̄).

If S 	= ∅ and S 	= V (G), then (13) implies that

λ2(G) ≤ 2n · e(S, S̄)

2s(n − s)
.

This gives the lower bound, which obviously holds also for S = ∅ and S = V (G).
The upper bound is proved analogously, using (14). �

It is an immediate, and also an important, consequence of Lemma 4.1 that
in a graph for which all non-trivial Laplace eigenvalues are close together (that
is, λmax − λ2 is small), the weights of all the edge-cuts E(S, S̄) corresponding to
vertex-sets S of the same cardinality are approximately the same. In particular, this
property holds in random graphs. It is therefore not surprising that many algorithms
dealing with edge-cuts perform well on randomly chosen graphs.

Lemma 4.1 also shows that graphs with large λ2 have fast growth rate. This
implies, in particular, that the diameter can be bounded as a function of λ2(G) (see,
for example, [8] and [40] and the references therein).
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The bipartition width

Loosely speaking, the bipartition width of a graph is the minimum number of
edges in a cut that partitions the vertices into two sets of nearly equal size. More
formally, for a graph G of order n, the bipartition width bw(G) is defined as

bw(G) = min
{
e(S, S̄) : S ⊆ V (G), |S| = ⌊

1
2 n

⌋}
.

It is known that, even for unweighted simple graphs, the problem of determining
bw(G) is NP-hard (see, for example, [21, p. 210]).

Since all the sets over which the minimum is taken have size � 1
2 n�, Lemma 4.1

gives the following lower bound for bw(G).

Corollary 4.2 Let G be a weighted graph of order n. If n is even, then

bw(G) ≥ 1
4 n · λ2(G).

If n is odd, then

bw(G) ≥ n2 − 1

4n
· λ2(G).

We can further improve the bounds of Corollary 4.2 by introducing a correction
function. A function c ∈ RV is called a correction function if c ⊥ j. The following
bound was proved by Boppana [5].

Theorem 4.3 Let G be a weighted graph of even order n. Then

bw(G) ≥ 1
4 n · max

c
min

f

〈(L(G) + diag(c))f, f〉
〈f, f〉 ,

where the maximum is taken over all correction functions c ∈ RV and the minimum
is taken over all non-zero functions f ∈ RV with f ⊥ j.

Proof Let S ⊆ V (G) be a set of cardinality 1
2 n with e(S, S̄) = bw(G), and let g ∈

RV be its signed characteristic function, defined by gv = 1 if v ∈ S and gv = −1
if v ∈ S̄. Since |S| = |S̄|, we have g ⊥ j.

Take an arbitrary correction function c ∈ RV . Since c ⊥ j, we have

〈diag(c)g, g〉 =
∑
v∈V

cvg2
v =

∑
v∈V

cv = 0. (15)

Using (15), and applying (2), we deduce that

〈(L(G) + diag(c))g, g〉
〈g, g〉 = 〈L(G)g, g〉

〈g, g〉 =
∑

vw∈E avw(gv − gw)2∑
v∈V g2

v

= 4e(S, S̄)

n
= 4

n
· bw(G).

Since c is arbitrary, the bound follows. �
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For computational purposes, it is convenient to express the bound of this theorem
as a maximization of the smallest eigenvalue of an appropriate symmetric matrix.
This can be done as follows. Let Q = (q1, q2, . . . , qn−1) be an n × (n − 1) matrix
whose columns qi are pairwise orthogonal unit vectors for which qi ⊥ j (1 ≤ i <

n). It is easy to see that, for each x ∈ Rn−1, we have 〈Qx, Qx〉 = 〈x, x〉 and Qx ⊥ j.
This implies the following result.

Theorem 4.4 We have

bw(G) ≥ 1
4 n · max

c
λmin(QT (L(G) + diag(c))Q),

where the maximum is taken over all correction functions c ∈ RV .

The bound of Theorem 4.4 can be formulated as a semi-definite program, and can
therefore be computed to an arbitrary precision in polynomial time, using known
polynomial-time methods for solving such programs. For more details, see the
discussion at the end of the next section.

5. The max-cut problem and semi-definite programming

The maximum cut (or max-cut) problem is similar to the maximum version of the
bipartition width problem, except that the restrictions on the sizes of the subsets
over which the maximum is taken are omitted. More precisely, let mc(G) denote
the maximum weight of an edge-cut in G:

mc(G) = max{e(S, S̄) : ∅ 	= S ⊂ V (G)}.
The problem of determining mc(G) is NP-hard (see [21, p. 210]). Moreover, it

is known that there exists a constant ε > 0 for which there is no polynomial-time
(1 − ε)-approximation algorithm for the max-cut problem, unless P = NP (see
[3]). On the other hand, it is possible to find a 0.878-approximation to mc(G) in
polynomial time [22].

Lemma 4.1 implies the following upper bound on mc(G), which was first ob-
served by Mohar and Poljak (see [40]):

mc(G) ≤ 1
4 n · λmax(G). (16)

Just as for the bipartition width problem, (16) can be further improved using cor-
rection functions. The corresponding optimized eigenvalue bound was introduced
by Delorme and Poljak [13].

Theorem 5.1 Let G be a weighted graph of order n. Then

mc(G) ≤ 1
4 n · min

c
λmax(L(G) + diag(c)), (17)

where the minimum is taken over all correction functions c ∈ RV .

The proof consists of steps similar to those in the proof of Theorem 4.3.
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Minimizing the largest eigenvalue of an affine combination of symmetric ma-
trices can be formulated as a semi-definite program (see, for example, [47]). Let
A0, A1, . . . , An ∈ Rm×m be symmetric matrices, and for x ∈ Rn , set

A(x) = A0 +
n∑

i=0

xi Ai .

The problem is to

{
minimize λmax(A(x))
subject to x ∈ U,

(LM1)

where U is a linear subspace of Rn . We can translate this problem into a semi-
definite program by introducing an auxiliary variable t ∈ R:

{
minimize t
subject to tI − A(x) � 0, x ∈ U ,

(LM2)

where the notation X � 0 means that X is a positive semi-definite matrix. The first
constraint in (LM2) is equivalent to t ≥ λmax(A(x)).

In particular, the bound on the max-cut in Theorem 5.1 is of the form (LM1),
where we take U to be the orthogonal complement of the vector j. Also, the bound
on the bipartition width in Theorem 4.4 can be viewed as a semi-definite program
of the same form, since

max
x∈U

λmin(A(x)) = max
x∈U

{−λmax(−A(x))} = −min
x∈U

λmax(−A(x)).

There exist efficient and practical algorithms for solving semi-definite pro-
grams. Given any ε > 0, the given semi-definite program can be solved within an
additive error of ε in polynomial time, where ε is part of the input, its size being
proportional to log(1/ε). For this purpose, one can use interior-point methods (see
[41]).

Given a (weighted) graph G, the max-cut problem for G can be formulated as
a quadratic integer program with variables yv, v ∈ V (G):




maximize 1
2

∑
vw∈E(G)

avw(1 − yv yw)

subject to yv = 1 or − 1, for every v ∈ V (G).
(MC1)

If (yv)v∈V is a feasible solution, then 1 − yv yw is equal to either 0 or 2. Given a
solution of (MC1), the set S with the property that mc(G) = e(S, S̄) is determined
by S = {v ∈ V (G) : yv = 1}.
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Goemans and Williamson [22] considered the following semi-definite relax-
ation of (MC1), where zvw corresponds to the product yv yw in (MC1):




maximize 1
2

∑
vw∈E

avw(1 − zvw)

subject to zvv = 1, for every v ∈ V ,

Z = [zvw]v,w∈V � 0.

(MC2)

Poljak and Rendl [42] were the first to realize that the bound of the relaxation
(MC2) is actually equivalent to the eigenvalue upper bound of Theorem 5.1. For
a proof, which uses elegant duality theory of semi-definite programs, we refer
to [42].

Theorem 5.2 Let G be a weighted graph of order n. Then the value of an optimal
solution to (MC2) is equal to the right-hand side of (17).

Goemans and Williamson proved that (MC2) can be used to obtain a polynomial-
time 0.878-approximation algorithm for the max-cut problem. Since the announce-
ment of this algorithm, semi-definite programming has been successfully applied
to the design of a number of other approximation algorithms, such as the max-k-cut
(Frieze and Jerrum [20]), a 0.931-approximation algorithm for MAX 2-SAT (Feige
and Goemans [16]), a 0.859-approximation algorithm for MAX DISCUT [16],
and approximate colouring (Karger, Motwani and Sudan [30]). An application to
the travelling salesman problem is described below in Section 7.

6. Isoperimetric inequalities

Isoperimetric problems are related to questions in which one considers the ratio
between the surface area and the volume of some d-dimensional body. In graph
theory, the natural analogue to the volume is the number of vertices or the sum
of the degrees in a set S of vertices of the graph, while the counterpart of the
surface area is the number e(S, S̄) of edges with one end in S and the other end
outside S. Problems in which one considers ratios of the form e(S, S̄)/|S| are
called isoperimetric problems for graphs; thus, isoperimetric properties concern
the sizes of the neighborhood of a set of vertices. The related term ‘expansion’
usually means that the sizes of the neighborhood can be bounded from below by
some function of the size of the subset. Such isoperimetric properties provide the
foundation for many recent applications of graph theory to theoretical computer
science, as mentioned in the introduction.
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The isoperimetric number i(G) of a graph G of order n (≥ 2) is defined as

i(G) = min

{
e(S, S̄)

|S| : S ⊆ V (G), 0 < |S| ≤ 1
2 n

}
.

Computationally, the problem of determining i(G) is NP-hard (see [36]).
A straightforward application of Lemma 4.1 yields the following eigenvalue

lower bound on i(G).

Corollary 6.1 Let G be a weighted graph of order n. Then i(G) ≥ 1
2λ2(G).

It is difficult to obtain useful lower bounds on i(G) by combinatorial means.
Corollary 6.1, although easy to prove, gives a non-trivial lower bound on i(G).
For an example where this bound is tight, consider the d-dimensional cube Qd as
the product K2 � Qd−1, and let S be the set of vertices in one copy of Qd−1. Since
|S| = e(S, S̄) = 2d−1, we have i(Qd ) ≤ 1. On the other hand, as noted in Section
3, λ2(Qd ) = 2. Using Corollary 6.1, we conclude that i(Qd ) = 1.

The following quantity is sometimes easier to deal with than i(G):

i∗(G) = min

{
e(S, S̄)

|S||S̄| · |V |
2

: ∅ 	= S ⊂ V

}
.

Clearly, 1
2 i(G) ≤ i∗(G) ≤ i(G). It turns out that i∗(G) satisfies a relation similar

to (7):

i∗(G � H ) = min{i∗(G), i∗(H )}.
The above inequality implies that

1
2 min{i(G), i(H )} ≤ i(G � H ) ≤ min{i(G), i(H )}.

While the inequality on the right can be strict (see [36]), it is not known whether
the factor 1

2 on the left is best possible. We refer to [8, Sec. 2.6] and [26] for further
results.

It is important to note that i(G) also has upper bounds in terms of λ2(G).
Such bounds are known as Cheeger inequalities, since they are discrete analogues
of their continuous counterpart (see [6] and [7]) arising in the study of Laplace
operators on Riemannian manifolds.

The classical form of Cheeger’s bound adapted to graphs is

i(G) ≤
√

2�(G)λ2(G). (18)

An improvement of (18) was obtained by Mohar [36], and for weighted graphs
in [39]:
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Theorem 6.2 Let G be a weighted graph of order n (≥ 3) with maximum degree
� and second eigenvalue λ2. Then

i(G) ≤
√

(2� − λ2)λ2.

Other discrete forms of Cheeger’s inequality have been proved; see Theorem 8.4,
and [8] and [9] and the references therein.

An important observation, following from the proof of Theorem 6.2, is that
the partition based on the eigenfunction f of λ2 is not too far from optimal. Con-
structing partitions based on the eigenfunctions of λ2 has proved to be one of the
most successful heuristics in parallel computation and for a divide-and-conquer
approach for processor distribution.

7. The travelling salesman problem

The travelling salesman problem (TSP) is one of the best-known NP-hard com-
binatorial optimization problems, and there is an extensive literature on both its
theoretical and practical aspects. In the symmetric travelling salesman problem
(STSP), it is assumed that the cost of travelling between two points is the same in
both directions.

We shall mention here only one approach, which uses semi-definite program-
ming (see Section 5) to establish a lower bound on the length of an optimal tour.
This bound is obtained by relaxing the STSP and invoking a ‘branch-and-bound’
algorithm. Semi-definite relaxations of the STSP were developed by Cvetković,
Čangalović and Kovačević-Vujčić [10], and are based on the Laplace eigenvalues
of graphs.

In what follows we assume that G is the complete graph of order n and that
each edge vw has a cost cvw, such that the matrix C = (cvw) is symmetric, with
cvv = 0. The STSP can now be formulated as follows: find a Hamiltonian cycle in
G of minimum cost.

The next theorem gives a basis for a discrete semi-definite programming model
of the STSP [10]. Recall from (5) that λ2(Cn) = 2 − 2 cos(2π/n).

Theorem 7.1 Let H be a 2-regular spanning subgraph of G, and let X = L(H ) +
αJ − βI, where α and β are real parameters such that α > λ2(Cn)/n and 0 < β ≤
λ2(Cn). Then H is a Hamiltonian cycle if and only if the matrix X is positive semi-
definite.

Proof Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L(H ), and let
f1, f2, . . . , fn be corresponding eigenvectors that are pairwise orthogonal, with
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f1 = j. Then f1, f2, . . . ,fn are linearly independent eigenvectors of X, with corre-
sponding eigenvalues nα − β, λ2 − β, . . . , λn − β. Since H is a union of disjoint
cycles, either H is a Hamiltonian cycle withλ2 = λ2(Cn), or H is disconnected with
λ2 = 0. In either case, λ2 − β is the smallest eigenvalue, since nα > λ2(Cn) ≥ λ2.

If H is a Hamiltionian cycle, then λ2 − β = λ2(Cn) − β ≥ 0 and X is positive
semi-definite. Conversely, if X is positive semi-definite, then λ2(H ) = λ2 ≥ β >

0, and so H is connected, and hence a Hamiltonian cycle. �

A result that is similar to an extension of Theorem 7.1 for higher eigenvalues was
used by Mohar [38] to derive a sufficient algebraic condition for non-Hamiltonicity.
Based on that criterion, it can be shown, just by looking at its eigenvalues, that the
Petersen graph is not Hamiltonian.

It follows from Theorem 7.1 that a spanning subgraph H of G is a Hamiltonian
cycle if and only if its Laplacian L(H ) = (lvw) satisfies the following conditions:

each lvv = 2, X = L(H ) + αJ − βI � 0, for α > λ2(Cn)/n

and 0 < β ≤ λ2(Cn).

This result gives rise to a semi-definite relaxation of the STSP which has the
following equivalent formulation in terms of Laplacians, where L = (lvw) is a
symmetric matrix:


minimize �(L) = ∑

v∈V

∑
w∈V

(− 1
2 cvw

)
lvw ,

subject to lvv = 2,
∑

w∈V lvw = 0, −1 ≤ lvw ≤ 0 (for v 	= w),
and λ2(L) ≥ β.

This semi-definite program can be solved in polynomial time and yields a good
approximation to the optimum solution for the STSP.

8. Random walks on graphs

Isoperimetric properties and the eigenvalues treated in previous sections are closely
related to the convergence rates of Markov chains. Several important randomized
algorithms discovered in the last decade have increased the applicability of random
walks and Markov chains to previously intractable problems. Additional reading
on the results related to the presentation in this section can be found in [8] and [44].

Given a weighted graph G (possibly with loops), a simple random walk on
G is a Markov chain with state space V and with transition probabilities pvw of
stepping from v to w, defined as follows:

pvw = avw

deg v
.
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The transition matrix P(G) is

P(G) = D−1A(G),

where, as before, D is the degree matrix. Although P is not necessarily symmetric,
it has only real eigenvalues. This follows from the following result.

Theorem 8.1 P(G) = I − D−1/2L′(G)D1/2 = I − D−1L(G).

Proof Since I − D−1/2L′(G)D1/2 = I − D−1L(G), the diagonal elements of the
matrix are

1 − deg v−1Lvv = 1 − (deg v − avv)/deg v = avv/deg v (v ∈ V ),

and the off-diagonal entries are

−(deg v−1(L(G))vw = avw/deg v = pvw (v, w ∈ V, v 	= w). �

In particular, I − P(G) and L′(G) have the same eigenvalues, so

λi (P(G)) = 1 − λ′
n−i+1(G).

Theorem 8.1 also implies that P(G) (and thus also P(G)T ) can be diagonalized,
and that it has n pairwise orthogonal eigenvectors.

Rate of convergence of a random walk

For a random walk on G, let x(0) : V → R+ be the initial probability distribution
on V (G). Then

x(t) = PT x(t−1) = (PT )t x(0)

are the probabilities of where the Markov chain will be after t steps. If G is
connected and non-bipartite, then limt→∞ x(t) exists; it is denoted by x(∞), and is
called the stationary distribution.

There is a close relationship between the eigenvalues of P(G) and the rate of
convergence of a simple random walk on G to the stationary distribution.

Theorem 8.2 Let G be a connected non-bipartite weighted graph, and let x(0) be
an initial probability distribution on V (G). If

λ = max{|λi (P(G))| : λi (P(G)) 	= 1},
then, for a simple random walk on G,

‖x(t) − x(∞)‖ < λt .
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Proof Let Q = P(G)T , and for i = 1, 2, . . . , n, let y(i) be the eigenfunction of
Q corresponding to the eigenvalue λi = λi (Q) = λi (P(G)). We may assume that
‖y(i)‖ = 1 and that the vectors y(i) are pairwise othogonal. Recall that λn(Q) = 1,
and note that the assumptions in the theorem imply that λ < 1. Moreover, the
Perron-Frobenius theorem shows that all the components of y(n) are positive.

Let us write

x(0) =
n∑

i=1

αi y(i),

and observe that αn = 〈x(0), y(n)〉 	= 0. Then

x(t) = Qt x(0) =
n∑

i=1

αiλ
t
i y

(i) =
n−1∑
i=1

αiλ
t
i y

(i) + αny(n).

Since λ < 1, x(t) converges to any(n) = x(∞), and so

‖x(t) − x(∞)‖2 =
∥∥∥∥

n−1∑
i=1

αiλ
t
i y

(i)

∥∥∥∥
2

=
n−1∑
i=1

‖αiλ
t
i y

(i)‖2

=
n−1∑
i=1

α2
i λ

2t
i ‖y(i)‖2 ≤ λ2t

n−1∑
i=1

α2
i .

Since also

n−1∑
i=1

α2
i <

n∑
i=1

α2
i = ‖x(0)‖2 ≤ 1,

we finally get ‖x(t) − x(∞)‖ < λt . �

As an example, let us consider a random walk on the d-dimensional hypercube
Qd . (Note that Qd is a Cayley graph of the group Zd

2 ; Cayley graphs are discussed
in Chapter 6.) Since Qd is bipartite, we add a loop to each vertex, and denote the
resulting graph by G. We would like to assign weights to the loops and edges of
G in such a way that λ becomes as small as possible. Let α be the weight assigned
to each loop, and β be the weight assigned to each edge of G. We also require that
α + dβ = 1. Then

P(G) = αI + βA(Qd ).

From the Laplace eigenvalues of Qd (see Section 3), we see that the eigenvalues
of P(G) are λi = α + β(d − 2i), i = 0, 1, . . . , d, with multiplicity

(d
i

)
. Thus,

λ = max{α + β(d − 1), |α − βd|}. By balancing both terms, we get equality
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when α = β = (d + 1)−1. Hence,

λ = d − 1

d + 1
= 1 − 2

d + 1
.

By Theorem 8.2, the rate of convergence can be estimated by

λt =
(

d − 1

d + 1

)t

=
(

1 − 2

d + 1

)t

≤ exp

(
− 2t

d + 1

)
.

Similar estimates can be established for other Abelian groups (see, for example,
[44]).

Perhaps the most useful distance between two probability distributions x and y
of a Markov chain is the so-called ‘chi-squared’ distance, defined as follows:

χ2(x, y) =
∑

w∈V (G)

(xw − yw)2

yw

.

Clearly, this definition makes sense only when yv > 0, for every v ∈ V . A proof
similar to the proof of Theorem 8.2 gives the following result.

Theorem 8.3 For a simple random walk on a non-bipartite weighted graph,

χ2(x(t), x(∞)) ≤ λt · χ2(x(0), x(∞)).

The quantity (1 − λ)−1 is called the mixing time of the random walk, and is of
interest since the above theorem implies that, in this number of steps, the chi-
squared distance from the stationary distribution x(∞) is cut by a constant factor. The
quantity 1 − λ is related to the second smallest eigenvalue λ2(I − P) = λ2(L′(G)).

The isoperimetric constant related to the transition Laplacian is also known as
the conductance of the corresponding Markov chain. For a simple random walk
on a graph G, the conductance is defined as

iP(G) = min

{∑
v∈S

∑
w/∈S pvwdeg v

vol(S)
: S ⊆ V (G), 0 < vol(S) ≤ m

}
,

where

vol S =
∑
v∈S

deg v and m = 1
2

∑
v∈V

deg v = 1
2 vol V .

If G is regular, then the conductance is just the isoperimetric number of G divided
by the degree.

Theorem 8.4 For the simple random walk on a graph G,

1
2 i2

P(G) ≤ λ2(I − P(G)) = λ2(L′(G)) ≤ 2iP(G).

For proofs we refer to [35]; see also [8].
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Since λ2(I − P(G)) ≥ 1 − λ, Theorem 8.4 also gives a bound on the mixing
time.

Rapidly mixing Markov chains proved to be an important tool in the design of
polynomial-time randomized algorithms. For example, Dyer, Frieze and Kannan
[15] found a polynomial-time randomized approximation algorithm for computing
the volume of a convex set K , based on sampling random points in K . Lovász
and Simonovits [32] improved this algorithm by providing random walk sampling
with better mixing, and by improved isoperimetric estimates.

Another application, somewhat similar to the first, deals with approximate
counting of perfect matchings in a bipartite graph, and therefore also with the
approximation of the permanent of a (0, 1)-matrix (see Sinclair and Jerrum [46]).
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This chapter surveys automorphisms of finite graphs, concentrating on the
asymmetry of typical graphs, prescribing automorphism groups (as either
permutation groups or abstract groups), and special properties of vertex-
transitive graphs and related classes. There are short digressions on infinite
graphs and graph homomorphisms.

1. Graph automorphisms

An automorphism of a graph G is a permutation g of the vertex-set of G with the
property that, for any vertices u and v, we have vg ∼ wg if and only if v ∼ w.
(As usual, vg denotes the image of the vertex v under the permutation g: see the
Introduction for the terminology and main results of permutation group theory.)

This simple definition does not suffice for multigraphs, where we need to specify
a permutation of the edges as well as a permutation of the vertices, to ensure that the
multiplicity of edges between two vertices is preserved. Alternatively, a multigraph
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can be regarded as a weighted graph, where the weight av,w is the number of edges
from v to w; an automorphism must satisfy avg,wg = av,w: this gives a slightly
different description of automorphisms, but the action on the set of vertices is the
same. We consider only simple graphs here.

The set of all automorphisms of a graph G, with the operation of composition
of permutations, is a permutation group on V (G), a subgroup of the symmetric
group on V (G). This is the automorphism group of G, denoted by Aut(G). We
describe any subgroup H of Aut(G) as a group of automorphisms of G, and refer
to Aut(G) as the full automorphism group.

More generally, an isomorphism from a graph G to a graph H is a bijection
f from the vertex-set of G to that of H such that v f ∼ w f (in H ) if and only if
v ∼ w (in G). We say that G and H are isomorphic (written G ∼= H ) if there is an
isomorphism between them.

Among its other jobs, the automorphism group arises in the enumeration of
graphs, specifically in the relation between counting labelled and unlabelled graphs.
A labelled graph on n vertices is a graph whose vertex-set is {1, 2, . . . , n}, while
an unlabelled graph is simply an isomorphism class of n-element graphs.

Now the number of labellings of a given unlabelled graph G on n vertices is
n!/|Aut(G)|. For, a labelling is given by a bijective function F from {1, 2, . . . , n}
to V (G); there are n! such functions, and two of them F1 and F2 define the same
labelled graph if and only if there is an automorphism g such that F2(i) = F1(i)g,

for all i ∈ {1, 2, . . . , n}. Figure 1 shows the three labellings of the path P3, a graph
whose automorphism group has order 2.

The automorphism group is an algebraic invariant of a graph. Before giving
some simple properties, we recall some terminology from the Introduction.

The direct product G1 × G2 of two permutation groups G1 andG2 (acting on sets �1

and �2) is the permutation group on the disjoint union �1 ∪ �2 whose elements
are ordered pairs (g1, g2) for gi ∈ Gi ; the action is given by

v(g1, g2) =
{

vg1 if v ∈ �1,

vg2 if v ∈ �2.

This notion extends to the direct product of any number of permutation groups.

If G2 is a permutation group on {1, 2, . . . , n}, then the wreath product G1 � G2 is
generated by the direct product of n copies of G1, together with the elements of G2

acting on these n copies of G1.

1 2 3 1 13 32 2

Fig. 1.
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Finally, Sn denotes the symmetric group on {1, 2, . . . , n}.
Theorem 1.1
(a) A graph and its complement have the same automorphism group.
(b) Aut(Kn) = Sn.
(c) Let the connected components of G consist of n1 copies of G1, n2 copies

of G2, . . . , nr copies of Gr , where G1, G2, . . . , Gr are pairwise
non-isomorphic. Then

Aut(G) = (Aut(G1) � Sn1 ) × (Aut(G2) � Sn2 ) × · · · × (Aut(Gr ) � Snr ).

In view of these results, we can reduce questions about automorphism groups to
the case where the graphs are connected.

A recent survey with a somewhat different emphasis is that of Babai and Good-
man [5]. In addition, no serious student should be without Hahn and Sabidussi’s
book [28], which contains surveys of aspects of graph symmetry.

2. Algorithmic aspects

Two algorithmic questions that arise from the above definitions are graph isomor-
phism and finding the automorphism group. The first is a decision problem.

Graph isomorphism
Instance: Graphs G and H
Question: Is G ∼= H?

The second problem requires output. Note that a subgroup of Sn may be super-
exponentially large in terms of n, but that any subgroup has a generating set of
size O(n), which specifies it in polynomial space.

Automorphism group
Instance: A graph G
Output: generating permutations for Aut(G)

These two problems are closely related: indeed, the first has a polynomial
reduction to the second. For, suppose that we are given two graphs G and H . By
taking complements if necessary, we may assume that both G and H are connected.
Now suppose that we can find generating permutations for Aut(K ), where K is
the disjoint union of G and H . Then G and H are isomorphic if and only if some
generator interchanges the two connected components.

Conversely, if we can solve the graph isomorphism problem, we can at least
check whether a graph has a non-trivial automorphism, by attaching distinctive
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‘gadgets’ at each vertex and checking whether any pair of the resulting graphs
are isomorphic. (Finding generators for the automorphism group may be more
difficult.)

The exact status of these two problems is unresolved. They belong to a select
group of problems that belong to NP but are not known either to belong to P or
to be NP-complete. For some particular classes of graphs – notably, graphs of
bounded valency [43] and graphs with bounded eigenvalue multiplicity [7] – the
isomorphism problem is known to be polynomial; see Garey and Johnson [23] for
the fundamentals of computational complexity.

In practice, these questions can be resolved for graphs with thousands of ver-
tices. Chapter 10 gives an account of the algorithms used and their implementation.

It turns out that, for almost all graphs, the algorithmic questions can be answered
very quickly. However, ‘almost all’ does not include some of the most interesting
graphs, including strongly regular graphs (discussed in Chapter 8).

3. Automorphisms of typical graphs

The smallest graph whose automorphism group is trivial (apart from the 1-vertex
graph) is shown in Fig. 2. However, small graphs are (as usual) not a reliable guide
here. Erdős and Rényi [16] proved the following result.

Theorem 3.1 Almost all graphs have no non-trivial automorphisms.

Thus, the proportion of graphs on n vertices that have a non-trivial automorphism
tends to 0 as n → ∞: this is true whether we take labelled or unlabelled graphs.
As noted in the introduction, this theorem implies that almost all graphs can be
labelled in n! different ways, so that the number of unlabelled graphs on n vertices
is asymptotically 2n(n−1)/2/n!. (There are clearly 2n(n−1)/2 labelled graphs on the
vertex-set {1, 2, . . . , n}, since we can choose whether or not to join each pair
of vertices by an edge.) There are now good estimates for the error term in the
asymptotic expansion; it arises from graphs with non-trivial symmetry, and so
these estimates quantify the theorem.

In fact, more is true. There are various methods for canonically labelling a
graph – for example, choose the lexicographically least labelled graph in the iso-
morphism class. For almost all graphs, the canonical labelling is unique, and can

Fig. 2.
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be found in polynomial time; for such graphs, we can verify efficiently that their
automorphism groups are trivial. Typically, graphs with regularity properties, such
as strongly regular graphs (Chapter 8), are hard for canonical labelling algorithms,
even when their automorphism groups are trivial.

The theorem remains true for various special classes of graphs. These include
regular graphs of fixed degree k > 2 – we can even allow the degree to grow, not
too rapidly, with n(see [59]). They also include the prolific strongly regular graphs
of Latin square or Steiner triple system type discussed in Chapter 8; this uses the
fact that almost all of these structures have no non-trivial automorphisms.

Other methods of quantifying the theorem can be found. For example, any given
graph can be altered so that some two vertices have the same neighbour sets by
changing at most n/2 adjacencies. The resulting graph has an automorphism that
interchanges the two vertices and fixes all the others. Erdős and Rényi [16] showed
that, for almost all graphs, this is the ‘shortest distance to symmetry’.

4. Permutation groups

The question, ‘Which permutation groups are the full automorphism groups of
graphs?’, has no easy answer. Given a permutation group G on a set �, we can
describe all of the graphs on which G acts, as follows. There is a coordinate-wise
action of G on � × �, given by (v, w)g = (vg, wg). Let U be the set of all orbits
of G on � × � that consist of pairs of distinct elements. There is a natural pairing
of orbits in U, where an orbit O is paired with O∗ = {(v, w) : (w, v) ∈ O}. Now
let S be any subset of U that contains the orbit paired with each of its members, and
define a graph G(S) on the vertex-set � by the rule that v ∼ w in G(S) if and only
if (v, w) ∈ O for some O ∈ S. Then G(S) is a simple graph admitting G as a group
of automorphisms; furthermore, every such graph arises by this construction.

The construction may easily be adapted to other classes of graphs. For directed
graphs, we drop the requirement that S is closed under pairing; for graphs with
loops, we include all orbits on � × �, not just those consisting of pairs of distinct
elements; and for multigraphs, we allow multisets of orbits. It is also very practical:
instead of having to list all the edges in order to specify a graph, we need give only
a set of orbit representatives.

A permutation groupG on � is 2-closed if every permutation of � that preserves
all the G-orbits in � × � belongs to G. More generally, the 2-closure of G is
the group of permutations that preserve all the G-orbits. These concepts were
introduced by Wielandt [56].

Now, for any graph G, the group Aut(G) is 2-closed, for the edge-set of G is a
union of orbits of Aut(G) and so is preserved by its 2-closure. The converse fails,
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but not too badly: in fact, a permutation group G is 2-closed if and only if it is
the full automorphism group of an edge-coloured directed graph. (We associate
a colour with each G-orbit on pairs.) However, it is not easy to decide whether a
given permutation group is 2-closed.

The construction of a graph from a permutation group has been reversed; for
example, many of the sporadic simple groups discovered in the mid-twentieth
century were constructed as groups of automorphisms of particular graphs. The
simplest such construction is that of Higman and Sims [36]: the vertex-set consists
of a special symbol ∞ together with the 22 points and 77 blocks of the Witt design
W22. We join ∞ to all the points; we join a point and a block if they are incident,
and we join two blocks if they are disjoint. It is clear that the automorphism group
of W22 acts as a group of automorphisms of the graph, fixing ∞. It is not hard to
show that the full automorphism group is transitive, and contains the Higman-Sims
simple group as a subgroup of index 2.

In the case of the Fischer groups [18], the group and the graph are even more
closely related. The vertices of the graph are the elements of a particular conjugacy
class of involutions in the group, two vertices being joined whenever the involutions
do not commute.

5. Abstract groups

If we consider groups as abstract algebraic objects, rather than as concrete permu-
tation groups, a clear-cut result is possible. Frucht [20] proved the following basic
result.

Theorem 5.1 Every group is the automorphism group of some graph. Moreover,
if the group is finite, then the graph can be taken to be finite.

Subsequently, Frucht [21] showed that every group is the automorphism group
of a trivalent graph, and this has inspired a large number of similar results. We call
a class C of structures universal if every finite group is the automorphism group of
a structure in C. The combined results of Frucht, Sabidussi, Mendelsohn, Babai,
Kantor and others show that the following types of graph or other structures are
universal: regular graphs of degree k for any fixed k > 2; bipartite graphs; strongly
regular graphs; Hamiltonian graphs; k-connected graphs for k > 0; k-chromatic
graphs, for k > 1; switching classes of graphs; lattices; projective planes (possibly
infinite); Steiner triple systems; symmetric designs (BIBDs).

For example, the universality of Steiner triple systems is shown by using a
graph to construct a triple system with the same symmetry; then the universality
of strongly regular graphs is shown by taking the line graphs of triple systems



5 Automorphisms of graphs 143

(see Chapter 8). The structures are finite in all cases except for projective planes;
Even the question of whether every finite group is a subgroup of the automorphism
group of a finite projective plane is still open.

Another class of results involves structures for which there is some obvious
restriction on the automorphism group. For example, a tournament cannot admit an
automorphism of order 2 (for such an automorphism would necessarily interchange
the ends of some arc), and so the automorphism group has odd order. Moon [46]
showed that every group of odd order is the automorphism group of a tournament,
so this is the only restriction.

Pólya observed that not every group is the automorphism group of a tree. More
precisely, the class of automorphism groups of trees is the smallest class that
contains the trivial group and is closed under the direct product and the operation
‘take the wreath product with the symmetric group Sn of degree n’, for each n > 1.

Automorphism groups of trees are of further importance in group theory. Any
finite tree has either a vertex or an edge which is fixed by all automorphisms,
according as it is central or bicentral. Things are very different for infinite trees.
We say that a group G acts freely on a tree T if only the identity element of G fixes
any vertex or edge of T . Serre [49] has proved the following result.

Theorem 5.2 A group is free if and only if it acts freely on a tree.

This simple observation has led to the Bass-Serre theory in combinatorial group
theory, describing certain group constructions (amalgamated free products and
HNN-extensions) in terms of their actions on a tree; see Dicks and Dunwoody
[15] for an account of this.

Usually such a precise description does not exist. For example, every compo-
sition factor of the automorphism group of a planar graph is either a cyclic group
or an alternating group. More generally, Babai [2] showed the following result.

Theorem 5.3 Given k ≥ 0, there is a number f (k) such that, if G is the automor-
phism group of any graph embeddable in the orientable surface of genus k, then
every composition factor of G is cyclic, alternating, or of order at most f (k).

Still more generally, Babai showed that no class of finite graphs which is closed
under subgraphs and contractions can be universal, except for the class of all graphs.

We can quantify Frucht’s Theorem by asking the question:

given a group G, what is the smallest number of vertices of a graph G with
Aut(G) = G?

This function behaves in a very erratic fashion. For example, the symmetric group
Sn is the automorphism group of the null graph on n vertices, but the smallest graph
whose automorphism group is the alternating group An has about 2n vertices; the
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exact number was calculated by Liebeck [41]. Clearly this number is not smaller
than the degree of the smallest faithful permutation representation of G; such
questions have been investigated in detail by Babai et al. [6].

Other measures of the ‘size’ of the graph can be used – for example, the number
of edges, or the number of orbits of G on the set of vertices or edges: see [5] for a
survey of results on these questions.

Given that almost all graphs admit only the identity automorphism, we might
wonder whether Frucht’s Theorem can be strengthened to state that almost all
graphs that admit a given groupG actually haveG as their full automorphism group.
This holds for some groups, but not all. Cameron [9] proved the following theorem:

Theorem 5.4 Given a group G, consider those n-vertex graphs whose automor-
phism group contains G. The proportion of such graphs whose automorphism
group is precisely G tends to a limit a(G) as n → ∞.

The limit a(G) is a rational number, but (unlike the case where G is the trivial
group) is not necessarily 1. For example, if G is the dihedral group of order 10,
then the limit is 1/3; this is because, of those graphs that admit G, almost all have
G acting on a set of five vertices and fixing the rest of the graph. (A random
graph admitting G consists of a random graph on n − 5 vertices, and five ‘special’
vertices on which G acts as the symmetry group of a pentagon, all joined to the
same random subset of the other n − 5 vertices.) The subgraph induced by the five
special vertices may be complete, null, or a 5-cycle; only in the third case is G
almost surely the full group.

In fact, a(G) = 1 if and only if G is a direct product of symmetric groups. For
abelian groups, a(G) = 1 if G is an elementary abelian 2-group (possibly trivial),
and a(G) = 0 otherwise. For metabelian groups, the values of a(G) are dense in
the unit interval.

It would be interesting to know whether similar results hold under hypotheses
that tend to work against such very local symmetries; for example, does a similar
result hold for regular graphs?

6. Cayley graphs

A permutation group G is regular if it is transitive and only the identity stabilizes a
point. Any regular action can be identified with the action of the group on itself by
right multiplication, where the group element g induces the permutation x 	→ xg
of G. This is the action used by Cayley to show that every group is isomorphic to
a permutation group.

The orbits on pairs of this group are parametrized by group elements: they
have the form Og = {(x, gx) : x ∈ G} for g ∈ G. The orbit paired with Og is Og−1 .
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So our description of a G-invariant graph can be specialized in the following
way.

Let S be a subset of G that is closed under taking inverses and does not contain
the identity. The Cayley graph Cay(G, S) has vertex-set G, and edges
{x, sx}, for all s ∈ S, x ∈ G. Cayley graphs are discussed in Chapter 6.

SinceG is a subgroup of Aut(Cay(G, S)), this Cayley graph is necessarily vertex-
transitive (see Section 7). It is connected if and only if the set S generates G. Note
that many authors use a different convention, in which the action of the group is
by left multiplication, and the edges have the form {x, xs}, for s ∈ S, x ∈ G. The
difference is immaterial.

A graphical regular representation of a group G is defined to be a graph for
which the regular action of G is the full automorphism group – that is, a Cayley
graph Cay(G, S) with Aut(Cay(G, S)) = G. A considerable amount of effort went
into the determination of groups which have such representations, and the problem
was finally solved by Hetzel [35] for soluble groups, and Godsil [25] in general.
First note that an abelian group of exponent greater than 2 never has a graphical
regular representation, since any Cayley graph for an abelian group admits the
automorphism g 	→ g−1. A generalized dicyclic group is a group that has a cyclic
subgroup H of index 2 and an element g of order 4 for which g−1hg = h−1, for
all h ∈ H. The quaternion group of order 8 is an example.

The basic theorem is as follows:

Theorem 6.1 A finite group has a graphical regular representation if and only if
it is not an abelian group of exponent greater than 2, a generalized dicyclic group,
or one of thirteen exceptional groups with order at most 32.

What can be said about random Cayley graphs for G, obtained by including
inverse pairs of non-identity elements in S with probability 1

2 ? Babai and Godsil [4]
conjectured that, except for the two infinite classes in the theorem, almost all Cayley
graphs for G are graphical regular representations – that is, the probability that a
random Cayley graph is such a representation tends to 1 as |G| → ∞. They proved
that this is true in some cases – for example, non-abelian nilpotent groups of odd
order.

Random Cayley graphs have other useful properties; for example, they are often
expanders (see Alon and Roichman [1]).

7. Vertex-transitive graphs

A graph G is vertex-transitive if the automorphism group of G acts transitively on
the vertex-set of G; for example, the Petersen graph is vertex-transitive.
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Every vertex-transitive graph has a description as a Schreier coset graph, gen-
eralizing the representation of a Cayley graph discussed above: we replace the
group elements by cosets of a subgroup H of G as vertices of the graph, and for
adjacency, we replace an inverse-closed set of elements by an inverse-closed set
of double cosets of H in G. Sabidussi [47] used this representation to show that
any vertex-transitive graph has a ‘multiple’ that is a Cayley graph. (Here, a multi-
ple of a graph is obtained by replacing each vertex by an independent set of size
k, and each edge by all possible edges between the corresponding cocliques, for
some k.)

Not every vertex-transitive graph is a Cayley graph. The smallest counter-
example is the Petersen graph: it has no automorphism of order 2 that fixes no
vertex. McKay and Praeger [44] have considered the class of vertex-transitive
graphs that are not Cayley graphs.

Marušič and Jordan independently conjectured that any vertex-transitive graph
has a group of automorphisms that acts semi-regularly on vertices – that is, the
stabilizer of any vertex is the identity, but the subgroup is not required to be
transitive. This conjecture was extended by Klin, who conjectured that any 2-
closed permutation group contains such a subgroup. This conjecture is still open,
although Giudici [24] has made substantial progress on it recently.

Obviously, all vertex-transitive graphs are regular. However, they also have
some special properties that are not shared by all regular graphs. From the work
of Mader, Watkins, Little, Grant, Holton, Babai and others, we take the following
list. We need one further definition: a graph is vertex-primitive if no equivalence
relation on the vertex-set is preserved by all automorphisms, apart from the trivial
relations (equality and the ‘universal’ equivalence).

Theorem 7.1 Let G be a connected k-regular vertex-transitive graph of order n.
Then
� G is 
 2

3 (k + 1)�-connected (and k-connected if it is vertex-primitive);
� G is k-edge-connected;
� G has a 1-factor if n is even;
� G has a cycle of length at least

√
6n;

� the product of the clique number and the independence number of G is at
most n.

It has been conjectured that, with finitely many exceptions, every connected
vertex-transitive graph is Hamiltonian. The Petersen graph is one of these excep-
tions: it has a Hamiltonian path but no Hamiltonian cycle. Only four exceptional
graphs are currently known, and all have Hamiltonian paths.

The Hadwiger number of a graph is the smallest number k for which some
component of the graph can be contracted to the complete graph Kk . A graph
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is toroidal if it is embeddable in the torus, and is ring-like if the vertices can
be partitioned into sets S0, S1, . . . , Sn−1, such that all edges join vertices in the
same set or cyclically in consecutive sets, and the automorphism group induces a
cyclic or dihedral group on this family of sets. Using these concepts, Babai [3] and
Thomassen [50] have recently obtained structure theorems for connected vertex-
transitive graphs with prescribed Hadwiger number.

Theorem 7.2 Every sufficiently large connected vertex-transitive graph with
Hadwiger number k is either toroidal or ring-like, with the cardinalities of the
sets Si bounded by a function of the Hadwiger number in the ring-like case.

Clearly, arbitrarily large toroidal vertex-transitive graphs can be obtained as
quotients of plane lattices – for example, rectangular grids with opposite sides
identified. The proof of this substantial result involves many geometrical ideas,
including isoperimetric inequalities for the hyperbolic plane. A related result of
Thomassen [51] shows that there are only finitely many vertex-transitive graphs
of given genus g ≥ 3.

Two properties that are weaker than vertex-transitivity, but stronger than regular-
ity, are walk-regularity and neighbourhood-regularity. The first of these is touched
on in Chapter 8; here we consider the second.

Let a graph H be given. A graph G is locally H if, for each vertex v ∈ V (G),
the induced subgraph on the set of neighbours of v is isomorphic to H . A graph is
neighbourhood-regular if it is locally H , for some H.

The problem of deciding, for a given graph H , whether there is a graph that is
locally H , is recursively unsolvable (see [8] and [57]). Nevertheless, there are a
number of positive results. For example:
� For some graphs H , all graphs that are locally H have been determined; see

Hall [32] for locally Petersen graphs, for example.
� If H is regular and connected with girth at least 6, then there are infinite graphs

that are locally H ; see Weetman [54].
� If H is regular with diameter 2, and if it satisfies some extra conditions, then

every locally H graph is finite; see Weetman [55].

A property of graphs that does not obviously relate to symmetry, but turns out
to imply vertex-transitivity, is compactness. The basic results on this concept are
due to Tinhofer [52]. To define it, we note that any permutation g of {1, 2, . . . , n}
can be represented by a permutation matrix P(g), and that g ∈ Aut(G) if and only
if P(g) commutes with A, where A is the adjacency matrix of G.

A matrix M is doubly stochastic if its entries are non-negative and each
of its row and column sums is 1. By a theorem of Birkhoff (see Chapter 2,
Theorem 5.2), any doubly stochastic matrix is a convex combination of permuta-
tion matrices.
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A graph G with adjacency matrix A is compact if every doubly stochastic matrix
M that commutes with A is a convex combination of permutation matrices that
commute with A – that is, automorphisms of A.

The set of doubly stochastic matrices that commute with A is a polytope. If G
is compact, its automorphisms are precisely the extreme points of this polytope,
and can be found efficiently by linear programming. Birkhoff’s theorem shows
that the complete graph is compact.

For arbitrary graphs the meaning of compactness is somewhat mysterious, but
for regular graphs, we have the following result. Note that if a graph is compact,
then so is its complement.

Theorem 7.3 If G is a compact connected regular graph, then any two vertices
of G can be interchanged by an automorphism of G. In particular, G is vertex-
transitive.

The converse of this theorem is false. If G is compact and regular of degree k,
then (1/k)A is a doubly stochastic matrix that commutes with A, and is thus
a convex combination of automorphisms. Each such automorphism g has the
property that vg ∼ v for all vertices v. However, many vertex-transitive graphs,
such as the Petersen graph, have no non-identity automorphisms with this property.
For more on compact graphs, see Godsil [14]. A more general concept called weak
compactness has been considered by Evdokimov et al. [17].

8. Higher symmetry

Symmetry conditions related to (and mostly stronger than) vertex-transitivity have
received a lot of attention, often using group-theoretic techniques. One of the
simplest is edge-transitivity, which usually implies vertex-transitivity. Indeed, an
edge-transitive graph that is not vertex-transitive must be bipartite, with the orbits
of the automorphism group as the bipartite blocks; the complete bipartite graph
Kr,s with r 
= s is a simple example. There are also graphs that are vertex-transitive
and edge-transitive but not arc-transitive (where an arc is a directed edge). For arc-
transitive graphs, the connection between graphs and groups becomes particularly
strong; we refer to Chapter 7 for a survey.

A strengthening of arc-transitivity is distance-transitivity, where we require
the automorphism group to act transitively on pairs of vertices at distance i , for
i = 0, 1, . . . , d, where d is the diameter of the graph. A major research effort
directed at the determination of all such graphs is discussed in Chapter 9.

An even stronger symmetry condition is homogeneity: a graph G is homo-
geneous if each isomorphism between (finite) induced subgraphs of G can be



5 Automorphisms of graphs 149

extended to an automorphism of G. All finite homogeneous graphs have been
determined by Sheehan and Gardiner (see [22]).

Theorem 8.1 A finite graph is homogeneous if and only if it is one of the fol-
lowing:
� a disjoint union of complete graphs of the same order;
� a regular complete multipartite graph;
� the 5-cycle C5;
� the line graph of K3,3.

More generally, we say that a graph G is t-homogeneous if any isomorphism
between induced subgraphs of order at most t extends to an automorphism of G.
Now t-homogeneity obviously implies the combinatorial property C(t) defined in
Chapter 8. The list of graphs that satisfy C(5) is the same as the list of homo-
geneous graphs in the preceding theorem, so the hypothesis can be weakened to
5-homogeneity.

9. Infinite graphs

We turn now to infinite graphs. Here, there are two very different areas of research –
the first for locally finite graphs (in which each vertex has finite degree), and the
second for general graphs (but usually requiring homogeneity or some model-
theoretic notions).

For a locally finite graph, the notion of an end (introduced by Halin [30] for
graphs, although used earlier for groups) is crucial. A ray is a one-way infinite
path in a graph. König’s Infinity lemma (see [39]) shows that any locally finite
connected infinite graph contains a ray. LetR(G) be the set of rays in G. We define
an equivalence relation ≡ on R(G) by saying that R1 ≡ R2 if there is a ray R3

that intersects both R1 and R2 in infinitely many vertices. The equivalence classes
of ≡ are the ends of G; we denote the set of ends by E(G).

It can be shown that the number of ends of a locally finite graph G is the
supremum of the number of infinite components of G − S, taken over all finite
subsets S of V (G). (This result does not distinguish among infinite cardinals: we
just say that the supremum of an unbounded set of natural numbers is ∞.) For
example, the integer lattice graph Zk has just one end for k > 1, but two ends for
k = 1; an infinite tree with maximum degree greater than 2 has infinitely many
(indeed, uncountably many) ends.

The main results connecting ends and automorphisms are the following theo-
rems of Halin [31] and Jung [38], respectively.
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Theorem 9.1 Every automorphism of a locally finite connected infinite graph fixes
either an end or a finite subgraph.

Theorem 9.2 Let G be a locally finite connected infinite graph, and suppose that
Aut(G) has only finitely many orbits in V (G). Then the number of ends of G is 1,
2 or 2ℵ0 .

For a locally finite graph, we can also consider the rate of growth of the number
an of vertices that are at distance at most n from a fixed vertex v. This number
depends on the chosen vertex v, but if the distance from u to v is d, then

an−d (v) ≤ an(u) ≤ an+d (v).

Thus, the asymptotics of the rate of growth (for example, polynomial of degree k
or exponential with constant c) do not depend on v, and we can talk of the growth
of G. If G = Cay(G, S), then the choice of a finite generating set S for G does
not affect the asymptotics of growth, and we can again talk of the growth of G.
(Note, however, that a group can act vertex-transitively on each of two graphs with
different growth.) The growth is polynomial of degree k for the integer lattice Zk ,
and exponential with constant k − 1 for the k-regular tree.

This different behaviour is related to the number of ends.

Theorem 9.3 Let G be a locally finite connected infinite graph whose automor-
phism group has only finitely many orbits.
(a) If the growth of G is bounded by a polynomial, then

c1nk ≤ an ≤ c2nk,

where k is a positive integer and c1, c2 > 0.
(b) G has linear growth if and only if it has two ends.
(c) If G is a Cayley graph of G, then the growth is polynomial if and only if G is

nilpotent-by-finite.
(d) There exist groups whose growth is faster than polynomial but slower than

exponential.
(e) If G has infinitely many ends, then it has exponential growth.

Here part (c) is a celebrated theorem of Wolf [58] and Gromov [27] on groups
of polynomial growth; see Trofimov [53] for an extension to vertex-transitive
graphs. Part (b) follows from Gromov and from Seifter and Trofimov [48], and an
example for part (d) is the Grigorchuk group [26]. For a survey of vertex-transitive
graphs with polynomial growth, see [37]. There are also connections between the
growth of a graph and harmonic analysis; Lubotzky [42] gives an account of this
material.
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Macpherson [45] has determined the locally finite infinite graphs that are
distance-transitive. For any integers s, t > 1, there is an infinite tree that is semi-
regular, with degrees s and t in the two bipartite blocks. Let M(s, t) be the graph
with the bipartite block of degree s as its vertex-set; and where two vertices are
adjacent if they lie at distance 2 in the tree.

Theorem 9.4 Every locally finite distance-transitive infinite graph is isomorphic
to M(s, t), for some s, t > 1.

No such result holds without local finiteness. Some examples to illustrate this are
given in Cameron [12].

Turning to arbitrary infinite graphs, we first describe the paradoxical result
of Erdős and Rényi [16]: up to isomorphism there is a unique countable random
graph – that is, a graph R such that any countable random graph is isomorphic to R
with probability 1. Moreover, R is highly symmetric – indeed, it is homogeneous,
as defined in the preceding section – so the typical asymmetry of finite graphs does
not hold in the countably infinite! A survey of this remarkable graph R appears
in [11].

Other aspects of the theory are also very different in the countably infinite
case, largely as a result of the random graph R. For example, in any group G, the
square-root set is the set

√
g = {x ∈ G : x2 = g}; it is non-principal if g 
= 1.

The hypotheses of the following theorem of Cameron and Johnson are very
mild.

Theorem 9.5 Let G be a countable group that is not the union of a finite number
of translates of non-principal square root sets. Then almost all random Cayley
graphs for G are isomorphic to R.

The classification of homogeneous graphs was extended to the infinite case by
Lachlan and Woodrow [40]. A graph is universal Kn-free if it contains no complete
graph of size n but contains every Kn-free graph as an induced subgraph. For each
n ≥ 2, there is just one countable homogeneous universal Kn-free graph; these
graphs were first constructed by Henson [34], but their existence and uniqueness
follow from a general construction method of Fraı̈ssé [19]. We denote this unique
graph by Hn .

Theorem 9.6 Every countable homogeneous graph is one of the following:
� a disjoint union of complete graphs of the same size, or its complement (a

regular complete multipartite graph);
� Henson’s graph Hn (for n ≥ 3), or its complement;
� the random graph R.
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10. Graph homomorphisms

In this final section we turn to graph homomorphisms. In general, homomorphisms
are more revealing of graph structure than automorphisms, and the theory has devel-
oped in surprising directions. The material here is based on Hahn and Tardif [29],
to which we refer for more details and references. In this section, we consider only
finite simple graphs.

A homomorphism from a graph G to a graph H is a function f from V (G)
to V (H ) such that, if v ∼ w in G, then v f ∼ w f in H . Thus, an isomorphism
is a bijective homomorphism whose inverse is also a homomorphism. We write
G → H if there is a homomorphism from G to H .

If G → H and H → G, then we say that G and H are homomorphically
equivalent, and write G ↔ H . We write the homomorphic equivalence class of
G as [G]. The set of such equivalence classes is partially ordered by the rule
that [G] � [H ] if G → H . Much is known about this partial order: it is a lattice
order, and it is dense – that is, if [G] ≺ [H ], then there exists a graph for which
[G] ≺ [K ] ≺ [H ].

A proper vertex-colouring of G with r colours, being a map from V (G) to
{1, 2, . . . , r} such that adjacent vertices have distinct images, is a homomorphism
from G to the complete graph Kr ; for example, every bipartite graph has a homo-
morphism onto K2. We think of G → H as saying that ‘G has a H -colouring’.
Thus, the existence and enumeration questions for homomorphisms from G to
H generalize the chromatic number and chromatic polynomial of G, and so we
expect these questions to be hard!

The independence ratio i(G) of a graph G is the ratio of the cardinality of the
largest independent set of vertices in G to the total number of vertices of G. The
odd girth go(G) of G is the length of a shortest odd cycle in G, and ω(G) and χ (G)
denote the clique number and the chromatic number of G. The following result
gives a necessary condition for the existence of a homomorphism from G to H :

Theorem 10.1 Suppose that G → H. Then
� ω(G) ≥ ω(H ), χ (G) ≤ χ (H ) and go(G) ≥ go(H );
� if H is vertex-transitive, then i(G) ≥ i(H ).

A retraction of a graph G is a homomorphism f from G onto an induced
subgraph H of G for which the restriction of f to V (H ) is the identity map; the
subgraph H is then called a retract of G. It is easy to see that some power of every
homomorphism from G to G is a retraction. Any retraction of a connected graph
can be expressed as the composition of a sequence of foldings, where a folding is
a homomorphism that identifies one pair of vertices. The result of Sabidussi [47]
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mentioned in Section 7 shows that every vertex-transitive graph is a retract of a
Cayley graph.

Retracts play an important role in topology, based in part on the fact that every
retract H of a graph G is an isometric subgraph of G – that is, the distance between
two vertices of H is the same in both graphs.

A graph G is a core if it has no non-trivial retraction – that is, if every homo-
morphism is an automorphism. If H is a retract of G and is itself a core, then we
say that H is a core of G. The following result holds.

Theorem 10.2
(a) If G ↔ H, then any core of G is isomorphic to any core of H.
(b) In particular, all cores of G are isomorphic, and we can speak of the core

of G.
(c) Up to isomorphism, the core of G is the smallest graph in [G].
(d) The core of a vertex-transitive graph is vertex-transitive.

Many cores are known – examples include all circulants of prime order, and the
Kneser graph K (r, s) whose vertices correspond to the s-subsets of {1, 2, . . . , r}
with r > 2s and where two vertices are adjacent if the corresponding sets are
disjoint (the Petersen graph is K (5, 2)). For a survey of cores and their properties,
see Hell and Nešetřil [33].

References

1. N. Alon and Y. Roichman, Random Cayley graphs and expanders, Random Structures
Appl. 5 (1994), 271–284.

2. L. Babai, Automorphism groups of graphs and edge-contraction, Discrete Math. 8
(1974), 13–20.

3. L. Babai, Vertex-transitive graphs and vertex-transitive maps, J. Graph Theory 15
(1991), 587–627.

4. L. Babai and C. D. Godsil, On the automorphism groups of almost all Cayley graphs,
Europ. J. Combin. 3 (1982), 9–15.

5. L. Babai and A. J. Goodman, On the abstract group of automorphisms, Coding Theory,
Design Theory, Group Theory (eds. D. Jungnickel and S. A. Vanstone), Wiley (1993),
121–143.

6. L. Babai, A. J. Goodman and L. Pyber, On faithful permutation representations of small
degree, Comm. Algebra 21 (1993), 1587–1602.

7. L. Babai, D. Yu. Grigoryev and D. M. Mount, Isomorphism of graphs with bounded
eigenvalue multiplicity, Proc. 14th ACM STOC (1982), 310–324.

8. V. K. Bulitko, O grafach s zadanymi okruzeniami verśin (in Russian), Trudy Mat. Inst.
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16. P. Erdős and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar. 14 (1963),

295–315.
17. S. Evdokimov, M. Karpinski and I. Ponomarenko, Compact cellular algebras and per-

mutation groups, Discrete Math. 197/198 (1999), 247–267.
18. B. Fischer, Finite groups generated by 3-transpositions, I, Invent. Math. 13 (1971),

232–246.
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Cayley graphs are constructed using groups. This chapter discusses algebraic
and graph-theoretic aspects of finite Cayley graphs. The algebraic aspects in-
clude recognition, isomorphism, prevalence, enumeration and automorphisms.
The graph-theoretic aspects include notable members of the family, subgraphs,
factorization, hamiltonicity and embeddings.

1. Introduction

There are several constructions that produce families of vertex-transitive graphs.
This chapter deals with the family of Cayley graphs, probably the most widely
known and extensively studied family of vertex-transitive graphs. The construction
for Cayley graphs is based on groups. We restrict ourselves to finite groups, but the

156
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basic construction is the same for infinite groups. While Cayley graphs on finite
groups and those on infinite groups share a variety of features, there are aspects of
Cayley graphs on finite groups that do not carry over to those on infinite groups,
and vice versa.

Let G be a finite group with identity 1. Let S be a subset of G satisfying 1 /∈ S
and S = S−1 – that is, s ∈ S if and only if s−1 ∈ S. The Cayley graph Cay(G;S)
on G with connection set S is defined as follows:
� the vertices are the elements of G;
� there is an edge joining g and h if and only if h = sg for some s ∈ S.
The set of all Cayley graphs on G is denoted by Cay(G).

When G is an Abelian group, we use additive notation for the group operation.
Hence, we write S = −S for the connection set, and h = s + g (for some s ∈ S)
for adjacency.

Cayley digraphs are defined in a similar way, but with the condition S = S−1

removed. Many results about Cayley graphs carry over immediately to Cayley
digraphs, but there are aspects of Cayley digraphs that distinguish them from
Cayley graphs. This chapter does not specifically address Cayley digraphs, except
briefly in Section 9.

2. Recognition

When G is a finite group and g ∈ G, define gR acting on G by hgR = hg, for all
h ∈ G; clearly, gR is a permutation of the elements of G. Define the group GR by
GR = {gR : g ∈ G}. It is easy to see that GR acts transitively on the elements of G,
and that gR is an automorphism of any Cayley graph onG. These observations prove
the following result, thereby providing a large class of vertex-transitive graphs.

Theorem 2.1 Every Cayley graph is vertex-transitive.

The Cayley graphs on cyclic groups have played a special role in the study of
Cayley graphs. They are widely known as circulant graphs, because their adja-
cency matrices are circulant matrices. We use the notation Circ(n;S) to denote the
circulant graph of order n with connection set S. An example is given in Fig. 1.

How difficult is it to recognize whether an arbitrary graph is a Cayley graph,
or a vertex-transitive graph for that matter? A celebrated theorem of Sabidussi
addresses this recognition question. Before proceeding to the theorem, a definition
is required.

Let G be a transitive permutation group acting on a finite set �. It is easy to
show that the following three conditions are equivalent:
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Fig. 1. The circulant graph Circ(7; {2, 3, 4, 5})

� the only element of G that fixes an element of � is the identity permutation;
� |G| = |�|;
� for any ω1,ω2 ∈ �, there is a unique element g ∈ G satisfying ω1g = ω2.
A transitive permutation group G that satisfies any one of the these conditions is
said to be regular. We now state the fundamental result of Sabidussi [48].

Theorem 2.2 A graph G is a Cayley graph if and only if Aut(G) contains a regular
subgroup.

Here is an outline of the proof. To prove the necessity, note that GR is regular
and that GR ≤ Aut(G), for any G ∈ Cay(G). To prove the sufficiency, assume that
Aut(G) contains a regular subgroup G. Label an arbitrary vertex of G with the
identity element 1 of G. For each of the remaining vertices v ∈ V (G), there is a
unique permutation gv ∈ G that maps the vertex labelled 1 to v. Label v with the
group element gv. It is then easy to show that G is a Cayley graph on G.

Essentially all of the work that has been done on establishing whether particular
graphs are Cayley graphs employs Theorem 2.2, and the way in which the theo-
rem is used depends on what we are given. Sometimes we are provided a graph
construction whereby the automorphism group of the graph may be computed. We
may then determine whether the group contains a regular subgroup. At other times
we may not be able to produce the automorphism group easily, but still may be able
to show that a regular subgroup cannot occur. In other words, we are dealing with
cases in which our description of the graph is special and contains considerable
information regarding recognition.

In the case of arbitrary graphs, we assume that all we have is a description of
the graph as an adjacency matrix, or as a list of the edges in the graph. Recog-
nition now means that we are asking about the existence of an algorithm for
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determining whether an arbitrary graph is a Cayley graph. There are good al-
gorithms for determining whether a graph is vertex-transitive, and they work on
graphs with thousands of vertices. They produce generators for the automorphism
group from which verifying vertex-transitivity is easy. However, in trying to rec-
ognize whether or not a vertex-transitive graph is a Cayley graph, we are left with
the problem of determining whether the automorphism group contains a regular
subgroup.

There has been some work on finding efficient algorithms for Cayley graph
recognition, but the classes studied have been limited to circulant tournaments and
special circulant graphs. Efficiency is gained by working with association schemes
arising from the graphs (see [43]). We then must show that the association scheme
itself is cyclic, which may be done efficiently, so that Theorem 2.2 is still present,
again demonstrating the fundamental nature of Sabidussi’s Theorem.

We shall ignore the computational problem of recognizing whether an arbitrary
graph is a Cayley graph. Instead, we always assume that Cayley graphs have
been described in terms of the groups on which they are built, together with the
connection sets. For most problems this is not a drawback.

3. Special examples

There are situations involving graphs for which Cayley graphs appear in a natural
way. Often they arise from a small select collection of Cayley graphs. In this section
we present some notable Cayley graphs that appear frequently in the literature. We
define them in as straightforward a manner as possible, but point out that usually
they may be defined as Cayley graphs in many ways. This aspect will be discussed
in Section 4.

The complete graphs and their complements are Cayley graphs. In particular,
Kn is a Cayley graph on any group G of order n, where the connection set is the
set of non-identity elements of the group.

The complete multipartite graph Kr (s), with r parts each of cardinality s, is
also a Cayley graph. It can be achieved by using the circulant graph of order rs
with the connection set consisting of all the elements that are not congruent to 0
(modulo s).

Of course, complete graphs and complete multipartite graphs appear all the
time, but for the most part their appearances are not related to the fact that they
are Cayley graphs. The rest of the special Cayley graphs we discuss owe much of
their interest to the fact they are Cayley graphs.

The k-dimensional cube Qk is the Cayley graph defined on the elementary
Abelian 2-group Zk

2, where the connection set is the standard generating set for
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Zk
2. The graph Qk has generated a long history of interesting questions, and has

become even more important in recent years because of the role it plays in computer
architecture.

The graph formed on the finite field Fq , where q ≡ 1 (mod 4) and the connection
set is the set of quadratic residues in Fq , is called a Paley graph; an example appears
in Fig. 2. Here we define edges additively, since we are using an additive group as
the underlying vertex-set. Paley graphs have many interesting properties.

Let n be even and let S = {±1, n/2}. The circulant graph of order n with
connection set S is known as the Möbius ladder of order n. These graphs play a
role in topological graph theory.

Problems arising in computer science have brought about a resurgence of in-
terest in ‘grid-like’ graphs. The corresponding Cayley graphs are the Cartesian
products of cycles of some fixed length � ≥ 3. These graphs are realized as
Cayley graphs by using the group Zn

� , where the connection set is the set of standard
generators of the group.

4. Prevalence

The family of Cayley graphs provides us with a straightforward construction
for vertex-transitive graphs. A natural first question is to ask whether the fam-
ily of Cayley graphs encompasses all finite vertex-transitive graphs. We turn to the
Petersen graph P for a negative answer.

It is easy to show that P is vertex-transitive. To show that it is not a Cayley graph,
we show that Aut(P) does not contain a regular subgroup and apply Theorem 2.2.
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Fig. 2. The Paley graph of order 13
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We can prove this naı̈vely using some graph-theoretic facts about P. If G is a
regular subgroup of Aut(P) and

ρ = (v0 v1 v2 v3 v4)(w0 w1 w2 w3 w4)

is an element of order 5 in G, then by using the facts that P is connected, is regular
of degree 3, is not bipartite, has girth 5, and by relabelling (if necessary), we may
assume that vivi+1, wiwi+2 and viwi are edges, for i ≡ 0, 1, 2, 3, 4 (modulo 5).
Let τ be the element of G for which v0τ = w0. Then τ must have order 2 and
satisfy τ−1〈ρ〉τ = 〈ρ〉. This requires that τ cannot preserve edges of P, so that no
such τ can exist. Hence, Aut(P) contains no regular subgroup, and we conclude
that P is not a Cayley graph.

We pursue the preceding example in two directions. The essential reason that
the Petersen graph is not a Cayley graph is that no involution interchanges the two
orbits of 〈ρ〉. We examine this more carefully.

With the same labelling as before, the mapping defined by f : vi → w2i and
f : wi → v2i is an automorphism of P. Note that f has order 4, and that 22 = −1
in F5. This is the key to what follows.

For any prime p ≡ 1 (mod 4),−1 is a quadratic residue modulo p. Let α2 ≡
−1 (mod p). Form the circulant graph H0 on Zp with connection set {1, −1} (recall
that we use additive notation for Abelian groups) and vertex-set {v0, v1, . . . , vp−1},
and the circulant graph H1 on Zp with connection set {α, − α} and vertex-set
{w0, w1, . . . , wp−1}. Define the cubic graph GP(p,α) as the vertex-disjoint union
of H0 and H1, together with the perfect matching viwi , for i = 0,1, . . . , p − 1;
GP(p, α) is sometimes called a generalized Petersen graph; GP(13, 5) appears in
Fig. 3.

Fig. 3. The graph GP(13, 5)
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The graph GP(p, α) can be shown to be a non-Cayley vertex-transitive graph,
in a manner similar to that used for P. In contrast, it is known that every vertex-
transitive graph of order 2p, when p is a prime satisfying p ≡ 3 (mod 4), is
a Cayley graph. In the same vein, Marušič [35] proved that all vertex-transitive
graphs of orders p2 and p3, where p is a prime, are Cayley graphs. This prompted
him to pose the problem of determining the set

NC = {n: there exists a non-Cayley vertex-transitive graph of order n}.
An important elementary feature of NC is that kNC = NC, for all positive

integers k. This follows from the observation that if G is a non-Cayley vertex-
transitive graph of order n, then the graph obtained by taking k vertex-disjoint
copies of G is a non-Cayley vertex-transitive graph of order kn. The complement
of the latter graph provides a connected example.

Since kNC = NC, for all positive integers k, Marušič’s problem is solved if
we can find all the ‘minimal’ elements of NC: ‘minimal’ in this context means
that n ∈ NC, but no proper divisor of n belongs to NC.

It is convenient to consider the number of distinct prime factors when looking
for minimal elements. When there is only one prime factor – that is, n is a prime
power – the answer is completely settled. Every vertex-transitive graph of prime
order is a circulant graph, and, as stated above, Marušič [35] showed that p2 and
p3 never belong to NC.

It was known that 16 ∈ NC, and for any odd prime p, McKay and Praeger [37]
showed by construction that p4 ∈ NC. Their construction is easy to describe. Let
G(p) be the graph with vertex-set {vi, j : i ∈ Zp, j ∈ Zp3} and edge-set

{vi, jvi, j+pk, vi, jvi+1, j , vi, jvi+1, j+pai , vi, jvi+1, j+ar p+i },
where i ∈ Zp, j ∈ Zp3 , k ∈ Zp2 , r ∈ Zp, and a = p + 1. Then G(p) does the job.

Thus, for any prime p, pe ∈ NC if and only if e ≥ 4. This implies that n ∈ NC
whenever n is divisible by p4, for some prime p. However, the latter result was
superseded by a much stronger result obtained by McKay and Praeger [37]. They
proved that any positive integer divisible by a square, other than 12, is in NC.

The preceding results reduce the problem of trying to characterize membership
in NC to the consideration of square-free integers. We already have seen the answer
when n = 2p, where p is an odd prime. The next theorem [38] characterizes
membership in NC for a product of two distinct primes.

Theorem 4.1 Let p and q be distinct primes, with p < q. Then pq ∈ NC if and
only if one of the following holds:
� p2 divides q − 1;
� q = 2p − 1 > 3 or q = (p2 + 1)/2;
� q = 2t + 1, and either p divides 2t − 1 or p = 2t−1 − 1;
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� q = 2t − 1 and p = 2t−1 + 1;
� p = 7 and q = 11.

The situation for a product of three distinct primes becomes more complicated,
but the answer is complete nonetheless (see [26]). We separate even and odd values.

Theorem 4.2 Let p and q be odd primes, with p < q. Then 2pq ∈ NC if and only
if one of the following holds:
� p2 divides q − 1;
� p ≡ 1 (mod 4) or q ≡ 1 (mod 4);
� p = 7 and q = 11 or 19;
� p ≡ q ≡ 3 (mod 4), p divides q − 1, and p2 does not divide q − 1;
� p ≡ q ≡ 3 (mod 4) and p = (q + 1)/4.

Theorem 4.3 Let p, q, r be distinct odd primes, with p < q < r . Then pqr ∈ NC
if and only if at least one of pq, pr or qr is a member of NC, or none of pq, pr
and qr is a member of NC but one of the following holds:
� pqr = (22t + 1)(22t+1 + 1), for some t;
� pqr = (2d±1 + 1)(2d − 1), for some prime d;
� pq = 2r + 1, 2r − 1 or (r + 1)/2;
� pq = (r2 + 1)/2 or pr = (q2 + 1)/2;
� pq = (r2 − 1)/x or pr = (q2 − 1)/x, where x = 24, 48 or 120;
� ab = 2t + 1 and c divides 2t − 1, where {a, b, c} = {p, q, r};
� the largest power of p dividing q − 1 is p p, and the largest power of q dividing

r − 1 is qq;
� q = (3p + 1)/2 and r = 3p + 2, or q = 6p − 1 and r = 6p + 1;
� q = (r − 1)/2 and p divides r + 1, where p > q when p = (r + 1)/2;
� p = (kd/2 + 1)/(k + 1), q = (kd/2 − 1)/(k − 1), r = (kd−1 − 1)/(k − 1),

where k, d − 1 and d/2 are primes, and p > q may hold;
� p = (k(d−1)/2 + 1)/(k + 1), q = (k(k−1)/2 − 1)/(k − 1), r = (kd − 1)/(k − 1),

where k, d and (d − 1)/2 are primes, and p > q may hold;
� p = k2 − k + 1, q = (k5 − 1)/(k − 1), r = (k7 − 1)/(k − 1), where k is

prime;
� p = 3, q = (2d + 1)/3, r = 2d − 1, where d is prime;
� p = (2d + 1)/3, q = 2d − 1, r = 22d±2 + 1, where d = 2t ± 1 is prime;
� p = 5, q = 11 and r = 19;
� p = 7, q = 73 and r = 257.

So far there is no characterization of the members of NC that are products of
four distinct primes. This leaves us with the following intriguing question. Is there
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a number k > 0 for which every product of k distinct primes is in NC? With the
little evidence currently available, a guess in either direction appears hazardous.

The other direction that we wish to pursue, regarding the Petersen graph P as a
non-Cayley vertex-transitive graph, depends on viewing P in a different way. Let
the ten 2-element subsets of a 5-set correspond to the vertices of a graph, and let
two vertices be adjacent whenever their corresponding subsets are disjoint; then
the resulting graph is isomorphic to P.

The preceding is an interpretation of P as a Kneser graph (see Chapter 5). The
general definition of Kneser graphs is as follows. Let r and s be positive integers
satisfying r ≥ 2 and s ≥ 2r + 1. Let the vertices of the graph K (s, r ) correspond
to the r -subsets of an s-set, and let two vertices be adjacent if and only if their
corresponding r -subsets are disjoint; then the Petersen graph is K (5, 2). It is easy
to see that K (s, r ) is vertex-transitive; in fact, the automorphism group of K (s, r ) is
the action on the r -subsets induced by the action of Ss on {1, 2, . . . , s}. Using this
fact, Godsil [20] proved that the only exceptions to K (s, r ) being a non-Cayley
vertex-transitive graph occur when r = 2 and s is a prime power congruent to
3 (mod 4), or r = 3 and s = 8 or 32. The fact that

(s
r

) ∈ NC, with the exceptions
just mentioned, is not particularly useful for determining NC.

5. Isomorphism

Some of the most interesting and deepest work on Cayley graphs has revolved
around the question of trying to determine when two Cayley graphs are isomorphic.
For the most part, the question has been confined to Cayley graphs on the same
group, but there has been some work examining the isomorphism of Cayley graphs
on different groups. For a recent excellent survey that goes into far more detail than
this section, see Li [30]. Some preliminary definitions and results are required.

For historical reasons, as well as the levels of difficulty involved, much of
the work on isomorphism problems has been concentrated on Cayley graphs on
Abelian groups. In fact, circulant graphs by themselves have garnered considerable
attention.

Let p be a prime and let Z∗
p denote the multiplicative group of units of Zp. Define

the permutation Ta,b on Zp for a ∈ Z∗
p and b ∈ Zp, by xTa,b = ax + b. Using the

notationG ≡ H for equivalent permutation groups, we have the following classical
theorem of Burnside.

Theorem 5.1 A transitive permutation group G of prime degree p is either doubly
transitive or G ≡ {Ta,b : a ∈ H < Z∗

p, b ∈ Zp}.
Burnside’s theorem has some interesting applications for circulant graphs of

prime order. If Aut(G) is doubly transitive for a graph G, then G is either complete
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or has no edges. Thus, Burnside’s theorem reveals considerable information about
other circulant graphs of prime order.

The first significant isomorphism result about Cayley graphs was the following
theorem of Turner [52].

Theorem 5.2 Let p be a prime. Two circulant graphs Circ(p;S) and Circ(p;S ′)
of order p are isomorphic if and only if S ′ = aS, for some a ∈ Z∗

p.

Here is an outline of the proof. If S ′ = aS for some a ∈ Z∗
p, then it is easy to

verify that Ta,0 is an isomorphism from Circ(p;S) to Circ(p;S ′). On the other
hand, let Circ(p;S) and Circ(p;S ′) be isomorphic circulant graphs on Zp via an
isomorphism ϕ. If Circ(p;S) is complete or has no edges, then the result follows
trivially. In all other cases, Theorem 5.1 implies that their automorphism groups
contain a unique subgroup of order p. Without loss of generality, we may assume
that the subgroup is generated by the p-cycle (0 1 2 · · · p − 1). Using the fact that
the p-cycle (ϕ(0) ϕ(1) ϕ(2) · · · ϕ(p − 1)) generates the same subgroup, we easily
find an a ∈ Z∗

p satisfying S ′ = aS.

Ádám posed the question of whether two circulant graphs Circ(n;S) and
Circ(n;S ′) are isomorphic if and only if there exists an a ∈ Z∗

n satisfying S ′ = aS,
where Z∗

n denotes the multiplicative group of units in Zn .
It is easy to describe a counter-example to Ádám’s conjecture. For n = 25, let

S = {1, 4, 5, 6, 9, 11, 14, 16, 19, 20, 21, 24}
and

S ′ = {1, 4, 6, 9, 10, 11, 14, 15, 16, 19, 21, 24}.

The two circulant graphs Circ(25, S) and Circ(25, S ′) are isomorphic, since each
is a wreath product of a 5-cycle with a 5-cycle. On the other hand, it is easy to see
that there is no a ∈ Z∗

25 for which S ′ = aS.
Theorem 5.2 set the stage for research on isomorphisms of Cayley graphs. The

observation that multiplication by a ∈ Z∗
n is an automorphism of the underlying

additive group indicates the direction to follow.
Let G be a finite group. Suppose that two Cayley graphs Cay(G;S) and

Cay(G;S ′) on G are isomorphic if and only if there exists a group automorphism
α ∈ Aut(G) such that S ′ = Sα; then we say that G is a CI-group. Rephrasing
Theorem 5.2 in terms of this definition, we see that Zp is a CI-group, where p
is a prime. The problem of characterizing finite CI-groups then became, and still
remains, one of the major problems on Cayley graphs. Some notable results have
been obtained, and we examine some of them now.
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Elementary Abelian p-groups have been studied in some detail. Godsil [21]
proved that Z2

p is a CI-group, while Dobson [15] proved that Z3
p is a CI-group, for

each prime p. Hirasaka and Muzychuk [25] proved that Z4
p is a CI-group, for each

prime p. These results lend credence to an earlier conjecture of Babai and Frankl
[7] that Zn

p is a CI-group for all primes p and all n ≥ 1. However, Nowitz [44]
proved that Z6

2 is not a CI-group by explicitly constructing two isomorphic Cayley
graphs on Z6

2 between which no group automorphism acts as an isomorphism.
Nowitz’s example is rather intriguing. Its degree is 32, so the degree of the com-

plements, which are themselves counter-examples to the Babai-Frankl conjecture,
is 31. Does there exist an example on Z6

2 with smaller degree?
It is known that Z5

2 is a CI-group. In other words, 6 is the smallest rank for
which an elementary 2-group is not a CI-group. Nowitz’s example suggests that
there is a smallest rank rp for which the elementary p-group of rank rp is not a
CI-group, but all of those with rank smaller than rp are CI-groups. A recent result
of Muzychuk [42] shows that such a rank does exist.

Theorem 5.3 If p is a prime and n ≥ 2p − 1 + (2p−1
p

)
, then the elementary

p-group Zn
p is not a CI-group.

Note that the bound given in this theorem is tight for p = 2. This makes the
problem of determining the behaviour of the function rp tantalizing indeed. Also,
must a counter-example to the Babai-Frankl conjecture of minimal rank have the
property that the graphs and their complements are dense, as is the case for Nowitz’s
example?

Another remarkable result about CI-groups is the following theorem of Li [29].

Theorem 5.4 If G is a finite CI-group, then G is solvable.

It is feasible to determine the CI-groups completely because the list of potential
CI-groups is known. However, given the long struggle to specify which cyclic
groups are CI-groups, this is likely to be difficult. Muzychuk completed the de-
termination of the cyclic CI-groups in two excellent papers [40], [41]. His results
may be stated as follows.

Theorem 5.5 The cyclic group Zn is a CI-group if and only n = 8, 9, 18 or 2em,
where m is odd and square-free and e = 0, 1 or 2.

It may be the case that a group G is not a CI-group, but many of the Cayley
graphs on G behave nicely with regard to isomorphism. Accordingly, we say that
a particular Cayley graph Cay(G;S) is a CI-graph if Cay(G; S) ∼= Cay(G; S ′)
implies that there exists an α ∈ Aut(G) satisfying S ′ = Sα. Thus, a group G is a
CI-group if and only if every Cayley graph on G is a CI-graph.
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A useful criterion for deciding whether or not a Cayley graph is a CI-graph is
provided by the following theorem of Babai [6].

Theorem 5.6 Let G be a Cayley graph on the finite group G. Then G is a CI-graph
if and only if all regular subgroups of Aut(G) isomorphic to G are conjugate in
Aut(G).

There are many other questions that we can ask about CI-graphs. For example,
we can ask about degree conditions that guarantee that Cayley graphs on some
group are CI-graphs. We can ask about conditions on the automorphism groups that
guarantee that Cayley graphs are CI-graphs. We can ask about various restrictions
on the connection sets that guarantee that the corresponding Cayley graphs are
CI-graphs. One such restriction is a conjecture of Toida that any circulant graph of
order n whose connection set is contained in the group of units of Zn is a CI-graph.
This conjecture has been proved recently (see [16]).

The last isomorphism topic we discuss is when a given graph can be represented
as a Cayley graph in more than one way. As mentioned earlier, the complete graph
Kn can be represented as a Cayley graph on any group of order n. Similarly, the
complete multipartite graph Kr (s) can be represented as a Cayley graph on any
group of order rs that possesses a subgroup of order s.

There are more interesting results than the two simple examples above. We say
that two Cayley graph representations Cay(G1,S1) and Cay(G2,S2) are equivalent
when there exists an isomorphism ϕ : G1 → G2 for which S1ϕ = S2. There are
then four non-equivalent representations of the 3-dimensional cube Q3 as Cayley
graphs: one representation is on Z3

2, one is on Z2 × Z4, and two are on the dihedral
group of order 8. Moreover, for k = 4, 5 and 6, Dixon [14] has proved that there
are 14, 45 and 238 non-equivalent representations (respectively) of Qk .

Morris [39] has determined when circulants of odd prime power order have
representations as Cayley graphs on other Abelian p-groups.

6. Enumeration

Turner’s motivation for proving Theorem 5.2 was his interest in trying to enumerate
the vertex-transitive graphs of order n. His theorem sets the stage for an elementary
enumeration of the vertex-transitive graphs of prime order. Since no primes belong
to NC, every vertex-transitive graph of prime order is a Cayley graph. On the other
hand, for each prime p, the group Zp is the unique group of order p. Thus, all
vertex-transitive graphs of prime order are circulant graphs.

Using Theorem 5.2, we see that the isomorphism of circulant graphs of prime
order is completely described by the action of a group on the set of all possible
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connection sets. However, the latter action is induced by the action of a group on
the set {1, 2, . . . , p − 1}, and this is the canonical setting for the employment of
Pólya’s famous enumeration theorem. Since i belongs to a connection set if and
only if p − i also belongs to the connection set, and since multiplication by a and
−a are the same, the action we have is the cyclic group of order (p − 1)/2 on a
set with (p − 1)/2 elements. Since {i, p − i} either belongs, or does not belong,
to a connection set, we obtain the following result of Turner [52].

Theorem 6.1 If p is an odd prime, then the number of isomorphism classes of
vertex-transitive graphs of order p is

2

p − 1

∑
d

�(d)2(p−1)/2d ,

where the summation runs over all divisors d of (p − 1)/2.

One of the motivations for classifying CI-groups is to extend Theorem 6.1 to
other families of Cayley graphs. Whenever we have a CI-group G, we may employ
Pólya’s theorem to enumerate the Cayley graphs on G. In order to do this, we have
to determine the so-called cycle index of Aut(G) acting on the set of unordered
pairs {g, g−1} of non-identity elements of G.

Some work in this direction has been carried out by Alspach and Mishna [5].
Theorem 5.5 classifies the cyclic CI-groups and the circulant graphs of the appro-
priate orders are enumerated in [5]. The Cayley graphs on the elementary Abelian
p-groups Z2

p have also been enumerated.
Even though the cyclic group of order p2 is not a CI-group when p is a prime

bigger than 3, the circulant graphs of order p2 have been enumerated (see [28]).

7. Automorphisms

The problem of determining the full automorphism group of a Cayley graph is
difficult in general. We first examine the special case of prime order circulants,
where the answer is completely known. The tool that plays an essential role is
Theorem 5.1.

Suppose that p is a prime, and that we are given the circulant graph G =
Circ(p;S). It is now more convenient to think of circulant graphs as Cayley graphs
on the additive group Zp. The graph is either the complete graph or its complement
if and only if S is all of Z∗

p or ∅, respectively. The resulting automorphism group
is Sp, and this situation is easy to recognize.

When ∅ ⊂ S ⊂ Z∗
p, Theorem 5.1 tells us that Aut(G) has the form {Ta,b :

a ∈ H < Z∗
p, b ∈ Zp}. This implies that the stabilizer of the vertex labelled 0
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is Ta,0, with a ∈ H < Zp. Thus, if there is an edge joining 0 and k in G, then there
is an edge joining 0 and all of kH, and so the connection set S is a union of cosets
of the multiplicative subgroup H of Z∗

p. On the other hand, if S is a union of cosets
of the subgroup H of Z∗

p, but not a union of cosets of any supergroup of H, then
the stabilizer of 0 is {Ta,0 : a ∈ H < Z∗

p} and we know precisely what Aut(G) is.
If G = Circ(p;S) and ∅ ⊂ S ⊂ Z∗

p, then let e(S) denote the maximum even
order subgroup H of Z∗

p for which S is a union of cosets of H. Note that this is
defined because i ∈ S if and only if p − i ∈ S.

The above comments provide an outline of a proof of the following result
in [3].

Theorem 7.1 Let G = Circ(p;S) be a circulant graph of prime order. If S = ∅ or
Z∗

p, then Aut(G) = Sp. Otherwise, Aut(G) ≡ {Ta,b : a ∈ e(S), b ∈ Zp}.
We know that the automorphism group of any Cayley graph on a finite group G

contains the left regular representation of G. From the well-known orbit-stabilizer
theorem for permutation groups, we know that the order of the automorphism
group of a Cayley graph on G is the product of |G| and the order of the stabilizer of
any vertex. What makes Theorem 7.1 work is the fact that Theorem 5.1 provides
an exact description of possible stabilizers for circulant graphs of prime order.

A natural situation to consider is when the stabilizer of any vertex is the identity,
implying that the full automorphism group of the Cayley graph on G is the left reg-
ular representation of G. In this case, we say that Cay(G,S) is a graphical regular
representation of G. The first problem arising in this context is the determination
of the groups that admit a graphical regular representation.

It was known that Abelian groups of exponent greater than 2 and generalized
dicyclic groups do not admit graphical regular representations. Hetzel [24] and
Godsil [19] then independently completed the classification by showing that there
are only finitely many additional groups that do not admit graphical regular rep-
resentations. These additional groups are all of order 32 or less.

A Cayley graph G on a group G is normal when GR is a normal subgroup of
Aut(G). If S is the connection set for G and Aut(G){s} = {σ ∈ Aut(G) : Sσ = S},
then Aut(G) = GRAut(G){s} when G is normal. This means that the automorphism
group of G is as small as it can be, because the latter product is always a subgroup
of Aut(G). This is a new area for investigation.

8. Subgraphs

We now consider the murky area of the interaction between subgraph structures and
symmetry. There are some problems for which vertex-transitivity has a significant



170 Brian Alspach

impact, and there are others for which it is unclear what the impact is. We first
look at an example of the former.

Recall that a 1-factor of a graph G is a spanning subgraph in which each vertex
has degree 1. Since all vertices of a vertex-transitive graph G are the same under
the automorphism group, they must all lie in the same class of the Gallai-Edmonds
decomposition of G. The next theorem then follows easily.

Theorem 8.1 Let G be a connected vertex-transitive graph. If G has even order,
then it has a 1-factor. If G has odd order, then G − v has a 1-factor, for each vertex
v ∈ V (G).

If G is a connected vertex-transitive graph of degree d, then G is d-edge-
connected. Thus, if G is a connected vertex-transitive graph of degree d, then for
any two distinct vertices v and w of G, there are d edge-disjoint paths whose
terminal vertices are v and w.

The situation for vertex-connectivity is not as straightforward as for edge-
connectivity. Watkins [53] proved the following theorem.

Theorem 8.2 If G is a connected vertex-transitive regular graph of degree d, and
if κ(G) denotes the connectivity of G, then κ(G) > 2d/3. Also, for each ε > 0,
there exists a connected d-regular vertex-transitive graph H for which

κ(H ) <
(
ε + 2

3

)
d.

Even more interesting than the above lower bound on the connectivity as
a proportion of the degree are the methods introduced in [53] (and indepen-
dently in [34]) to prove the result. For each cutset of cardinality κ(G), we make
a list of the components that result when we delete the cutset. Any resulting
component of minimum cardinality, taken over all cutsets of cardinality κ(G),
is called an atom. Mader and Watkins have developed some interesting results
for the atoms in any connected vertex-transitive graph whose degree exceeds its
connectivity.

Probably the most important feature possessed by the atoms is that they form
a system of blocks of imprimitivity for the automorphism group. This lies at the
heart of the work on atoms.

We see from Theorem 8.2 that there are connected vertex-transitive graphs
whose connectivity is close to two-thirds of its degree. Is this still the case for
Cayley graphs? Consider the circulant graph G of order 5d whose connection
set S comprises all integers from {1, 2, . . . , 5d − 1} that are congruent to 0, 1 or
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2 (modulo 5). The circulant graph G has connectivity 2d and degree 3d – 1. Thus,
the ratio is as close to 2

3 as we wish, and there is no improvement in Theorem 8.2
by restricting ourselves to Cayley graphs.

There has been some work on those Cayley graphs whose connectivity is max-
imum. A connection set S is quasi-minimal if the elements of S can be ordered as
s1, s2, . . . , st , in such a way that
� if |si | > 2, then s−1

i is either si−1 or si+1;
� if Si is the set {s1, s2, . . . , si }, then, for each i such that |si | = 2, 〈Si 〉 is a

proper supergroup of 〈Si−1〉, and for each i such that |si | > 2 and s−1
i = si−1,

〈Si 〉 is a proper supergroup of 〈Si−2〉.
The next theorem is proved using atoms in [4].

Theorem 8.3 If S is a quasi-minimal generating set of the group G, then the
Cayley graph Cay(G;S) has connectivity |S|.

In [10] it is shown that a connected circulant regular graph of degree at least
3 contains cycles of all possible even lengths 4, 6, . . . . In addition, if a circulant
graph has girth 3, then there are cycles of all possible lengths.

There have been studies regarding universality (see [11] and [22]). If H is a
graph of order n, then for any group G of order at least cn2, there is a Cayley graph
G on G for which H is an induced subgraph of G. In a different direction, for each
positive integer r, there exists a Paley graph that contains all graphs of order r as
induced subgraphs.

9. Hamiltonicity

Hamiltonicity refers to graph properties that are related to Hamilton cycles and
Hamilton paths, such as the existence and enumeration of Hamilton paths and cy-
cles, whether the graph is Hamilton-connected or Hamilton-laceable, the existence
of Hamilton decompositions, and the structure of the Hamilton space.

The interest in Hamilton cycles in Cayley graphs grew out of a question posed by
Lovász. He asked whether every connected vertex-transitive graph has a Hamilton
path. In fact, there are only four known non-trivial connected vertex-transitive
graphs that do not possess Hamilton cycles. None of these is a Cayley graph,
which naturally leads one to ask whether every connected Cayley graph has a
Hamilton cycle. This is the first topic we address.

The following result of Chen and Quimpo [12] is one of the best results on the
topic. We need two definitions before stating it. A graph G is Hamilton-connected
if, for any two distinct vertices v, w in G, there is a Hamilton path whose terminal
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vertices are v and w. Since a vertex-transitive bipartite graph cannot be
Hamilton-connected, we change the definition for bipartite graphs accordingly.
A bipartite graph, with parts A and B satisfying |A| = |B|, is Hamilton-laceable
if, for any vertices v ∈ A and w ∈ B, there is a Hamilton path whose terminal
vertices are v and w.

Theorem 9.1 Let G be a connected Cayley graph on a finite Abelian group. If
G is bipartite and has degree at least 3, then G is Hamilton-laceable. If G is not
bipartite and has degree at least 3, then G is Hamilton-connected.

One immediate corollary of the Chen-Quimpo theorem is the fact that each
edge of a connected Cayley graph on an Abelian group of order 3 or more lies in
a Hamilton cycle. Theorem 9.1 has been extended to Hamiltonian groups.

This theorem also provides a useful tool for establishing the existence of
Hamilton cycles in Cayley graphs with special structural properties. For exam-
ple, there are situations when the vertex-set can be partitioned in such a way that
the subgraphs induced on the parts are Cayley graphs on Abelian groups, even
though the entire graph is not. Theorem 9.1 gives us a lot of freedom in finding
Hamilton paths in the subgraphs. The problem then becomes one of linking the
paths to form a Hamilton cycle in the original graph.

There also has been some success in looking for Hamilton cycles in Cayley
graphs by considering the order. One general question that arose was whether
every connected Cayley graph of prime power order has a Hamilton cycle. Witte
[55] provided a dramatic answer by proving the corresponding much stronger
result for Cayley digraphs.

Theorem 9.2 Every connected Cayley digraph on a group of order pe, where p is
a prime and e ≥ 1, has a Hamilton directed cycle.

There have been many particular Cayley graphs that have been shown to have
Hamilton cycles. There is insufficient space to include most of them, and it is not
clear that these special results give much of an indication towards resolving the
general problem anyway. In fact, there is so little current evidence that conjecturing
one way or the other about the general problem seems no better than guessing. We
include one special case, however, because the proof of the existence of a Hamilton
cycle in this case is difficult (see [13]).

Theorem 9.3 The Cayley graph on the symmetric group Sn(n ≥ 3) with connec-
tion set {(1 2), (1 2 · · · n), (n n − 1 · · · 1)} has a Hamilton cycle.
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10. Factorization

We saw earlier that every connected Cayley graph of even order has a 1-factor. In
fact, something much stronger may be the case. A 1-factorization of a graph is a
partition of the edge-set into 1-factors. No example is known of a connected Cayley
graph of even order that is not 1-factorizable. We now present some results about
1-factorizable Cayley graphs, starting with one of Stong [50].

Theorem 10.1 A connected Cayley graph on the group G has a 1-factorization if
one of the following holds:
� |G| = 2k , for some integer k;
� G is an Abelian group of even order;
� G is dihedral or dicyclic.

We say that the connection set S is a minimal generating Cayley set for G, if
S generates G, but S − {s, s−1} generates a proper subgroup of G for each s ∈ S.
In addition to proving Theorem 10.1, Stong [50] proved that Cayley graphs whose
connection sets are minimal generating Cayley sets have 1-factorizations whenever
the group is a nilpotent group of even order, or the group contains a proper Abelian
normal subgroup of index 2k , or the group has order 2m pk for some prime p
satisfying p > 2m .

Cubic graphs are of interest in their own right. If we seek Cayley graphs without
Hamilton cycles, then it seems natural to believe that sparser graphs are less likely
to have a Hamilton cycle. Any cubic graph with a Hamilton cycle clearly has a
1-factorization, but the converse is not true in general. So checking cubic Cayley
graphs for 1-factorizations should be easier than checking them for Hamilton
cycles. Recently, Potočnik has shown that any cubic Cayley graph G whose auto-
morphism group has a soluble subgroup that acts transitively on the vertex-set of
G has a 1-factorization. In particular, this means that any connected cubic Cayley
graph on a soluble group of even order has a 1-factorization.

A Hamilton decomposition of a graph G is a partition of the edge-set into
Hamilton cycles when the degree is even, or a partition into Hamilton cycles
and a 1-factor when the degree is odd. Many examples of graphs with Hamilton
decompositions are representable as Cayley graphs on Abelian groups. This leads
naturally to ask whether all connected Cayley graphs on Abelian groups have
Hamilton decompositions.

Theorem 9.1 gives an affirmative answer for graphs of degree 2 or 3. The first
progress came in [8], where it was proved that the answer is ‘yes’ for degree 4. It
is then easy to show that the answer is ‘yes’ for degree 5, and most of the cases
for degree 6 are settled. The best result on Hamilton decompositions of Cayley
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graphs on Abelian groups is the next theorem, obtained by Liu [31], [32]. He has
also established Hamilton decompositions for certain special cases.

Theorem 10.2 If G = Cay(G,S) is a connected Cayley graph on an Abelian
group G, and if S is a minimal generating Cayley set, then G has a Hamilton
decomposition.

An isomorphic factorization of a graph G is a partition of the edge-set E of G for
which the subgraphs induced by the edges in each part are isomorphic. In general,
given a graph G and a divisor d of |E |, we are interested in whether there is an
isomorphic factorization of G into d subgraphs. Some early work on isomorphic
factorizations dealt with specific graphs that happen to be Cayley graphs. This leads
naturally to the following question: if d is a divisor of |E | and G is a circulant
graph, a Cayley graph, or a vertex-transitive graph, does there exist an isomorphic
factorization of G into d subgraphs?

One contribution towards these questions is the following result of Fink [17].

Theorem 10.3 If T is any tree with k edges, then the k-cube Qk has an isomorphic
factorization by T. Furthermore, there is an isomorphic factorization for which
each copy of T is an induced subgraph.

11. Embeddings

There are a long history and an extensive literature on embedding graphs in sur-
faces. The book of White [54] and a recent excellent survey [47] provide a good
starting point for this topic.

Cayley graphs arise naturally in the context of graph embeddings. Cayley dia-
grams arose more than a hundred years ago out of an interest in trying to find a
way to ‘picture’ groups. These are Cayley digraphs in which the arcs are coloured
according to the group element that generates the arc. When we try to draw the
diagrams with no arcs crossing, the colours of the arcs are immaterial, as is whether
there are arcs in both directions between two vertices. Thus, we define the genus
of a group G as the smallest genus g with the property that there exists a connected
Cayley graph G onG which has an embedding into an orientable surface of genus g.

As early as 1896, planar groups were characterized by Maschke [36]. The
toroidal groups were classified into seventeen infinite families, together with some
sporadic cases, by Proulx [46]. Tucker [51] proved that, for any genus g ≥ 2, there
are only finitely many groups of genus g. The genus of most Abelian groups was
found by Jungerman and White [27].

A Cayley map is an embedding of a Cayley graph into an orientable sur-
face with the same cyclic rotation scheme at each vertex. This term is relatively
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recent – apparently first appearing in [9] – but the idea has been around for more
than one hundred years. Cayley maps play a significant role in the proof of the
Heawood map colouring problem. They also play a role in the determination of
the genus of a group. The long paper [47] unifies some earlier scattered work on
Cayley maps, and provides a general framework for studying them.

12. Applications

There are many meaningful applications of Cayley graphs, and we conclude with a
quick outline of a few of them. Any problem for which graphs are used as a model
and the use of edges is being optimized provides a natural setting for Cayley graphs.
For example, suppose that we are to construct a network for which the number
of direct links we may use is restricted, but we want to maximize the probability
that the network remains connected after some links or vertices of the network are
deleted. Then there is a strong tendency for the graph to be either vertex-transitive
or ‘close to it’. Consequently, Cayley graphs – in particular, the k-dimensional
cube Qk – have been extensively studied by researchers working with networks.
A recent book on this topic is by Xu [56], and a fundamental paper is [1].

Let C be a circle with circumference r. An r-circular colouring of a graph G is
a mapping c that assigns to each vertex v of G an open arc vc of unit length on C,

with the property that vc ∩ wc = ∅ whenever v and w are adjacent vertices of G.

The circular chromatic number of G is inf{r : G is r -circular colourable}. Circulant
graphs have played a role in the development of circular chromatic numbers of
graphs. For a general survey of circular chromatic numbers, see [57].

If G is a graph, and if A is a subset of V (G), then let N (A) = {v ∈ V (G) − A : v

is adjacent to some vertex of A}. The graph G is an (n, d, c)-expander if G has order
n, maximum degree d, and there exists a constant c > 0 such that |N (A)| ≥ c|A|,
for all A ⊂ V (G) satisfying |A| ≤ n/2. The construction of expanders and families
of expanders with c fixed is of considerable interest, and Cayley graphs play a
significant role; two excellent references are [2] and [33].

Acknowledgements: I wish to thank Luis Goddyn, Cai Heng Li, Brendan McKay
and Mikhail Muzychuk for valuable conversations.
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Finite symmetric graphs

CHERYL E. PRAEGER

1. Introduction
2. s-arc transitive graphs
3. Group-theoretic constructions
4. Quotient graphs and primitivity
5. Distance-transitive graphs
6. Local characterizations
7. Normal quotients
8. Finding automorphism groups
9. A geometric approach

10. Related families of graphs
References

The study of finite symmetric graphs goes back to work of Tutte dating from
1947. Because of their transitivity properties, symmetric graphs are regular,
their connected components are isomorphic to one another, and they have
other regularity in their structure. They are thus useful in many applica-
tions. This chapter traces two broad approaches to the study of symmetric
graphs, a local analysis focusing on the structure of a vertex stabilizer, and
a global approach that gives information about the full group of automor-
phisms. These different approaches are explained with reference to distance-
transitive graphs, s-arc transitive graphs, and other families of symmetric
graphs.

1. Introduction

A graph G is symmetric if its automorphism group Aut(G) is transitive on vertices
and on ordered pairs of adjacent vertices – that is, on the arcs of G; symmetric
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graphs are also called arc-transitive graphs. They have been studied for over fifty
years, beginning with two important papers by Tutte on finite cubic symmetric
graphs in 1947 and 1959, and a paper by Sabidussi in 1964 which suggested a
method for constructing all symmetric graphs from a small amount of information
about their automorphism groups (see [32, Secs. 9 and 11]). As a consequence of
their transitivity properties, symmetric graphs are regular, their connected com-
ponents are isomorphic to one another, and they have other regularity in their
structure. Perhaps for these reasons, they are useful in many applications, such as
modelling interconnection networks (see [20]).

The theory of finite symmetric graphs has two basic threads, one focusing on
a broad global analysis of classes of groups or graphs, and the other concen-
trating on tight local analysis of specific combinatorial or group-theoretic situ-
ations. The theoretical frameworks adopted, as well as the statements of results
and the methodology, all involve a combination of combinatorics and abstract
group theory, often requiring an application of the finite simple group classifi-
cation. The purpose of this chapter is to trace these developmental threads for
finite symmetric graphs, in order to understand the power of each, and to appre-
ciate the ways in which they intertwine in elucidating structure, and in charac-
terizing classes of these graphs. In Section 3 we discuss the fundamental links
between graph theory and group theory which underpin the theory of symmetric
graphs.

A ‘local analysis’ of a symmetric graph is a study of the combinatorial structure
or symmetry properties ‘close’ to a vertex. Sometimes local properties, either
combinatorial or group-theoretic, influence the structure of the whole graph, and
a major problem is to determine the extent to which this occurs. Tutte’s theorem,
discussed in Section 2, provided the first successful local analysis of a family of
symmetric graphs and was enormously influential on subsequent research. Further
examples of local analyses of symmetric graphs are given in Section 6.

In contrast to this, ‘global analysis’ of symmetric graphs focuses on aspects of
graph structure that affect the whole graph. The global approach leads naturally to
a consideration of quotients of symmetric graphs, and thence to a study of symmet-
ric graphs admitting a vertex-primitive or vertex-biprimitive automorphism group
(see Section 4). The most complete manifestation of this approach has been the
classification programme for finite distance-transitive graphs, described briefly in
Section 5 and at greater depth in Chapter 9. However, the method of passing to prim-
itive quotients is unsatisfactory for studying many families of symmetric graphs
that are given by a local defining property, such as s-arc transitivity. For several
of these families, the appropriate quotients to study are normal quotients, and it is
essential for an understanding of these families to look closely at the quasiprimitive
and bi-quasiprimitive graphs in the family. This approach is illustrated for 2-arc
transitive graphs in Section 7.
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For yet other families of symmetric graphs, information about quotients
(whether primitive or normal) is insufficient to describe the overall structure of
typical graphs in the family. A geometric approach that injects additional combi-
natorial information, and offers a framework for studying imprimitive symmetric
graphs, is discussed in Section 9.

Most investigations of symmetric graphs begin with a given graph G and a given
group G acting symmetrically (that is, vertex-transitively and arc-transitively) on
G, and we call (G,G) a symmetric pair. The difficult problem of determining the
full automorphism group of G, or indeed any subgroup of Aut(G) containing G,

often needs to be addressed. Some effective strategies for this are discussed for
primitive and quasiprimitive symmetric graphs in Section 8. Finally, in Section
10, we mention some classes of vertex-transitive graphs that are close to being
symmetric.

2. s-arc transitive graphs

In this section, by way of introduction to the subject, we describe Tutte’s seminal
discoveries about the structure of cubic s-arc transitive graphs. For a positive
integer s, an s-arc in a graph G is an (s + 1)-tuple (v0, v1, . . . , vs) of vertices
with the properties that vi−1vi is an edge of G, for 1 ≤ i ≤ s, and vi−1 �= vi+1 for
1 ≤ i ≤ s − 1. The graph G is s-arc transitive if Aut(G) is transitive on s-arcs. If
G is a subgroup of Aut(G), then (G,G) is an s-arc transitive pair if G is transitive
on both vertices and s-arcs of G. Thus, the 1-arc transitive pairs are precisely the
symmetric pairs, and indeed all s-arc transitive pairs are symmetric pairs.

Lemma 2.1 Let G be a graph, letG be a subgroup of Aut(G), and let s be a positive
integer. If (G,G) is an s-arc transitive pair, then (G,G) is a symmetric pair.

Proof Let (G,G) be an s-arc transitive pair. Then G is vertex-transitive, by defi-
nition, so G is regular of degree k, say. If k = 0, then G has no arcs, and if k = 1,
then each component of G is a complete graph K2: in these cases, (G,G) is triv-
ially a symmetric pair. So let k ≥ 2. If s > 1, then each 1-arc (v0, v1) of G can be
extended to an s-arc (v0, v1, . . . , vs). Since G is transitive on s-arcs, it follows that
G is transitive on 1-arcs. Thus, for every s, (G,G) is a 1-arc transitive pair, and as
observed above, the 1-arc transitive pairs are precisely the symmetric pairs. �

The property of being s-arc transitive is of special interest for s ≥ 2. Many
families of examples are known, and we list a few of them below. The vertices of
the odd graph On are the (n − 1)-element subsets of {1, 2, . . . , 2n − 1}, with two
vertices being adjacent if and only if they are disjoint; On is regular of degree n,

and Aut(On) = S2n−1 (see Chapter 5 and [7, Sec. 9.1]).
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Theorem 2.2
(a) For n ≥ 3 and s ≥ 1, the cycle Cn is s-arc transitive;
(b) For n ≥ 4, the complete graph Kn is 2-arc transitive, but not 3-arc transitive;
(c) For n ≥ 3, the complete bipartite graph Kn,n is 3-arc transitive, but not 4-arc

transitive;
(d) For an odd integer n ≥ 3, On is 3-arc transitive, but not 4-arc transitive.

There are also examples of cubic graphs that are 4-arc transitive but not 5-arc
transitive (for example, the Coxeter graph on 28 vertices), and 5-arc transitive but
not 6-arc transitive (for example, the (3, 8)-cage on 30 vertices) – see [7, Secs.
12.3 and 6.9].

Tutte proved that there are no 6-arc transitive cubic graphs (see [32, Thm. 9.2]).
His arguments were an elegant combination of group theory and combinatorial
reasoning.

Theorem 2.3 (Tutte’s theorem) If G is an s-arc transitive cubic graph, then
s ≤ 5.

Given that a graph G is symmetric, the fact that it is s-arc transitive can be
decided by examining the stabilizer (Aut(G))v in Aut(G) of a vertex v; precisely,
we require that (Aut(G))v be transitive on the s-arcs with first vertex v. Thus, s-arc
transitivity may be regarded as a local property. Tutte’s result demonstrates that in
a symmetric graph a local property can sometimes control the global structure.

3. Group-theoretic constructions

In 1964, Sabidussi proved that each symmetric graph G is isomorphic to one of the
symmetric coset graphs in the Introduction (Section 3) – namely, if G is a subgroup
of Aut(G) and G is G-symmetric, then G ∼= G(G,H,HgH), where H = Gv for
some vertex v, and g ∈ G with vg ∼ v and g−1 ∈ HgH (see the Introduction,
Theorem 3.5).

Studying symmetric graphs as coset graphs has proved useful in classification
problems and focuses attention on a given subgroup of automorphisms. It thus
leads naturally to the study of symmetric pairs (G,G), consisting of a symmetric
graph G and a subgroup G of Aut(G) that acts symmetrically on G. Usually infor-
mation about symmetric pairs is required up to equivalence, where equivalence of
symmetric pairs is defined in the Introduction (Section 3), and we note that, for a
G-symmetric graph G, (G,G) is equivalent to (G(G,H,HgH),G).

Shortly after Sabidussi’s work, a seminal paper of Sims [35] gave a second
group-theoretic characterization of symmetric graphs in terms of orbital graphs.
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For a transitive permutation group G and a non-diagonal self-paired orbital O, the
orbital graph G(O), defined in the Introduction (Section 3), is undirected and
is G-symmetric, so (G(O),G) is a symmetric pair. Moreover, up to equivalence,
each symmetric pair arises in this way. Also, a finite transitive permutation group
G has at least one non-diagonal self-paired orbital if and only if |G| is even (see
[41, Thm. 16.5]).

Sims demonstrated a crucial connection between the primitivity of a transitive
group G and the connectivity of its orbital graphs, showing that G is primitive
if and only if all its non-diagonal orbital graphs are connected – see the Intro-
duction, Section 3. However, as the following example demonstrates, if G is not
primitive, it is possible that some of its non-diagonal orbital graphs may still be
connected.

Example Let V = {1, 2, 3, 4, 5, 6} and G = 〈(123456)〉 ∼= Z6. There are five non-
diagonal orbitals: if O is the orbital containing (1, 2) or (1, 6), then G(O) is
the directed 6-cycle; if O is the orbital containing (1, 3) or (1, 5), then G(O)
has two components, each of which is the directed 3-cycle; if O is the orbital
containing (1, 4), then G(O) has three components, each of which is the undirected
graph K2.

Imprimitive permutation groups

Let G be a permutation group on V . A partition P of V is G-invariant if the
elements of G permute the parts of P set-wise – that is, pg ∈ P for all p ∈ P and
g ∈ G, where pg = {vg : v ∈ p}. The G-invariant partitions of V are in one-one
correspondence with the G-invariant equivalence relations on V – namely, a G-
invariant partition P corresponds to the equivalence relation ∼, where v ∼ w if
and only if v and w lie in the same part of P . In particular, the relation of equality
corresponds to the partition with all parts of size 1, and the ‘universal relation’
corresponds to the partition with a single part. These two partitions are called the
trivial partitions of V, and both are G-invariant for each permutation group G. A
transitive permutation group G is primitive if the only G-invariant partitions are the
trivial ones; otherwise G is imprimitive. This definition of a primitive permutation
group is equivalent to the one given in the Introduction (Section 3).

If P is invariant under a transitive permutation group G, then G induces a
transitive permutation group GP on P (by defining g : p → pg), and the set-wise
stabilizer Gp of p ∈ P induces a transitive permutation group G p

p on p. Moreover,
if p, q ∈ P , then the transitive groups G p

p and Gq
q are equivalent. Thus, if the set

V is finite, then each non-trivial G-invariant partition P gives rise to two smaller
transitive permutation groups (up to equivalence) – namely, GP and G p

p . We shall
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be especially interested in the cases where one or other of these transitive groups
is as small as possible.

A G-invariant partition P is maximal if {V } is the only G-invariant partition of
V refined byP; in this case, the group GP is primitive. Similarly,P is minimal if its
onlyG-invariant refinement is {{v} : v ∈ V }; in this case, the groupG p

p is primitive.
We shall show in the next section that, if (G,G) is a symmetric pair and P is a
non-trivial G-invariant partition of the vertex-set, then the two smaller transitive
groups associated to P correspond to two smaller symmetric pairs. Thus, we shall
be especially interested in symmetric pairs (G,G) for which G is vertex-primitive.

The most useful tool for studying finite primitive permutation groups is the
O’Nan-Scott Theorem (see [9, Sec. 3]):

Theorem 3.1 (O’Nan-Scott theorem) Let G be a subgroup of Sym(V ). If G is a
finite primitive group, then G belongs to one of several disjoint types of primitive
groups.

The number of types of finite primitive groups varies for different statements
of this theorem. A version that is often used for studying finite symmetric graphs
involves eight types of primitive groups, and each of these types corresponds to
an analogous type of quasiprimitive permutation group, where, as defined in the
Introduction (Section 3), G is quasiprimitive if all its non-trivial normal subgroups
are transitive. A brief description of the O’Nan-Scott types of primitive groups
(and their generalizations for quasiprimitive groups), suitable for applications to
symmetric graphs, is given in Theorem 7.2 (see also [31, Sec. 5]). Many of the types
are described in terms of the structure and action of a minimal normal subgroup
of such a group G, or of its socle (the product of its minimal normal subgroups),
denoted by soc(G).

Two of the ‘O’Nan-Scott types’ occur frequently as types of primitive automor-
phism groups of graphs – namely, types AS and HA. A primitive or quasiprimitive
group G is said to have type AS, or to be almost simple, if G is a subgroup of
Aut(H), for some non-abelian simple subgroup H of G: here, soc(G) = H is the
unique minimal normal subgroup and is transitive. A primitive group G is said to
have type HA, or to be of affine type, ifG has a non-trivial abelian normal subgroup:
here, G is a group of affine transformations of a finite vector space and soc(G) is its
unique minimal normal subgroup and is elementary abelian and regular (transitive
with trivial stabilizers); in fact, soc(G) is the group of translations.

Amalgams and their completions

A group amalgam for a graph aims to capture essential local information about
the symmetry properties of the graph. Several definitions appear in the literature,
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and we follow the treatment in [21, Sec. 1.3]. A finite amalgam A of rank n is a
set consisting of n groups Hi (1 ≤ i ≤ n) with the property that, for each i �= j ,
the intersection Hi ∩ H j is a subgroup of both Hi and H j .

There is no assumption that the Hi are subgroups of some common group.
Instead, a group G is called a completion of A if there exists a map ϕ : ∪Hi → G
for which the restriction of ϕ to each Hi is a group homomorphism, and the image
of ϕ generates G. If ϕ is one-one, then the completion is faithful; for example, if
A is defined as a set of subgroups of a group, then the subgroup generated by the
subgroups in A is a faithful completion of A relative to the inclusion map. For
every amalgam A, there exists a universal completion U (A) (relative to a map ψ)
with the property that, for any completion G (relative to a map ϕ), there is a unique
homomorphism χ : U (A) → G for which ϕ is the composition of ψ and χ. The
universal completion U (A) is defined as the group with generating set ∪Hi and
with relations all the equalities of the form z = xy, satisfied by elements x, y and
z of some Hi . Sometimes (see [21], for example) it is possible to find not only
U (A), but also all finite completions of A.

For a symmetric pair (G,G) and an edge e = vw, the amalgam A = {Gv,Ge}
contains the information thatGv is transitive on the set of vertices adjacent to v, and
that some element of G interchanges v and w. Thus, A contains the information
that G is symmetric on G, and the set-wise stabilizer in G of the component of G
containing v is a faithful completion of A. The universal completion U (A) acts
symmetrically on an infinite regular tree T (A) with vertex-stabilizer and edge-
stabilizer giving the same amalgam A. Further, any symmetric pair (H,H) with
amalgam A is a quotient of (T (A), U (A)), relative to some graph homomorphism
T (A) → H and group homomorphism U (A) → H. There are infinitely many
such pairs (H,H), even with H finite, and one is usually interested in symmetric
pairs with specific additional properties.

Amalgams of rank greater than 2 carry information about additional combi-
natorial structure of the graph, and are key tools for analysing certain classes of
symmetric graphs (see, for example, [21, Ch. 9]). Such amalgams have applica-
tions beyond graph theory, especially to the study of diagram geometries and of
groups that preserve them (see [21] and [29]).

For a symmetric pair (G,G) with G a cubic graph, and an edge e incident with
a vertex v, the structure of possible amalgams {Gv,Ge} was deduced from early
work of Tutte and Wong (see Biggs [3, Ch. 18]). This led to the determination
of presentations for universal completions of such pairs. According to Biggs [5],
John Conway discovered such presentations but did not publish them, and ‘also
inaugurated a programme for constructing such [symmetric pairs] from the pre-
sentations’; this programme was developed further by Biggs in [4]. Systematic
investigations of these presentations were undertaken in [14] and [40], and these
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enabled symmetric pairs for cubic graphs of small girth to be classified (see [28]),
and also led to constructions of arbitrarily large 4-arc transitive and 5-arc transitive
finite cubic graphs (see [12] and [13]).

4. Quotient graphs and primitivity

For every graph G and every partition P of its vertex-set V, the quotient graph GP
is the graph with vertex-set P for which p, p′ ∈ P are joined by an edge if and
only if there exist v ∈ p and v′ ∈ p′ that are adjacent in G. Also, for each p ∈ P ,
let G[p] the induced subgraph of G on p. Here is a simple example.

Example Let G = C6 on V = {1, 2, 3, 4, 5, 6} with edges 12, 23, . . . , 61, and
let P = {p1, p2, p3} where p1 = {1, 4}, p2 = {2, 5}, p3 = {3, 6}. Then GP ∼= C3

and, for each i, G[pi ] is a null graph with two vertices.

In this example, P is invariant under G = Aut(G) = 〈(123456), (26)(35)〉 ∼= D12,

and we have GP ∼= S3, and G p
p

∼= S2, for each p ∈ P . All the pairs (G,G), (GP ,

GP ), (G[p],G p
p ) are symmetric pairs (the last somewhat vacuously, since G[p]

has no edges). This is a rather general fact, as we see in the next result.

Theorem 4.1 Let (G,G) be a symmetric pair, let P be a G-invariant partition of
V , and let p, p′ ∈ P . Then (GP ,GP ), (G[p],G p

p ) and (G[p′],G p′
p′ ) are all sym-

metric pairs, and (G[p],G p
p ) and (G[p′],G p′

p′ ) are equivalent.

Proof If (p, p′) and (q, q ′) are arcs of GP , then there exist v ∈ p, v′ ∈ p′ and
w ∈ q, w′ ∈ q ′ for which (v, v′) and (w, w′) are arcs of G. The group G contains
an element that maps (v, v′) to (w, w′), and hence maps (p, p′) to (q, q ′). The rest
of the proof that (GP ,GP ) and (G[p],G p

p ) are symmetric pairs is straight-forward.
For the equivalence, if g ∈ G maps p to p′, then the restriction of g to p in-

duces an isomorphism from G[p] to G[p′], while the conjugation action of g indu-
ces a group isomorphism from G p

p to G p′
p′ , and these together define the required

equivalence. �

If (G,G) is a symmetric pair and G is primitive on vertices, then we say that
(G,G) is a primitive symmetric pair. By choosing P to be a maximal G-invariant
partition, we can ensure that (GP ,GP ) is primitive. Similarly by choosing P to
be a minimal G-invariant partition, we can ensure that (G[p],G p

p ) is primitive.
However, when G is symmetric on G, either all edges have their ends in the same
block of P , or all edges have their ends in different blocks of P . Thus, one of GP
and G[p] is a null graph; in particular, if G is connected, then G[p] is null.



7 Finite symmetric graphs 187

Suppose now that G is connected, so that G[p] is a null graph. Several strategies
have proved effective for investigating this situation. First, it is sometimes possible
to introduce some combinatorial structure on p, other than G[p], to aid in the
understanding of (G,G). This was the case for distance-transitive graphs, which
will be discussed in Section 5, and is also an integral part of the geometric approach
to be described in Section 9.

Secondly, for some families of symmetric graphs, we can extract crucial infor-
mation about (G,G) from its primitive quotients (GP ,GP ), and in these cases it is
of fundamental importance to study primitive symmetric pairs in the family. In such
a study, the O’Nan-Scott theorem is essential: see the case of distance-transitive
graphs in Section 5, below.

In one rather trivial case, a primitive quotient gives little useful information –
namely, if G is bipartite and P is the bipartition, then (GP ,GP ) is equivalent to
(K2,S2). In this case, it would be helpful to examine quotients (GP ,GP ) where the
only G-invariant partitions refined by P are {V } and the bipartition of V . We call
a permutation group with this property biprimitive. Possible structures for biprim-
itive groups can be inferred from the O’Nan-Scott theorem. However, satisfactory
analyses of families of biprimitive symmetric pairs seem difficult to achieve.

Often we wish to study a family of symmetric graphs with an additional defining
property, sometimes combinatorial and sometimes group-theoretic. Unfortunately,
the extra defining property is rarely inherited by a quotient graph GP , so studying
the vertex-primitive graphs in the family does not help us to understand the struc-
ture of typical graphs in the family; for example, if (G,G) is 2-arc transitive andP is
G-invariant, then (GP ,GP ) is not in general 2-arc transitive (see Section 7). How-
ever, some families of symmetric pairs (such as the family of 2-arc transitive pairs)
which are not closed under forming primitive quotients are closed under forming
normal quotients. This will be discussed further in Section 7.

5. Distance-transitive graphs

Let G be a connected graph of diameter d ≥ 1, and let G be a subgroup of Aut(G).
Then the pair (G,G) is distance-transitive if G is transitive on Gi = {(v, w):
d(v, w) = i}, for each i = 0, 1, . . . , d. A pair (G,G) is symmetric if and only
if G is transitive on G0 and G1, and so distance-transitive pairs are symmetric. An
equivalent defining condition for distance-transitivity is that (G,G) is distance-
transitive if and only if G is transitive on V and, for a given v ∈ V and for
each i = 1, 2, . . . , d,Gv is transitive on Ni (v) = {w : d(v, w) = i}. A distance-
transitive pair (G,G) of degree at least 3 has at most two non-trivial G-invariant
vertex partitions (see [7, Thm. 4.2.1 ff.]). If G is bipartite, then the bipartition is
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G-invariant. If G is antipodal – that is, if v �= w and d(u, v) = d(u, w) = d im-
plies that d(v, w) = d – then G leaves invariant the antipodal partition consisting
of the antipodal blocks, where the antipodal block containing v is {v} ∪ Nd (v). It
is possible for a distance-transitive pair to be both bipartite and antipodal.

Example 1 For k ≥ 2, the complete bipartite graph Kk,k is regular of degree k,

has diameter 2, and is distance-transitive, bipartite and antipodal with Aut(G) =
Sk � S2. Here the antipodal partition is the same as the bipartition.

Example 2 For d ≥ 2, the d-dimensional cube Qd is the graph with vertex-set
Zd

2 , d-tuples v and w being joined by an edge if and only if they differ in exactly
one entry. It has degree and diameter d, and is distance-transitive, bipartite and
antipodal, with Aut(Qd ) = Sd

2 : Sd = S2 � Sd .

Suppose that (G,G) is distance-transitive of diameter d, and let d ′ = 2�d/2�.
If G is bipartite and v ∈ V, let G+ be the graph with vertex-set V + := {v} ∪ N2(v)
∪ · · · ∪ Nd ′ (v), the part of the bipartition containing v, whose edges are the pairs
from V + at distance 2 in G. Then G+ is called a bipartite half of G, (G+,G+) is
distance-transitive, where G+ is the index-2 subgroup of G that fixes V + set-wise,
and G is called a bipartite double of G+. If G is antipodal of diameter at least 3, with
antipodal partition P , then the antipodal quotient (GP ,GP ) is distance-transitive,
and G is a cover of GP – that is, the map v → p(v) that sends each vertex v to the
part p(v) ∈ P containing it has the property that, for each v, the restriction to the
neighbourhood N (v) is a bijection whose image is the neighbourhood of p(v) in
GP . Thus, if (G,G) is imprimitive, then it is bipartite or antipodal and we obtain
a smaller distance-transitive pair. After at most two such reductions, we reach a
primitive distance-transitive pair.

Thus the classification problem for finite distance-transitive pairs splits into
two separate problems: the major one of classifying the finite primitive distance-
transitive pairs, and the other of finding all distance-transitive pairs obtainable from
the primitive ones by forming antipodal covers and bipartite doubles. There are
many infinite families of primitive distance-transitive pairs (see [7]), and among
these the Hamming graphs have a special role.

Example 3 For d ≥ 2 and q ≥ 2, the Hamming graph H (d, q) is the graph with
vertex-set Zd

q , where d-tuples are joined by an edge if and only if they differ in
exactly one entry. The automorphism group Aut(H (d, q)) isSq � Sd and is distance-
transitive. For q = 2, H (d, 2) is the d-cube Qd and is bipartite and antipodal, while
for q ≥ 3, (H (d, q),Sq � Sd ) is primitive. Furthermore, for q ≥ 3, the complement
of H (2, q) is primitive and distance-transitive.
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The following theorem is due to Praeger, Saxl and Yokoyama (see [7, Thm.
7.7.1]).

Theorem 5.1 Let (G,G) be a primitive distance-transitive pair. Then either G is
H (d, q) or the complement of H (2, q), or G is primitive of affine type HA or
almost simple type AS.

This reduction theorem led to a programme to classify the primitive distance-
transitive pairs (G,G) of almost simple and affine types – see Chapter 9, Sections
5 and 6.

6. Local characterizations

Here we discuss the celebrated theorem of Weiss, that the only finite 8-arc transitive
graphs are cycles. We also mention several other characterizations of families
of symmetric graphs by their local combinatorial or group-theoretic properties,
including locally projective graphs and graphs associated with P-geometries.

s-arc transitive graphs and Weiss’s theorem

As in Section 2, if G is a subgroup of Aut(G) and s ≥ 1, then (G,G) is an s-arc
transitive pair if G is transitive on both vertices and s-arcs of G. We show below
that 2-arc transitivity is characterized by a 2-transitive action of a vertex-stabilizer
Gv on the neighbourhood N (v). If U ⊆ V and a subgroup H of Sym(V ) leaves U
invariant, then we denote by HU the permutation group on U induced by H.

Lemma 6.1 Let G be a connected graph, let G be a subgroup of Aut(G) that is
vertex-transitive on G, and let v be a vertex. Then (G,G) is a 2-arc transitive pair
if and only if GN (v)

v is 2-transitive.

Proof If (G,G) is 2-arc transitive, then Gv is 2-transitive on N (v), since each
ordered pair (u, w) of distinct vertices of N (v) corresponds to a 2-arc (u, v, w)
with second vertex v. Conversely, let Gv be 2-transitive on N (v). Then we can map
an arbitrary 2-arc to one with second vertex v, since G is vertex-transitive. Since
Gv is 2-transitive on N (v),Gv is transitive on the 2-arcs with second vertex v. Thus
G is transitive on 2-arcs. �

A consequence of the classification of the finite simple groups is that all of
the finite 2-transitive permutation groups are known explicitly (see [9, Thm. 5.1]).
Each is primitive and is of affine type HA or almost simple type AS. Building on
work already published in numerous papers, the final stage of the proof of Weiss’s
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theorem invoked the classification of 2-transitive groups to rule out certain group-
theoretic configurations (see [9, Thm. 5.12]).

Theorem 6.2 If (G,G) is a finite s-arc transitive pair of degree at least 3, then
s < 8.

This result is best possible, since there exists an infinite family of 7-arc transitive
graphs associated with the simple groups G2(3n).

In addition to proving Theorem 6.2, Weiss showed that, if s ≥ 4, then G has
degree q + 1, for some prime power q, and GN (v)

v is an almost simple 2-transitive
group with socle PSL(2, q). Further, if q is even, then s ≤ 5, while if q is odd, then
q is a power of 3 and s = 7. Weiss had previously classified all possible amalgams
for 4-arc transitive graphs, and using this classification, Li [22] was able to classify
all primitive and biprimitive 4-arc transitive pairs. His very interesting examples
include, among others, pairs (G,G) constructed in [36] and [39], where G is one
of the sporadic simple groups J3, Ru or Th, together with a new example where G
is the Monster simple group.

Theorem 6.3 The finite primitive and biprimitive 4-arc transitive pairs (G,G) are
known explicitly.

2-arc transitive graphs and symmetric 2-designs

Investigations of finite 2-arc transitive graphs were inspired also by Cameron’s
re-interpretation and generalization of an old result of Manning on primitive per-
mutation groups. LetG be a finite primitive, but not 2-transitive, permutation group
on V . Manning proved that, if a stabilizer Gv is 2-transitive on an orbit of cardi-
nality k > 2, then Gv has a second orbit of length m > k, where m is a divisor of
k(k − 1) (see [41, 17.7]). If w is a point of the first Gv-orbit, and if the G-orbital O
containing (v, w) is self-paired, then by Lemma 6.1, (G(O),G) is a 2-arc transitive
pair, where G(O) is the orbital graph associated with O. Further, all 2-arc transitive
pairs for which the group is primitive on vertices arise in this way. Cameron found
a graph-theoretic meaning for the second Gv-orbit, as the set N2(v) of vertices at
distance 2 from v in G(O) (see [8]).

Theorem 6.4 Let (G,G) be a finite 2-arc transitive pair of degree k > 2, for
which G is primitive on vertices and G is not a complete graph. Then the number
of vertices at distance 2 from a vertex v is k(k − 1)/λ, where λ is the number of
paths in G of length 2 between a given vertex in N2(v) and v.

The largest value of λ for which an example is known is λ = 6; it is attained by
a graph of order 100 and degree 22 admitting the Higman-Sims sporadic simple
group. The following conjecture is due to Cameron.
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Conjecture If (G,G) is a 2-arc transitive pair of degree k > 2 for which G is
primitive on vertices and G is not a complete graph, then λ ≤ 6.

Although this conjecture has been proved when GN (v)
v is almost simple (see [10,

Cor. 3] and [11]), it is still open for affine 2-transitive groups GN (v)
v .

If we now drop the primitivity assumption, then examples are known with
arbitrarily large λ, arising from symmetric 2 – (|V |, k, λ) designs D (where k
and λ are as in Theorem 6.4). The incidence graph of D is the graph G(D) with
vertex-set P ∪ B, where P is the point-set and B is the block-set, and where the
edges are the incident point-block pairs, called the flags of D. The automorphism
group Aut(D) ofD induces a group of automorphisms of G(D), and any incidence-
preserving permutation of P ∪ B that interchanges P and B (implying that D is
self-dual) induces an automorphism of G(D). Thus, if D is self-dual and Aut(D) is
flag-transitive, then (G(D), Aut(G(D))) is symmetric with degree k. If, in addition,
the stabilizer of a block is 2-transitive on the points incident with the block, then
(G(D), Aut(G(D))) is 2-arc transitive and, for v ∈ P , the set of vertices at distance
2 from v in G(D) is P\{v}, and has size v − 1 = k(k − 1)/λ. The incidence graph
has girth 6 if D is a projective plane, and otherwise has girth 4. Note that G(D) is
bipartite and so its automorphism group is imprimitive and does not give rise to a
symmetric pair addressed by Cameron’s conjecture.

Cameron [8, Thms. 4.1 and 4.2] proved that, for λ > k/2, all 2-arc transitive
pairs arise in this way, and he questioned whether this might be true whenever
λ > 6. However, it turns out that, when GN (v)

v is almost simple, there is a unique
family of examples that do not arise from symmetric designs.

Example For n ≥ 3 and q a prime power, the dual orthogonal graph DO+(2n, q)
has as its vertices the n-dimensional totally singular subspaces with respect to a
non-degenerate quadratic form of +-type on a 2n-dimensional vector space over
a field of order q, with two vertices adjacent whenever their intersection has co-
dimension 1 in each.

The following theorem appears in [10] and [11].

Theorem 6.5 Let (G,G) be 2-arc transitive of degree k > 2, with GN (v)
v almost

simple, and suppose that, for a vertex v, |N2(v)| = k(k − 1)/λ with λ > 6. Then
G is either the incidence graph of a self-dual flag-transitive symmetric 2-design,
or a dual orthogonal graph.

The symmetric designs arising here were described explicitly in [11]; the proof
uses the classification of the almost simple 2-transitive permutation groups. It
is not known whether the conclusion of Theorem 6.5 is also true in the case of
2-transitive affine groups GN (v)

v .
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Cameron [8] also classified the 2-arc transitive pairs (G,G) of degree k > 2
and girth 4 for which GN (v)

v is Ak or Sk . The generic examples that arise for any k
are Kk,k, Kk+1,k+1 with the edges of a matching removed, or Qk and its antipodal
quotient. This classification inspired a similar classification of the odd graphs in
[30], and later a study and eventual classification by Ivanov and Shpectorov of the
class of Petersen and tilde geometries (see [21]).

Locally projective symmetric pairs

A family of symmetric pairs that required special attention in the above-mentioned
studies of 2-arc transitive pairs is the family (G,G), where PSL(n, q) ≤ GN (v)

v ≤
P
L(n, q), in its natural representation of degree (qn − 1)/(q − 1) on the 1-dimen-
sional subspaces of an n-dimensional vector space over a field of order q. Such
pairs are called locally projective, and the following result of Weiss (which relies
on the classification of finite 2-transitive permutation groups) emphasizes their
special role in the study of 2-arc transitive pairs (see [21, Thm. 9.2.3]).

Theorem 6.6 Let (G,G) be a 2-arc transitive pair such that, for some edge vw,
the pointwise stabilizer in G of N (v) ∪ N (w) is non-trivial. Then (G,G) is locally
projective.

As mentioned above, every finite 4-arc transitive pair is locally projective.
Also, when verifying Cameron’s conjecture for 2-arc transitive pairs (G,G), with
GN (v)

v unfaithful and almost simple, it is necessary to characterize an infinite fam-
ily of locally projective graphs – namely, the dual orthogonal graphs (see [10,
Cor. 1]).

All possibilities for the structure of a vertex-stabilizer Gv for a locally projective
pair (G,G) have recently been determined in a series of long and difficult papers
by a number of authors; this work is described by Trofimov in [37]. A detailed
account of classifications and strategies for analysing locally projective pairs can
be found in [21, Ch. 9].

7. Normal quotients

The success of the classification programme for finite distance-transitive pairs
(G,G) was largely due to the fact that antipodal quotient graphs and bipartite
halves of distance-transitive graphs are themselves distance-transitive. Thus, each
distance-transitive pair (G,G) is associated with at least one primitive distance-
transitive pair. However, for families such as the family F2arc of 2-arc transitive
pairs, quotients modulo invariant partitions may not lie in the family.
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The situation for 2-arc transitive pairs is even more striking. In 1985, Babai [1,
Thm. 1.5] showed that, for each finite regular graph G0, there exists a finite 2-arc
transitive pair (G,G) for which G is a cover of G0, relative to some vertex-partition
P . Note that P may not be G-invariant, and is certainly not G-invariant if G0 is not
symmetric. Babai’s result suggested thatF2arc might admit no useful organizational
principle. However, it turns out thatF2arc is closed under forming normal quotients,
and these provide an insightful method for describing the structure of graphs in
this family.

Normal partitions and normal quotients

For a transitive permutation group G on a set V , a partition P of V is G-normal if
P is the set of N -orbits in V , for some normal subgroup N of G. Since elements
of G permute set-wise the orbits of a normal subgroup, each G-normal partition
is G-invariant. Also, the two trivial partitions of V are both G-normal, since they
consist of the orbits either of the identity subgroup or of G itself. If the only G-
normal partitions are the trivial ones, or (equivalently) if every non-trivial normal
subgroup of G is transitive, then G is quasiprimitive on V . It follows that every
primitive permutation group is quasiprimitive, but there are many quasiprimitive
permutation groups that are not primitive; for example, any transitive permutation
representation of a non-abelian simple group, for which a point stabilizer is a
non-maximal subgroup, determines a quasiprimitive permutation group that is not
primitive.

A quotient (GP ,GP ) of a symmetric pair (G,G) modulo a G-normal partition P
is called a normal quotient. IfP is G-normal, and if |P| > 1 and the only G-normal
partition refined by P is {V }, then GP is quasiprimitive. Thus, each symmetric
pair (G,G) has a quasiprimitive normal quotient. However, if G is bipartite, then
the quasiprimitive normal quotient may be simply (K2,S2), providing very little
information. For bipartite graphs G, the appropriate normal quotients (GP ,GP ) to
examine are those where the only G-normal partitions refined by P are {V } and
the bipartition. Such normal quotients, and also the permutation groups GP , are
called bi-quasiprimitive. Major questions that arise when investigating a family of
symmetric pairs are whether the family is closed under forming normal quotients,
and if so, whether the quasiprimitive and bi-quasiprimitive pairs in the family can
be analysed successfully. The relationship between a symmetric pair in the family
and its normal quotients is also important.

We saw in Section 6 that a symmetric pair (G,G ) is 2-arc transitive if and only
if the group GN (v)

v is 2-transitive. Several other families of interest have defining
properties given in terms of GN (v)

v : these include the family Fsym of all symmetric
pairs, where the property is that GN (v)

v is transitive, and the families Fprim and Fqp



194 Cheryl E. Praeger

of locally primitive and locally quasiprimitive symmetric pairs which comprise
those (G,G) for which GN (v)

v is respectively primitive and quasiprimitive.
We address the above questions for these families. A symmetric pair (G,G) is

a multicover of its quotient (GP ,GP ) if there is a constant � such that, for each
edge pp′ of GP , each vertex of p is adjacent to � vertices of p′; we also say that
(G,G) is an � -multicover of (GP ,GP ) – the 1-multicovers are therefore covers.
When P is G-normal, we say that (G,G) is a normal multicover of (GP ,GP ), or a
normal cover if � = 1. The following theorem can be found in [31, Sec. 4].

Theorem 7.1 Let (G,G) be a finite connected symmetric pair of degree k in F ,
where F = Fsym,Fqp,Fprim or F2arc, and let G have an intransitive non-trivial
normal subgroupN with orbit-setP in V . Then (GP ,GP ) is a connected symmetric
pair, and either
G is bipartite and P is the bipartition;
or
(GP ,GP ) ∈ F, (G,G) is an �-multicover of (GP ,GP ), and GP has degree k/�;
further, � = 1 if F = Fprim or F2arc.

The general question of constructing normal multicovers of pairs in Fqp and Fprim

was addressed in [24].

Quasiprimitive groups

In order to analyse the finite quasiprimitive and bi-quasiprimitive pairs in one of the
families of Theorem 7.1, we need to understand the structure of finite quasiprimitive
and bi-quasiprimitive permutation groups. It turns out that finite quasiprimitive
permutation groups possess many of the properties of finite primitive groups, in
that similar bounds hold for their orders, minimal degrees and base sizes (see
[34]). In addition, they admit a description similar to that given by Theorem 3.1
for finite primitive groups. We give a version of this result that has proved helpful
in applications involving automorphism groups of vertex-transitive graphs (see
[31, Sec. 5]).

Theorem 7.2 If G is a quasiprimitive permutation group on a finite set V , then G
is of one of the types in Table 1; H denotes a non-abelian finite simple group.

Although some information may be inferred from Theorem 7.2 about finite bi-
quasiprimitive groups, possibilities for their structure are not as well understood
as in the quasiprimitive case (but see [24]).
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Table 1. Quasiprimitive types

Type Name Description

HA holomorph of an abelian the unique minimal normal subgroup is elementary
group abelian

HS holomorph of a non-abelian there are two minimal normal subgroups, both
simple group regular, non-abelian and simple

HC holomorph of a composite there are two minimal normal subgroups,
non-abelian group both regular, non-abelian and not simple

AS almost simple H ≤ G ≤ Aut(H)
TW twisted wreath product the unique minimal normal subgroup Hk is

regular, non-abelian and not simple
SD simple diagonal the point stabilizer in the unique minimal normal

subgroup Hk is a diagonal subgroup
CD compound diagonal the point stabilizer in the unique minimal normal

subgroup Hk is a product of diagonal subgroups
PA product action type the point stabilizer in the unique minimal normal

subgroup Hk is a sub-direct subgroup of Kk ,
for some proper subgroup K of H

Quasiprimitive and bi-quasiprimitive symmetric pairs

The first application of Theorem 7.2 was an analysis of the possible types of
quasiprimitive groups G involved in 2-arc transitive quasiprimitive pairs (G,G). It
turns out that, of the eight possible types, only four can occur, and for one of these
types, Ivanov and Praeger classified all the examples (see [31, Sec. 6]).

Theorem 7.3 If (G,G) is a 2-arc transitive quasiprimitive pair, then G has type
HA, AS, TW or PA, and all pairs with G of type HA are known.

Examples are known for each of the types HA, AS, TW, PA, and classifications
have been obtained of the 2-arc transitive quasiprimitive pairs (G,G) for some
families of low-rank Lie type almost simple groups G. An extensive analysis of the
situation whenG = An orSn shows that (G,G) can be described explicitly, unless a
vertex-stabilizer Gv is itself almost simple, primitive in its action on {1, 2, . . . , n},
and faithful in its action on N (v); this suggests that, for ‘large’ almost simple
groups G, a complete listing of the 2-arc transitive pairs (G,G) may be infeasible
(see [31, Sec. 6]).

By Theorem 7.1, all non-bipartite 2-arc transitive pairs (G,G) are normal cov-
ers of at least one quasiprimitive 2-arc transitive pair. It would thus be interest-
ing to know the extent to which the 2-arc transitive normal covers of the known
quasiprimitive 2-arc transitive pairs can be described or classified. The situation
for bi-quasiprimitive 2-arc transitive pairs is less well understood, and a better
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understanding depends to some extent on a better understanding of bi-quasi-
primitive groups. Currently, the best general analysis is for locally-quasiprimitive
pairs (G,G), in [24, Thm. 1.4]. The bi-quasiprimitive 2-arc transitive pairs (G,G),
in the special case where G is a group of affine transformations, were classified
by Ivanov and Praeger. Studying s-arc transitive pairs (G,G) by considering their
normal quotients has also yielded interesting information in the case where G has
odd order, as described in Li [23].

Theorem 7.4 If (G,G) is an s-arc transitive pair, and if G has odd order, then
s ≤ 3.

It may be possible to complete the classification of quasiprimitive 2-arc transitive
and 3-arc transitive pairs of odd order by using the classification of primitive per-
mutation groups of odd degree (see [9, Thm. 5.5]).

In 1968, Sims conjectured, in group-theoretic language, that for a finite primitive
symmetric pair (G,G), the order of a vertex-stabilizerGv must be bounded by some
function of the degree of G. Weiss and the author conjectured that the same should
be true for locally-primitive and locally-quasiprimitive symmetric pairs (see [24,
Sec. 6]).

Bounded stabilizer conjecture There exists an integer function f such that, if
(G,G) is a locally-quasiprimitive symmetric pair of degree k, then |Gv| ≤ f (k).

Sims’ conjecture was proved in 1983, using Theorem 3.1 together with detailed
information about finite simple groups (see [9, Thm. 5.10]). However, the Bounded
stabilizer conjecture is still open, both for locally-primitive and locally-quasiprimi-
tive pairs. Conder, Li and the author showed that, in the locally-primitive case, this
conjecture is true for non-bipartite graphs if and only if it holds in the special case
when the group G is almost simple (see [24, Sec. 6]). The proof used Theorems
7.1 and 7.2.

8. Finding automorphism groups

It is notoriously difficult to determine the full automorphism group of a graph G,

even if G is symmetric. In some cases, ad hoc combinatorial arguments can be used
to find a set of configurations (for example, a set of cycles of G) that must be left
invariant by the automorphism group. The fact that Aut(G) is contained in the set-
wise stabilizer in Sym(V ) of these configurations may facilitate the determination
of Aut(G).
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A more systematic study for some families of symmetric graphs uses group
theory; this has been possible for the class of primitive symmetric pairs. Suppose
that (G,G) is primitive, so that G is a primitive subgroup of Sym(V ). The group G
may be much smaller than Aut(G); for example, for the complete graph G = K8,
all the groups in the following subgroup chain are primitive on V and symmetric
on G:

PSL(2, 7) < AGL(3, 2) < A8 < Aut(G) = S8.

A general determination of the subgroups of Aut(G) containing a given vertex
primitive subgroup G requires a comprehensive knowledge of the subgroups of
Sym(V ) containing G. This latter information is available (see [31, Sec. 7]), and
has been applied to determine the primitive permutation groups that can act sym-
metrically on a graph and have a different socle from that of the full automorphism
group, as shown in [26].

Theorem 8.1 Suppose that (G,G) is a primitive symmetric pair. Then either G
and Aut(G) have the same socle, or there exists H such that G < H < Aut(G)
and H = soc(H)G, and G and H can be found explicitly.

However, as we have seen, for many families of symmetric pairs the primitive
members, although interesting, do not give a good guide to the structure of typical
members of the family. Some of these families are closed under forming normal
quotients, and typical graphs in these families are multicovers of their normal
quotients. It follows that the quasiprimitive and bi-quasiprimitive members are of
special interest, and so results like Theorem 8.1 for such graphs would be of great
value. To achieve such results, the first step would be to determine the subgroups
of Sym(V ) that contain a given quasiprimitive or bi-quasiprimitive group G. The
next step would be to apply this to study the subgroups of Aut(G) that contain G.
The situation is more complicated than the primitive case, since such subgroups
need not have the same properties. For example, there are quasiprimitive 2-arc
transitive pairs (G,G) for which Aut(G) is not quasiprimitive (see [31, Sec. 7]).

Given a finite quasiprimitive subgroup G of Sym(V ), most primitive subgroups
H containing G are determined in [2]. The cases that are not treated completely
are where G and H are both almost simple, and where H has product action type
PA and G has type TW or PA: dealing with these outstanding cases is a theme of
ongoing research of the author and others. These results are then applied in [33] to
determine the imprimitive quasiprimitive groups G < H < Sym(V ) for which G
and H have different quasiprimitive types or socles. Again, the cases that cannot
be treated completely are those where G and H are both almost simple, or where
H is of product action type PA.
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The most important unsolved problem in this area is the determination of im-
primitive quasiprimitive groups G < H < Sym(V ) for which G and H are both
almost simple. One of the more interesting challenges thrown up by this work is
to make a thorough investigation of Cartesian decompositions of the vertex-sets
that are preserved by quasiprimitive automorphism groups of symmetric graphs.

9. A geometric approach

The structure of distance-transitive graphs presents us with a tantalizing challenge
to find a similar methodology that might provide a way to analyse other classes
of symmetric graphs. We have seen that the class of connected symmetric pairs
(G,G) is closed under forming quotients, relative to G-invariant vertex-partitions
P; moreover, if P is G-normal and |P| > 2, then (G,G) is a normal multicover of
(GP ,GP ). However, in general, if P is not G-normal, then G is not a multicover
of GP and it is unclear how much information about G can be obtained from GP .
Also, the induced subgraph on a part p ∈ P is a null graph, and this provides no
additional insight into the structure of G.

In [16] it was suggested that, in addition to the quotient GP , two other combina-
torial configurations could be used to describe a symmetric pair (G,G). The first is
the bipartite subgraph G(p, p′) induced on the union p ∪ p′ of two adjacent parts
p, p′ ∈ P of GP . Since (GP , GP ) is symmetric, this subgraph is symmetric and is
independent (up to equivalence) of the choice of p and p′. The second configura-
tion is the incidence structure DP (p) induced by the adjacency relation on the pair
(p, NP (p)), where NP (p) is the set of parts adjacent to p in GP : a vertex v ∈ p
is incident with p′ ∈ NP (p) precisely when v is adjacent to some vertex in p′. An
initial study of how these configurations might aid an understanding of symmetric
graphs was made in [16], and a more extensive analysis in the case where GP is
a complete graph has been carried out in [17] and [18]. This approach raises a
fundamental question:

Under what conditions is G determined by the triple (GP ,DP (p), G(p, p′))?

The incidence structure DP (p) may be interpreted as a design with point-set p
and block-set NP (p). This suggests certain other questions that might not otherwise
be considered. For example, it is natural to study the case where DP (p) has ‘no
repeated blocks’ – that is, where the subsets of p incident with parts p′ and p′′

in NP (p) are distinct when p′ �= p′′. The role of this special case is particularly
striking if exactly |p| − 1 vertices of p are joined to some vertex of p′ – that is,
the blocks of DP (p) have size |p| − 1. An interesting family of examples is as
follows.
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Example Let H = (VH , EH ) be a finite connected regular graph of degree k ≥ 3,
and let � be a ‘self-paired’ set of 3-arcs of H : if (u, v, w, x) ∈ � then (x, w, v, u) ∈
�. The 3-arc graph Arc�(H ) is the graph whose vertices are the arcs of H, and
where (v, w) and (v′, w′) are adjacent if and only if (w, v, v′, w′) ∈ �.

If G is a subgroup of Aut(H ), then (Arc�(H ),G) is a symmetric pair if and
only if (H,G) is a symmetric pair and � is a G-orbit on the 3-arcs of H ; in this
case, P = {p(v) : v ∈ VH }, where p(v) = {(v, w) : w ∈ N (v)}, is a G-invariant
partition of the arcs of H with the property that DP (p(v)) has no repeated blocks,
and has block size |p(v)| − 1. It turns out that, for |p| ≥ 3, the 3-arc graphs are
the only examples with this property (see [25]).

Theorem 9.1 Suppose that (G,G) is a finite symmetric pair and that P is a G-
invariant vertex partition such that, for p ∈ P, � = |p| ≥ 3 and DP (p) has block
size � − 1. Then DP (p) has no repeated blocks if and only if (GP ,GP ) is 2-arc
transitive, and in this case, G ∼= Arc�(GP ) for some self-paired GP -orbit � on
the 3-arcs of GP .

Theorem 9.2 For (G,G) and P as in Theorem 9.1, the following properties are
equivalent: (GP ,GP ) is 3-arc transitive, G(p, p′) ∼= K�−1,�−1, and � is the set of
all the 3-arcs of GP .

Given our experience to date, one strategy for studying imprimitive symmetric
pairs (G,G) might be first to investigate proper normal quotients of order at least
3. If there are no such quotients, then (G,G) is quasiprimitive or bi-quasiprimitive,
and in this case we might study a triple (GP ,DP (p), G(p, p′)), where P is min-
imal. Here we have the additional information that (G,G) is quasiprimitive or
bi-quasiprimitive, and also that GN (v)

v is primitive.

10. Related families of graphs

Some classes of finite graphs possess interesting symmetry properties, but are
not quite symmetric. Although not the subject of this chapter, they have attracted
attention in the literature, and we mention them here to set the chapter in a slightly
wider context.

A connected graph G that is edge-transitive need not be vertex-transitive. In this
case, G is bipartite and Aut(G) has two orbits on vertices forming the bipartition.
If such a graph is regular, then it is called semi-symmetric and the first examples
were constructed by Folkman [15]. Alternatively if, for each vertex v, (Aut(G))v
is transitive on the set of s-arcs starting with v, then G is locally s-arc transitive.
By studying the possible amalgams of locally s-arc transitive graphs in which each
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vertex has degree at least 3, Stellmacher has shown that s ≤ 9. Also, a systematic
study of locally s-arc transitive graphs with s ≥ 2, using a similar approach to
Section 7, can be found in [19].

Similarly, a connected graph G that is edge-transitive and vertex-transitive need
not be symmetric. If it is not, then it has even degree and Aut(G) has two orbits
on arcs. A pair (G,G) is called half-arc transitive if G is transitive on vertices and
on edges, but not on arcs; examples of half-arc transitive pairs (G, Aut(G)), for
all even degrees, were constructed by Bouwer [6]. For a given transitive subgroup
G of Sym(V ), the half-arc transitive pairs (G,G) with vertex-set V are in one-one
correspondence with the orbital digraphs G(O), for non-self-paired G-orbitals O.

However, for a given half-arc transitive pair (G,G), the pair (G, Aut(G)) may be
symmetric, and deciding whether this is true may be difficult. Half-arc transitive
pairs (G,G) of degree 4 for which the stabilizers Gv have order 2 arise naturally
when studying the embeddings of graphs in surfaces (see [27]).

Infinite symmetric graphs of finite degree have already occurred in this chapter
as coset graphs of universal covers of some amalgams in Section 3. The general
study of such graphs is a separate and fruitful area of combinatorics, and a good
introduction may be found in [38].
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Strongly regular graphs

PETER J. CAMERON

1. An example
2. Regularity conditions
3. Parameter conditions
4. Geometric graphs
5. Eigenvalues and their geometry
6. Rank 3 graphs
7. Related classes of graphs
References

Strongly regular graphs form an important class of graphs which lie some-
where between the highly structured and the apparently random. This chapter
gives an introduction to these graphs with pointers to more detailed surveys
of particular topics.

1. An example

Consider the Petersen graph, shown in Fig. 1.

Fig. 1.
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This graph has far too many remarkable properties for even a brief survey here.
(It is the subject of an entire book by Holton and Sheehan [17].) We focus on a
few of its properties: it has ten vertices, is regular of degree 3, and has diameter 2
and girth 5.

These properties are not all independent: simple counting arguments show that
a trivalent graph with diameter 2 has at most ten vertices, with equality if and only
it has girth 5; dually, a trivalent graph with girth 5 has at least ten vertices, with
equality if and only it has diameter 2.

The conditions ‘diameter 2 and girth 5’ can be rewritten thus: any two adjacent
vertices have no common neighbours and any two non-adjacent vertices have
exactly one common neighbour. Replacing the particular numbers (10, 3, 0, 1) by
general parameters, we reach the definition of a strongly regular graph.

A strongly regular graph with parameters (n, k, λ, µ) is a graph on n vertices
which is regular of degree k and has the following properties:
� any two adjacent vertices have exactly λ common neighbours;
� any two non-adjacent vertices have exactly µ common neighbours.
So the Petersen graph is a strongly regular graph with parameters (10, 3, 0, 1).

The complete and null graphs are vacuously strongly regular, the parameters
µ and λ (respectively) being undefined for them. We often exclude these trivial
cases.

The four parameters are not independent. For any given vertex v, we count in
two ways the ordered pairs (x, y) of adjacent vertices for which x is adjacent to v,
but y is not. We obtain the following result.

Theorem 1.1 The parameters (n, k, λ, µ) of a strongly regular graph satisfy the
equation

k(k − λ − 1) = (n − k − 1)µ.

Later in this chapter we see that the parameters also satisfy various algebraic con-
ditions and inequalities. However, no complete characterization of the parameter
sets of strongly regular graphs is known.

This section concludes with three further basic facts about strongly regular
graphs.

Theorem 1.2

(a) The complement of a strongly regular graph is strongly regular.
(b) A strongly regular graph is disconnected if and only if it is isomorphic to

mKr (the disjoint union of m copies of Kr ), for some positive integers m and
r; this occurs if and only if µ = 0.

(c) Every connected strongly regular graph has diameter 2.
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2. Regularity conditions

We can put the definition of a strongly regular graph into a more general context as
follows. For each non-negative integer t , let C(t) be the following graph property.

Let S1 and S2 be sets of at most t vertices. If the induced sub-graphs on S1 and
S2 are isomorphic, then the number of vertices joined to every vertex in S1 is
equal to the number joined to every vertex in S2.

A graph satisfying C(t) is sometimes called t-tuple regular. In such a graph, let
λ(S) denote the number of common neighbours of a set of vertices inducing a
subgraph isomorphic to S, where S runs over all isomorphism types of graphs
with at most t vertices.

The conditions C(t) become stronger as t increases. C(0) is vacuous, and λ(∅)
is just the number of vertices of the graph G. A graph satisfies C(1) if and only if it
is regular: for each vertex v, λ(v) is the degree. A graph satisfies C(2) if and only if
it is strongly regular: λ (edge) and λ (non-edge) are the above parameters λ and µ.

In fact, the hierarchy is finite [7], as the following result shows.

Theorem 2.1 A graph that satisfies C(5) also satisfies C(t) for all non-negative
integers t . The only such graphs are nKr and its complement for all n and r ≥ 1,
the 5-cycle C5, and the 3 × 3 square lattice L(K3,3).

There are only two known examples (up to complementation) of graphs that
satisfy C(4) but not C(5): the Schläfli graph on 27 vertices and the McLaughlin
graph on 275 vertices. Infinitely many additional graphs satisfying C(3) are known;
all of them, except for L(Kn,n) (for n ≥ 4) and finitely many others, are associ-
ated with geometric objects such as quadrics in projective spaces and extremal
generalized quadrangles.

On the other hand, there is no shortage of graphs that satisfy C(0) or C(1). The
number of graphs on n vertices is asymptotic to 2n(n−1)/2/n!, while the number
of k-regular graphs is asymptotically equal to cknn(k−2)/2/n!, for 2 < k = o(

√
n).

(Estimates exist also for k ∼ cn; see Wormald [32].) For both graphs and regular
graphs, there are well-developed theories of random objects, including the assertion
that almost all of them have no non-trivial automorphisms – this explains the n!
in the denominators of the asymptotic formulas).

Strongly regular graphs stand on the cusp between the random and the highly
structured. For example, there is a unique strongly regular graph with parame-
ters (36, 10, 4, 2), but a computation by McKay and Spence [20] showed that
the number of strongly regular graphs with parameters (36, 15, 6, 6) is 32548.
This pattern continues: there is a unique strongly regular graph with parame-
ters (m2, 2(m − 1), m − 2, 2), but more than exponentially many strongly regular
graphs with parameters (m2, 3(m − 1), m, 6), as we will see. This suggests that
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no general asymptotic results are possible, and that, depending on the parameters,
strongly regular graphs can behave in either a highly structured or an apparently
random manner.

Another role of strongly regular graphs is as examples for graph isomorphism
testing algorithms. The global uniformity ensured by the definition makes it harder
to find a canonical labelling, while the super-exponential number of graphs means
that they cannot be processed as exceptions. Paley graphs and other strongly regular
(and similar) graphs have also been used as models of ‘pseudo-random graphs’
(see Thomason [28]).

Recently, Fon-Der-Flaass [14] has observed that an old construction of Wallis
[29] gives rise to more than exponentially many strongly regular graphs with
various parameter sets, which we discuss below. He also used these graphs to
establish the following result about the universality of strongly regular graphs.

Theorem 2.2 Each graph on n vertices is an induced subgraph of a strongly
regular graph on at most 4n2 vertices. This is within a constant factor of being
best possible.

It is not known whether such a universality result holds for graphs satisfying C(3).

3. Parameter conditions

The parameters of strongly regular graphs satisfy a number of restrictions, the
most important of which are described here.

Theorem 3.1 Let G be a strongly regular graph with parameters (v, k, λ, µ). Then
the numbers

f and g = 1
2

(
v − 1 ± (v − 1)(µ − λ) − 2k√

(µ − λ)2 + 4(k − µ)

)

are non-negative integers.

Proof Let A be the adjacency matrix of G. The fact that G is strongly regular
shows that

A2 = kI + λA + µ(J − I − A),

where J is the all-1 matrix. The all-1 vector j is an eigenvector of A with eigenvalue
1. Any other eigenvector of A is orthogonal to j, so the corresponding eigenvalue
satifies the quadratic equation

x2 = k + λx + µ(−1 − x).
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From this, we can calculate the two eigenvalues r and s and (using the fact that the
trace of A is 0) their multiplicities f and g, obtaining the given expressions. �

On the basis of this theorem, we can classify strongly regular graphs into two
types:

Type I (or conference) graphs: for these graphs, (v − 1)(µ − λ) − 2k) = 0.
This implies that λ = µ − 1, k = 2µ and n = 4µ + 1. (They are precisely the
strongly regular graphs with the same parameters as their complements.) It is
known that they exist if and only if v is the sum of two squares.
Type II graphs: for these graphs, (µ − λ)2 + 4(k − µ) is a perfect square d2,
where d divides (v − 1)(µ − λ) − 2k and the quotient is congruent to v − 1
(mod 2).

Examples of conference graphs include the Paley graphs P(q): the vertex-set of
P(q) is the finite field GF(q), where q is a prime power congruent to 1 (mod 4),
and v and w are adjacent if and only if v − w is a non-zero square in GF(q) (see
Paley [23]).

The ‘non-principal’ eigenvalues r and s of a Type II strongly regular graph are
integers with opposite signs. The parameters may be conveniently expressed in
terms of the eigenvalues as follows:

λ = k + r + s + rs, µ = k + rs.

Of the other conditions satisfied by the parameters of a strongly regular graph,
the most important are the Kreı̌n conditions, first proved by Scott [24] using a
result of Kreı̌n [18] from harmonic analysis. They state that

(r + 1)(k + r + 2rs) ≤ (k + r )(s + 1)2

and

(s + 1)(k + s + 2rs) ≤ (k + s)(r + 1)2.

The first bound is attained by a graph if and only if the second is attained by its
complement. As we shall see, the two inequalities are associated with the geometry
of the two non-trivial eigenspaces of the adjacency matrix.

Some parameter sets satisfy all known necessary conditions. We mention a few
of these here.

The pseudo-Latin square P Lr (n), with 1 ≤ r ≤ n, has parameters v = n2,

k = r (n − 1), λ = r2 − 3r + m, µ = r (r − 1); the significance of the name
will appear in the next section.
The negative Latin square N Lr (n), obtained by replacing r and n by their
negatives in the formulas just given. Since this gives λ = r2 + 3r − n, we
must have n ≥ r (r + 3); equality holds if and only if the Kreı̌n bound is
attained.
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Smith graphs, whose somewhat involved parameters will not be given here
(see [9, p. 111]). These parameters always attain the Kreı̌n bound.

These parameters arise in the following theorem of Cameron et al. [8]:

Theorem 3.2 Let G be a graph satisfying C(3). Then either G is the pentagon, or
its parameters are of pseudo-Latin square, negative Latin square, or Smith type.

4. Geometric graphs

The notion of a partial geometry was introduced by Bose [3] as a tool for studying
strongly regular graphs. Subsequently, partial geometries have been studied in their
own right, and the concept has been extended in various ways, not all of which are
related to strongly regular graphs. This section focuses only on the connections.

A partial geometry with parameters (s, t, α) is an incidence structure of points
and lines satisfying the following axioms:
� each line contains s + 1 points, and each point lies on t + 1 lines;
� two lines meet in at most one point, and two points lie on at most one line;
� if the point p does not lie on the line L , then there are precisely α incident pairs

(q, M), where q is a point of L and M is a line through p.
Note that Bose used slightly different parameters: he wrote R, K , T for what we
call s + 1, t + 1, α.

The dual of a partial geometry with parameters (s, t, α) is obtained by inter-
changing the names ‘point’ and ‘line’ for the two types of object, and dualizing
the incidence relation. It is a partial geometry with parameters (t, s, α).

The point graph of a partial geometry is the graph whose vertices are the points
of the geometry, with adjacency being defined by collinearity. The line graph is
the point graph of the dual geometry: its vertices are the lines, and adjacency is
given by concurrence.

Theorem 4.1 The point graph of a partial geometry with parameters (s, t, α) is a
strongly regular graph with parameters (n, s(t + 1), s − 1 + t(α − 1), (t + 1)α),
where n = (s + 1)(st + α)/α.

The proof of this result is straightforward.
Motivated by this, we say that a strongly regular graph G is geometric if it is the

point graph of a partial geometry, and that G is pseudo-geometric if its parameters
have the form given in Theorem 4.1, for some positive integers s, t and α. Some-
times we append the triple (s, t, α) to the term ‘geometric’ or ‘pseudo-geometric’.

Not every pseudo-geometric graph is geometric. Indeed, a pseudo-geometric
(s, t, α)-graph is geometric if and only if there is a collection L of (s + 1)-cliques
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with the property that each edge lies in just one clique of L . If some edge lies in no
(s + 1)-clique, then the graph is clearly not geometric, but if there are ‘too many’
cliques, it is often not clear whether a suitable collection can be selected.

The major result of Bose [3] can now be stated:

Theorem 4.2 (Bose’s theorem) Suppose that s, t and α are positive integers
satisfying

s > 1
2 (t + 2)(t − 1 + α(t2 + 1)).

Then any pseudo-geometric (s, t, α)-graph is geometric, and each edge of such a
graph lies in a unique (s + 1)-clique.

In order to see the power of this theorem, we look at partial geometries a little
more closely. We divide them into six types.

Linear spaces: the case α = s + 1. A point not on a line L is collinear with every
point of L . It follows that any two points lie on a unique line. Such structures are
also known as 2-designs, pairwise balanced designs or Steiner systems. The point
graph of a linear space is just a complete graph, and is of no interest.

We note in passing the asymptotic existence theorem of Richard Wilson [30]. A
necessary condition for a linear space with n points, and with s + 1 points on each
line, is that s divides n − 1 and s + 1 divides n(n − 1). In terms of s and t , this
is the single condition that s + 1 divides t(t + 1). Wilson showed the existence
of a function f (s) such that a linear space exists if t > f (s) and the necessary
condition is satisfied.

Dual linear spaces: the case α = t + 1. Here, the geometries are the duals of those
in the preceding case, but the graphs (the line graphs of linear spaces) are much
more interesting.

We examine two special cases. A linear space with two points on each line is
a complete graph Kn , and its line graph (the point graph of the dual) is the line
graph L(Kn). We have s = 1, α = 2 and t = n − 2, and the inequality in Bose’s
theorem reduces to n > 8. We have the following result.

Corollary 4.3 The graph L(Kn) is strongly regular and, for n > 8, it is the unique
strongly regular graph with its parameters.

The conclusion actually holds for all n �= 8. For n = 8, Chang [10] showed that
there are exactly four strongly regular graphs with parameters (28, 12, 6, 4). In the
literature on strongly regular graphs, L(Kn) is called the triangular graph T (n).

A linear space with three points on each line is a Steiner triple system. The fact
that a Steiner triple system with n points exists for all n ≡ 1 or 3 (mod 6) goes
back to Kirkman in 1847. More recently, Wilson [30] showed that the number v(n)
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of Steiner triple systems on an admissible number n of points satisfies

v(n) ≥ exp(n2 log n/6 − cn2).

Moreover, a Steiner triple system of order n > 15 can be recovered uniquely
from its line graph. Hence there are super-exponentally many strongly regular
graphs with parameters (n, 3s, s + 3, 9), for n = (s + 1)(2s + 3)/3 and s ≡ 0 or
2 (mod 3).

Transversal designs: the case s = α. In this case, it can be shown that there is a
partition of the points into subsets traditionally called ‘groups’ (although there is
no connection with the algebraic notion): each line is a transversal for the family
of groups, and any two points in different groups lie on a line. Thus, the point
graph is complete multipartite, and the partite sets are the groups.

Dual transversal designs: the case t = α. For t = 2, the graph is the line graph
of the complete bipartite graph Kn,n . Bose’s theorem then gives us the following
result.

Corollary 4.4 The graph L(Kn,n) is strongly regular, and for n > 4 is the unique
strongly regular graph with its parameters.

This holds for all n �= 4. Shrikhande showed that there are just two strongly regular
graphs with parameters (16, 6, 2, 2) – namely, L(K4,4) and one other, now called
the Shrikhande graph and defined below. In the literature on strongly regular
graphs, L(Kn,n) is called the square lattice graph L2(n).

If t > 2, for reasons which will become clear, we use new parameters n and r ,
where n = s + 1 and r = t + 1. The ‘groups’ dualize to become a partition of the
lines into ‘parallel classes’, each parallel class forming a partition of the points.
There are n lines in each parallel class, with n points on each, so the total number
of points is n2. The geometry is called a net of order n and degree r.

Select two parallel classes {V1, V2, . . . , Vn} and {H1, H2, . . . , Hn}. Then the
points can be represented as an n × n grid, where the lines Vi run vertically and
the Hj run horizontally, and the unique point on Vi and Hj can be labelled pi j .

Now let {L1, L2, . . . , Ln} be another parallel class of lines and construct an
n × n array � with ij-entry l if pi j ∈ Ll : then � is a Latin square of order n. By
reversing the construction, we find that any Latin square of order n gives rise to
a net of order n and degree 3. Since the number of Latin squares of order k is
asymptotically equal to exp(n2 log n − 2n2), we obtain super-exponentially many
strongly regular graphs with these parameters.

There are just two non-isomorphic Latin squares of order 4: the Cayley
tables of the Klein group and the cyclic group of order 4. They give rise to two
non-isomorphic strongly regular graphs with parameters (16, 9, 4, 6), whose com-
plements are L2(4) and the Shrikhande graph.
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If r > 3, we have r − 2 additional parallel classes, giving rise to r − 2 Latin
squares. It is easily checked that these Latin squares are mutually orthogonal: given
any two squares � and �′ and any given entries l, l ′, there is a unique cell in which
� and �′ have entries l and l ′. Conversely, a set of r − 2 mutually orthogonal Latin
squares of order n gives a net of order n and degree r, and hence a strongly regular
graph.

For this reason, the point graph of a net of order n and degree r is called a Latin
square graph, denoted by Lr (n). A pseudo-geometric graph with the parameters
of Lr (n) is the same as the pseudo-Latin square graph P Lr (n) defined earlier −
hence the name.

If n is a prime power, then there exists a set of mutually orthogonal Latin
squares of order n and of the maximum possible size n − 1; the corresponding
net is an affine plane of order n. Choosing all subsets of r − 2 of these squares,
where r ∼ cn for 0 < c < 1, we again obtain many strongly regular graphs with
the same parameters, but with only a fractional exponential number in this case.

Generalized quadrangles: the case α = 1. In this case the geometry is trivially
recoverable from its point graph, since an edge lies in a unique maximal clique.
There are ‘classical’ generalized quadrangles, related to the classical groups (the
symplectic, unitary and orthogonal groups), in much the same way as projective
planes are related to the projective groups PGL(3, q), and also non-classical ex-
amples, including some with non-classical parameters. Van Maldegham [21] has
surveyed these geometries.

Fon-Der-Flaass [14] has pointed out that some of Wallis’s graphs [29] and
variants of them have pseudo-geometric parameters corresponding to generalized
quadrangles with s = q + 1 and t = q − 1, or with s = t = q, or with s = q − 1
and t = q + 1, where q is a prime power. So there are super-exponentially many
graphs for these parameter sets.

The rest: with 1 < α < min{s, t}. Here some examples are known, but there is
much less theory.

We conclude this section with a reference to the work of Neumaier [22], which
improves Bose’s classical results. From Neumaier’s work, we quote two of his
most notable results.

Theorem 4.5 A strongly regular graph with parameters (v, k, λ, µ) and eigenval-
ues k, r, s with s < −1 and

r > 1
2 s(s + 1)(µ + 1) − 1

is the point graph of a dual linear space or a dual transversal design.
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The inequality reduces to Bose’s inequality in the pseudo-geometric case, but
Neumaier’s result applies without this assumption.

Theorem 4.6 For each negative integer m, there is a finite set L(m) of strongly
regular graphs with the following property: if G is any connected strongly regular
graph whose adjacency matrix has eigenvalue m, then G is a complete multipartite
graph with block size −m, or the point graph of a dual linear space or a dual
transversal design with t + 1 = −m, or a member of the list L(m).

For m = −1 the result is trivial. For m = −2 it was proved by Seidel [25] that
the set L(−2) contains only the Petersen, Clebsch, Schläfli, Shrikhande, and three
Chang graphs. However, all but twelve of the 32,548 graphs with parameters (36,
15, 6, 6), mentioned earlier, belong toL(−3): only twelve come from Latin squares.

5. Eigenvalues and their geometry

Let G be a strongly regular graph with vertex-set V = {v1, v2, . . . , vn} and ad-
jacency matrix A. As we have seen, A has just three distinct eigenvalues k, r
and s, with multiplicities 1, f and g, respectively (so that 1 + f + g = n); the
eigenvector associated to the eigenvalue k is the all-1 vector. Thus,

A = kE0 + rE1 + sE2,

where E0, E1, and E2 are the orthogonal projections of Rn onto the three eigen-
spaces V0, V1 and V2 of A.

We now fix attention on one of the non-trivial eigenspaces (V1, say) and consider
the projections of the vertices (the basis vectors of Rn) onto V1. Thus, let xi = vi E1,
for i = 1, 2, . . . , n. The basic property of these vectors is the following.

Theorem 5.1 There are real numbers α, β and γ , expressible in terms of the
parameters of G, such that the inner products of the vectors xi are given by

〈xi , x j 〉 =



α, if vi = v j ;
β, if vi ∼ v j ;
γ, if vi �= v j and vi�v j .

Moreover, if G is connected and not complete multipartite, then xi �= x j for i �= j .

In particular, if G is connected and not complete multipartite (as we assume for
the rest of this section), then the vectors x1, x2, . . . , xn lie on a sphere of radius

√
α

in R f , and the angular distances between them take one of two possible values:
arccos β/α (for adjacent vertices) and arccos γ /α (for non-adjacent vertices). It
is convenient to re-scale the vectors by 1/

√
α so that they lie on the unit sphere.
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Delsarte et al. [11] have proved the following result:

Theorem 5.2 The cardinality n of a two-distance set on the unit sphere in R f

satisfies

n ≤
(

f + 2
2

)
− 1.

This result can be translated into an inequality on the parameters of a strongly
regular graph, which is the so-called absolute bound. The same authors also gave
a special bound that depends on the values of α, β and γ – that is, on the actual
distances realised by the set; it does not apply for all values of the parameters, but
x is sometimes more powerful than the absolute bound.

A set X = {x1, x2, . . . , xn} of vectors lying on the unit sphere � = S f −1 in
Euclidean space R f is a spherical t-design if, for any polynomial function F of
degree at most t , we have

1

n

n∑
i=1

F(xi ) = 1

vol �

∫
�

F(x)dx.

In other words, the finite set ‘approximates the sphere up to degree t’. For small
t , there is a mechanical interpretation. Place unit masses at the points of X . Then
X is a spherical 1-design if and only if the centre of mass is at the origin, and is
a spherical 2-design if, in addition, the inertia ellipsoid is a sphere – that is, the
moments of inertia are all equal and the products of inertia are 0.

Theorem 5.3 Let G be a connected strongly regular graph that is not complete
multipartite, and let X be the projection of the vertex-set of G onto a non-trivial
eigenspace, re-scaled to lie on the unit sphere. Then

(a) X is a spherical 2-design.
(b) X is a spherical 3-design if and only if the Kreı̌n bound corresponding to this

eigenspace is attained – this implies that G satisfies C(3).
(c) X is a spherical 4-design if and only if the absolute bound is attained – this

implies that G satisfies C(4).
(d) X is never a spherical 5-design.

We saw that the parameters of a graph satisfying C(3) (apart from the pentagon
C5) are either of pseudo-Latin square or negative Latin square type, or of Smith
type. Such a graph gives a spherical 3-design if and only if it attains the Kreı̌n
bound. All Smith graphs, and also the pentagon, attain this bound, but no graph of
pseudo-Latin square type does. For graphs N Lr (n) of negative Latin square type,
a 3-design arises if and only if n = r (r + 3). Only two such graphs are known, the
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Clebsch graph on 16 vertices (r = 1) and the Higman-Sims graph on 100 vertices
(r = 2).

We obtain a spherical 4-design in the smaller eigenspace if and only if the graph
G is C5 or a so-called ‘extremal Smith graph’. Two examples of extremal Smith
graphs are known, the Schläfli graph on 27 vertices and the McLaughlin graph on
275 vertices.

Information on the geometry of eigenspaces for more general classes of graphs
is given in Chapter 3; see also Godsil [15].

6. Rank 3 graphs

Looking again at the picture of the Petersen graph with which we began, we see
that it has five-fold symmetry, and indeed has the symmetry of a regular pentagon
(the dihedral group of order 10). In fact, there is more symmetry that is not visible
in the diagram. This graph has a well-known representation as the complement
of the line graph of K5 – that is, the vertices can be labelled with the 2-element
subsets of {1, 2, 3, 4, 5} in such a way that two vertices are adjacent if and only
if their labels are disjoint. Now the symmetric group S5, in its induced action on
the vertex labels, acts as a group of automorphisms of the graph. It is not hard to
show that S5 is the full automorphism group. Moreover, S5 acts transitively on the
set of adjacent pairs of vertices and on the set of non-adjacent pairs of vertices.

A graph G is a rank 3 graph if it admits a group G of automorphisms with the
property that G acts transitively on the set of vertices, on the set of ordered pairs of
adjacent vertices, and on the set of ordered pairs of non-adjacent vertices. The term
comes from permutation group theory, where the rank of a transitive permutation
group G on a set � is the number of orbits of G on the set of ordered pairs of
elements of �. In the case of a rank 3 graph, with � = V (G), the three orbits are
{(v, v) : v ∈ V (G)}, {(v, w) : v ∼ w} and {(v, w) : v �= w, v � w}.

Theorem 6.1
(a) Every rank 3 graph is strongly regular.
(b) Let G be a transitive permutation group with rank 3 and even order. Then

there is a rank 3 graph G admitting G as a group of automorphisms.

Proof
(a) This follows from the fact that the number of neighbours of a vertex (or

common neighbours of a pair of vertices) is the same as the number of
(common) neighbours of any image under an automorphism.

(b) The group G has just two orbits O1 and O2 on ordered pairs of distinct
elements of �. Now, for any orbit O , the set O∗ = {(w, v) : (v, w) ∈ O} is
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also an orbit, so either O∗
1 = O1 or O∗

1 = O2. However, since G has even
order, it contains an element g of order 2 that interchanges two points v, w of
�. If (v, w) ∈ Oi , then O∗

i = Oi , so the first alternative holds.
Now let the graph G have vertex-set �, with v ∼ w whenever

(v, w) ∈ O1. Our argument shows that the graph is undirected: clearly it
admits G as a rank 3 group of automorphisms. �

This is a special case of the general construction of G-invariant graphs in Chap-
ter 5. Note that by this construction the orbits O1 and O2 give rise to complementary
strongly regular graphs.

A major result in permutation group theory, which relies heavily on the clas-
sification of finite simple groups, is the determination of all rank 3 permutation
groups. We outline the argument here.

Let G be a rank 3 permutation group on �. Recall that G is imprimitive if
G preserves a non-trivial equivalence relation, and primitive otherwise. Now, if
G is imprimitive, and ≡ is the equivalence relation preserved by G, then the
sets

{(v, w) : v ≡ w, v �= w} and {(v, w) : v �≡ w}
are G-invariant, and so must be the two G-orbits on pairs of distinct points. The cor-
responding graphs are disjoint unions of complete graphs and their complements,
so we may assume that G is primitive.

The basic analysis of such a group is done by considering the socle of G, the
product of its minimal normal subgroups. It follows from the O’Nan-Scott theorem
that one of three possibilities must occur for the socle N of G (see Chapter 7,
Section 3):
(a) N is an elementary abelian group and acts regularly;
(b) N is a non-abelian simple group;
(c) N is the direct product of two isomorphic non-abelian simple groups.

In case (a), because its action is regular,N can be identified with the set of points
permuted, and is the additive group of a vector space V over the field Fp, for some
prime p. The subgroup H that fixes the origin is a group of linear transformations
of V , with two orbits X1 and X2. In our case, the orbits satisfy X1 = −X1 and
X2 = −X2, and the complementary graphs G1 and G2 have vertex-set V and
satisfy v ∼ w in Gi if and only if v − w ∈ Xi . So the classification in this case
is reduced to finding groups of matrices over Fp with just two orbits (each closed
under negation) on non-zero vectors. Examples include the following:
� The multiplicative group of the non-zero squares in Fq , where q ≡ 1 (mod 4):

the orbits are the sets of squares and non-squares in Fq , and both graphs (which
happen to be isomorphic) are the Paley graph P(q).
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� The orthogonal group preserving a non-degenerate quadratic form Q over F2:
the orbits are the sets of non-zero vectors v satisfying Q(v) = 0 or 1. Such
forms can be defined on spaces of even dimension, and there are just two
inequivalent forms; for example, in dimension 4, the quadratic forms

x1x2 + x3x4 and x1x2 + x2
3 + x3x4 + x2

4

give the graphs L2(4) (and its complement) and the Clebsch graph (and its
complement), respectively. In general, these graphs occur among Thomason’s
pseudo-random graphs [28]. They are of pseudo- or negative Latin square type,
and satisfy C(3).

The complete list of linear groups with two orbits on non-zero vectors was deter-
mined by Liebeck [19].

In case (b), where the socle N of G is non-abelian and simple, the classifica-
tion of finite simple groups shows that it must be an alternating group, a group
of Lie type, or one of the twenty-six sporadic groups. Moreover, the O’Nan-
Scott theorem gives the extra information that G lies between N and its auto-
morphism group, where N is embedded in Aut(N ) as the group of inner auto-
morphisms.

The combined efforts of a number of mathematicians, including Bannai, Kantor,
Liebler, Liebeck and Saxl, have determined all rank 3 actions of ‘almost simple’
groups – that is, groups lying between a simple group and its automorphism group.
Examples include the following.

� The symmetric group Sn (for n ≥ 5) acts on the set of 2-element subsets of
{1, 2, . . . , n} giving the triangular graph T (n) and its complement.

� The projective group PGL(n, q) (for n ≥ 4) has a rank 3 action on the set of
lines of the projective space: the orbits are the sets of intersecting pairs and
skew pairs of lines.

� A classical group (one preserving a polarity of a projective space) acts on the
set of self-polar points of the projective space: these form the polar space
associated with the polarity; the action has rank 3, except in a few low-
dimensional cases where it is doubly transitive. For a few cases involving small
fields, the action on the non-self-polar points also has rank 3.

� There are also various ‘sporadic’ examples, such as PSU(3, 52) acting on the
vertices of the Hoffman-Singleton graph, or the Higman-Sims group acting on
the vertices of the Higman-Sims graph.

Several of the sporadic simple groups were first constructed as groups of auto-
morphisms of strongly regular graphs: these were the Hall-Janko, Higman-Sims,
McLaughlin, Suzuki, Fischer and Rudvalis groups.
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In case (c) of the O’Nan-Scott theorem, the socle N of G is the direct product
of two isomorphic simple groups. The analysis leading to this case shows that the
rank 3 graphs that arise are the lattice graphs L2(n) and their complements.

7. Related classes of graphs

There are many generalizations and variants of strongly regular graphs. In this
section we introduce a few of these: distance-regular graphs, association schemes,
walk-regular graphs, edge-regular graphs, Deza graphs and strong graphs.

A connected graph G of diameter d is distance-regular if there are constants
ci , ai and bi , for 0 ≤ i ≤ d, such that, if u and v are vertices at distance i , then the
numbers of vertices w such that w ∼ v and w is at distance i − 1, i and i + 1 from
u are ci , ai and bi , respectively. The numbers ci , ai and bi are the parameters of
the graph; note that c0, a0 and bd are 0.

Every distance-regular graph is regular with degree b0 = k. Also,

ci + ai + bi = k for all i, and c1 = 1;

thus there are 2d − 3 ‘independent’ parameters. A distance-regular graph of di-
ameter 2 is the same thing as a connected strongly regular graph and then λ = a1

and µ = c2.
A connected graph G is distance-transitive if there is a group G of automor-

phisms of G such that, for any two pairs (v1, w1) and (v2, w2) of vertices satisfying
d(v1, w1) = d(v2, w2), there is an automorphism g ∈ G that maps v1 to v2 and w1

to w2. Any distance-transitive graph is distance-regular, and a distance-transitive
graph of diameter 2 is the same thing as a connected rank 3 graph.

The determination of all distance-transitive graphs is not yet complete: this
class of graphs is discussed further in Chapter 9. Further information about
distance-regular and distance-transitive graphs can be found in Brouwer, Cohen
and Neumaier [6].

Many distance-regular graphs are not distance-transitive, but such graphs be-
come less common as the diameter increases. However, as shown by Egawa
[12], there exist distance-regular graphs of arbitrarily large diameter that are not
distance-transitive.

The adjacency matrix of a regular connected graph of diameter d has at least
d + 1 distinct eigenvalues, one of which is the degree, and distance-regular graphs
attain this bound. As we have seen, a regular connected graph has precisely three
eigenvalues if and only if it is strongly regular. However, for d ≥ 3, there are regular
connected graphs of diameter d with d eigenvalues that are not distance-regular.
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The first examples were constructed by Bridges and Mena [4], but the study of this
interesting class of graphs has not yet progressed much beyond the collection of
examples.

Looking more closely at distance-regular graphs, we can show that there are
constants pk

i j , for 0 ≤ i, j, k ≤ d, with the property that, given vertices u and v

with d(u, v) = k, the number of vertices w such that d(u, w) = i and d(w, v) = j
is precisely pk

i j . We can generalize this as follows.
Suppose that the ordered pairs of points of a set � are partitioned into s + 1

classes C0, C1, . . . , Cs with the following properties:
the diagonal {(v, v) : v ∈ �} is a single class C0;
each class Ci is symmetric (that is, if (u, v) ∈ Ci then (v, u) ∈ Ci );
given i, j, k ∈ {1, 2, . . . , s} and (u, v) ∈ Ci , the number of w such that

(u, w) ∈ C j and (w, v) ∈ Ck depends only on i, j and k, and not on (u, v).
Such a structure is called an association scheme. Thus, any distance-regular graph
gives rise to an association scheme. More about association schemes can be
found in Bannai and Ito [2], Godsil [15] and Bailey [1]. A still more general
concept is a coherent configuration, where the relations are not required to be
symmetric.

Association schemes were originally used in experimental design by Bose and
his school. Suppose that an experiment is being performed on a number of exper-
imental units that are divided into b blocks of size k – for example, k fields on
each of b farms, or k patients in each of b hospitals. We want to apply a number
v of different treatments in such a way that no treatment occurs more than once
in the same block. It is clearly a good idea to arrange that any two treatments
occur together in a block the same number of times, if possible; such a design is
called balanced. However, Fisher showed that, if k < v, this is not possible unless
v ≤ b: thus, to test more treatments, we must relax the condition of balance. Bose
observed that the best approach is to have an association scheme on the set of
treatments, and to arrange that the number of times that two treatments u and v

occur together in a block depends only on which associate class Ci contains (u, v).
Such a design is called partially balanced; see [1] for more information.

Indeed, this is a case where the applications preceded the theory, and the gen-
eralization preceded the special case. Partially balanced designs were defined by
Bose and Nair in 1939. During the 1950s, association schemes became of interest
in their own right, but it was not until Bose’s 1963 paper [3] that the term ‘strongly
regular graph’ was introduced.

A graph G is walk-regular if, for each non-negative integer i and vertex v, the
number of closed walks of length i starting at v depends only on i , and not on v;
equivalently, a graph is walk-regular if the characteristic polynomials of all of its
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vertex-deleted subgraphs are the same. The class of walk-regular graphs includes
both the vertex-transitive graphs and the distance-regular graphs, and is contained
in the class of regular graphs; see Godsil [15] for more about these graphs.

Recall that a strongly regular graph is defined by three conditions:
(a) each vertex has k neighbours;
(b) any two adjacent vertices have λ common neighbours;
(c) any two non-adjacent vertices have µ common neighbours.
We can weaken the definition by requiring only two of these conditions to hold.
A graph satisfying (a) and (b) is edge-regular, and a graph satisfying (b) and (c)
is a Deza graph (see [13]). The class of graphs satisfying (a) and (c) has not been
studied, except in special cases.

More systematically, recall that a graph is t-tuple regular (that is, it satisfies
the property C(t)) if the number of common neighbours of a set S with at most t
vertices depends only on the isomorphism type of the induced subgraph on S. Let
us say that a graph satisfies property R(t) if this condition holds for sets S with
|S| = t ; thus, a Deza graph satisfies R(2), but not necessarily R(1). It seems that
no systematic study has been made of the possible sets of integers t for which R(t)
can hold in a graph.

A variant of Deza graphs was introduced earlier by Seidel, who defined a strong
graph to be one with the property that, for any two vertices u and v, the number
of vertices joined to just one of the two depends only on whether or not u and v

are joined. Using a modified adjacency matrix B with 0 on the diagonal, −1 for
adjacent vertices and +1 for non-adjacent vertices, we find that

(B − ρ1I)(B − ρ2I) = (n − 1 + ρ1ρ2)J,

for some integers ρ1 and ρ2. It follows that, if n − 1 + ρ1ρ2 �= 0, then the graph is
regular and thus strongly regular. In the remaining case, when n − 1 + ρ1ρ2 = 0,
the graph need not be regular; such special strong graphs are closely connected
with regular two-graphs (see below).

The operation σX of switching a graph G with respect to a set X of vertices is
defined as follows: edges between X and its complement are ‘switched’ to non-
edges, and non-edges are switched to edges; adjacencies within X or outside X
remain unaltered. Switching with respect to all subsets generates an equivalence
relation on the class of all graphs on a fixed vertex-set V . It is easy to see that, if
T is the set of 3-subsets of V that contain an odd number of edges of G, then T
is unaltered by switching. Moreover, a set T of triples arises from a graph in this
way if and only if each 4-set contains an even number of members of T ; such a
set is called a two-graph. Thus, there is a bijection between the set of two-graphs
on V and the set of switching equivalence classes on V .
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Switching a graph G has the effect of pre- and post-multiplying the (0,−1, +1)
adjacency matrix of G (defined above) by a diagonal matrix with entries 1 and −1.
The matrix equation

(B − ρ1I)(B − ρ2I) = 0,

satisfied by special strong graphs, is unaffected by this, so if a graph satisfies this
equation, then so do all graphs in its switching class. In this case the corresponding
two-graph is called regular. Regular two-graphs are also characterized by the
property that any two vertices in V lie in a constant number of triples in T .

There are many connections between regular two-graphs, strongly regular
graphs, sets of equiangular lines in Euclidean space, doubly transitive permu-
tation groups, antipodal distance-regular graphs of diameter 3, and several other
topics. We refer to Seidel’s surveys [26] and [27].
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In this chapter we investigate the classification of distance-transitive graphs:
these are graphs whose automorphism groups are transitive on each of the
sets of pairs of vertices at distance i, for i = 0, 1, . . . . We provide an in-
troduction into the field. By use of the classification of finite simple groups,
it seems possible to find all distance-transitive graphs. Priority is given to
the classification of the so-called primitive ones. We give an account of the
achievements in this direction.

1. Introduction

An automorphism of a graph reflects the symmetry of the graph. A high degree of
symmetry can be related to both aesthetics and efficiency. It is often the apparent
symmetry of a graph when pictured in the plane or in space that makes viewing it a
pleasant activity. If the graph has a high degree of symmetry, a set of permutations
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of the automorphism group of the graph can be used to describe the graph rather
succinctly: we just list a few edges, and assert that the others can be obtained as im-
ages of those given under successive applications of the generating permutations.
Since groups can be generated by relatively small sets of permutations – for any
finite simple group, two generators suffice! – this representation of a graph can
be much more efficient than listing all the edges. An extreme example is the
complete graph on the vertex-set {1, 2, . . . , n}, that can be described by say-
ing that {1, 2} is an edge and that the permutations (1 2) and (1 2 3 . . . n) are
automorphisms.

In this chapter, we are interested in the case where the automorphism group
of the graph is as large as possible. There are various interpretations of largeness,
most of which use the transitivity of the group on sets of vertices sharing (possibly)
common substructures; for instance, we might require that the group be transitive
on the set of all paths in the graph of a certain length. Here we focus on one
particular interpretation of the group being large.

2. Distance-transitivity

Let G be a connected graph of diameter d, and let G be a group of automorphisms
of G. Recall that d(x, y) is the distance between the vertices x and y of G. Then
the group G is distance-transitive on G if it is transitive on each of the relations
Gi = {(x, y) ∈ G × G : d(x, y) = i}, where i = 0, 1, . . . , d. A graph is distance-
transitive if its automorphism group is distance-transitive on it.

As an example, if G = Kn is the complete graph on {1, 2, . . . , n} and G is the
symmetric group Sn , then G is clearly transitive on the vertex-set, and hence on
G0 = {(x, x) : x ∈ G}. Moreover, the diameter of G is 1. Let (x, y) ∈ G1; then
x �= y. It is readily seen that the pair (x, y) can be mapped to the pair (1, 2) by means
of an element of Sn – for instance, if x �= 1, 2 and y �= 1, 2, then the permutation
(1, x)(2, y) works. So Sn is transitive on G1, and hence is distance-transitive.

A bipartite graph G = Kn,n with parts of size n is also distance-transitive. Any
permutation that interchanges the two parts is an automorphism, and so is any
permutation that preserves both parts. The diameter is 2, and so we have to check
the transitivity of the automorphism group on the three sets Gi , for i = 0, 1, 2.
If i = 0, the transitivity assertion means the transitivity on the vertex-set, which
is immediate from the presence of the above-mentioned automorphisms. If i = 1,
then we have a pair (x, y) with x in one part and y in the other. But then we
can move this pair to any other pair of this kind by permutations that preserve
both parts. Finally, if i = 2, then we have two points in the same part. They can
be moved simultaneously to the other part, or to any other pair in the part to
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which they belong. It follows that the automorphism group of Kn,n is distance-
transitive.

The diameters of the distance-transitive graphs introduced so far have been
restricted to 1 and 2. The following example gives distance-transitive graphs with
arbitrarily large diameters; recall that the stabilizer of a vertex x in a group G is
the subgroup Gx := {g ∈ G : xg = x} of G.

Example 2.1 Let d and n be positive integers, with d ≤ n/2. The Johnson graph
J(n, d) has as its vertex-set the d-subsets of X = {1, 2, . . . , n}, with adjacency
defined by x ∼ y if and only if |x ∩ y| = d − 1. Its diameter is d. The group
G = Sn is a distance-transitive group of automorphisms on this graph, with vertex-
stabilizer Sd × Sn−d .

For d = 1, we recover the complete graphs. For d = 2, the complement of
a distance-transitive graph, if connected, is again distance-transitive. The graph
J (4, 2) is the complement of three disjoint copies of K2, and J (5, 2) is the com-
plement of the well-known Petersen graph of degree 3 (Fig. 1).

Let us take a closer look at distance-transitive groups of automorphisms of
graphs of diameter 1; here the graph is a complete graph Kn . A permutation group
on a set V is called doubly transitive (or 2-transitive) if it is transitive on the set
{(x, y) ∈ V × V : x �= y} of all pairs from V . The following theorem shows that
Sn need not be the only distance-transitive automorphism group on Kn .

Theorem 2.1 A group is a distance-transitive group of automorphisms of Kn if
and only if it is doubly transitive on its vertex-set.

If n ≥ 4, then An is a proper and doubly transitive subgroup of the automor-
phism group Sn of Kn . There are many more examples. The doubly transitive
permutation groups have been determined by means of the classification of finite
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simple groups (see Cameron [15]), so the distance-transitive groups of automor-
phisms of graphs with diameter d = 1 are all known.

In this smallest diameter case, we encounter some of the properties that
will recur for all d. One of them is the phenomenon that it is easier to classify
distance-transitive graphs than to classify distance-transitive groups. If G admits
a distance-transitive group, then Aut(G) acts distance-transitively; but when G is
distance-transitive, it is harder to establish which subgroups of Aut(G) are still
distance-transitive on G.

Another property valid for all diameters d is that, when G acts distance-tran-
sitively on G, it has permutation rank d + 1 on V (G) – that is, the number of orbits
of G on V (G) × V (G) is d + 1; here, each Gi (i = 0, 1, . . . , d) is an orbit. As we
have seen, this obvious fact is both necessary and sufficient for the case d = 1. It
does not suffice for higher d, but it is close to being sufficient for d = 2.

We will consider graphs G with vertex-set V for which G is a group of auto-
morphisms of G; such a graph is a G-invariant graph structure on V . The next
example shows that a G-invariant graph structure on a vertex-set V constructed
from a transitive permutation representation of G on V need not be connected.

Example 2.2 Consider the permutation group G on the set V = {1, 2, 3, 4, 5, 6}
generated by the three permutations

a = (1 6 3 2 5 4), b = (1 5 3)(2 4 6), c = (2 6)(3 5).

Clearly, G is transitive on V . The stabilizer of 1 in G is the subgroup H generated
by a2b = (2 6 4) and c; this can be verified by using the algorithms explained
in Chapter 10. Besides {1}, the subgroup H of G has orbits K = {2, 6, 4} and
L = {3, 5} on V . SinceG is transitive on V , its permutation rank equals the number
of H-orbits on V , which is 3.

If G is a connected G-invariant graph structure on V , vertex 1 must have a
neighbour. Since H fixes 1 and consists of automorphisms of G, the presence of a
vertex x in the neighbourhood of 1 implies that all vertices in the H-orbit of x are
adjacent to 1. Thus, apart from the complete graph on V , there are two possibilities:
either K or L is the set of all neighbours of 1.

If we let K be the neighbours of 1, then the whole graph G is determined
by the fact that two vertices are adjacent whenever they are in the same G-orbit
as (1 x), for some (and hence all) x ∈ K . We find the other graph by taking L
instead of K . The two graphs are shown in Fig. 2. The graph defined by L is
the disjoint union of two 3-cycles, {1, 3, 5} and {2, 4, 6}. It turns out that the
diameter of a G-invariant graph structure is not necessarily e − 1, if e is the
permutation rank. The graph defined by K is the complement of the graph de-
fined by L; it is the complete bipartite graph K3,3 on V , whose parts are {1, 3, 5}
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and {2, 4, 6}. The diameter of K3,3 is 2, which is one less than the permutation
rank.

The construction of the graph G from the group G using the subgroup orbit K
works well, because the G-orbit of a pair (1, k) with k ∈ K is self-paired – that is,
it also contains (k, 1). Self-pairedness is necessary for an orbit on pairs to define
the adjacency of a graph structure, since otherwise the graph definition would lead
to a directed graph.

The group G has size 36, whereas the full automorphism group of K3,3 has
order 2 · 62 = 72 (see Chapter 5, Theorem 1.1), so this is another example of a
proper distance-transitive subgroup of the full automorphism group of a graph.

In conclusion, when we build distance-transitive graphs on a vertex set V by
use of a permutation group on V , we need criteria for self-pairedness of orbits on
pairs and for connectedness of the graph in terms of the group. This will be the
topic of the next section.

3. Graphs from groups

Applying the definition of distance-transitivity with i = 0 and i = 1, respectively,
we find that a distance-transitive group G of automorphisms on a graph G is
transitive on both the vertex-set V (G) and on the edge-set E(G) of G. It can
therefore be described in terms of a subgroup H of G and an element r of G. To
see this, take H = Gv , the stabilizer in G of a vertex v of G, and choose r ∈ G in
such a way that vr is adjacent to v. Then G is isomorphic (with equivalence of the
G-actions) to the graph G(G,H, r ), whose vertex-set is G/H (the set of cosets of
H in G) and whose adjacency ∼ is given by Hx ∼ Hy when y ∈ HrHx .

Theorem 3.1 Let G be a group of automorphisms of a graph G. If G is transitive
on the vertex-set and the edge-set of G and v is a vertex, then G is isomorphic to
G(G,H, r ) where H = Gv and r ∈ G is chosen so that {v, vr} is an edge of G.

In fact, the isomorphism between G and G(G,H, r ) can even be chosen to preserve
the G-actions on the vertex-sets.
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In the identification of V = {1, 2, . . . , 6} of Example 2.2 with cosets of H in
G, the coset Hr with r = a2 corresponds to 3, a member of L . The subgroup of
G generated by H and r does not coincide with G, since it leaves invariant the
subset {1, 3, 5} of V , whereas G is transitive on V . This implies that the graph on
V built using L cannot be connected: the connected component containing 1 does
not reach an even-labelled vertex.

Suppose that we are given a permutation group G on a vertex-set V , a subgroup
H of G, and an element r ∈ G. Then the above-defined construction for G(G,H, r )
leads to a directed graph that need not be a graph: it is a graph if and onlyHx ∼ Hy
implies that Hy ∼ Hx , for all x, y ∈ G. This is readily seen to be equivalent to
self-pairedness of the G-orbit on (G/H) × (G/H) containing (H,Hr ); in turn, this
is equivalent to r−1 ∈ HrH. In Example 2.2, taking r = a, we find that r−1 =
(a2b)r (a2b) ∈ HrH, so the G-orbit containing (1 1a) = (1 6) is self-paired and
G(G,H, a) is indeed a graph. In conclusion, we have the following criteria for
connectedness of G(G,H, r ) (disregarding the directions of the edges) and for
self-pairedness of the adjacency orbit.

Theorem 3.2 Let G be a group with subgroup H, and let r ∈ G. Let G be the
directed graph whose vertices are the cosets Hg, for g ∈ G, and in which two
vertices Hx,Hy are adjacent if and only if y ∈ HrHx. Then:
� G is connected if and only if 〈H, r〉 = G;
� G is undirected if and only if r−1 ∈ HrH.

Apart from the anomalies illustrated by the above example, the picture is satis-
factory for d = 2 in that transitive groups with permutation rank 3 give rise to
distance-transitive group actions on graphs with diameter 2.

Theorem 3.3 Let G act transitively on a set V. Then G is distance-transitive on a
G-invariant graph structure on V with diameter 2 if and only if it is transitive of
rank 3 on V, with self-paired orbits on pairs.

In view of Theorem 3.2, the only part of the proof that needs attention is the
existence of a connected G-invariant graph structure in the ‘if’ part. If G has per-
mutation rank 3 on a subgroup H, then there are vertices r, s ∈ G such that

G = H ∪ HrH ∪ HsH.

Suppose that all orbits on pairs are self-paired. Then, by Theorem 3.2, both
G(G,H, r ) and G(G,H, s) are well-defined graphs. Since they are complements
of each other, at least one of them is connected.

As a consequence of the classification of finite simple groups, all rank 3 permu-
tation groups are known (see [13, p. 229]). We next show that a rank 4 permutation
group does not necessarily lead to a graph on which it acts distance-transitively.
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Example 3.1 Consider the Mathieu group M11 on 11 letters, the smallest sporadic
simple group. It can be realized as the permutation group on � = {1, 2, . . . , 11}
generated by the permutations

(1 2 3 4 5 6 7 8 9 10 11) and (3 7 11 8)(4 10 5 6).

The M11-orbit V of the 6-subset v = {1, 11, 6, 9, 3, 7} of � has 66 elements. We
shall analyse the M11-invariant graph structures on V . The stabilizer H in M11 of v

has size 120 (in accordance with |M11| = 66 × 120 = 7920), by the famous result
of Lagrange that the cardinality of an orbit is the quotient of the group order and
the stabilizer order. The subgroup H is transitive on v and on �\v, and is easily
identified with the symmetric group S5.

Let Vi be the set of elements w ∈ V for which |v ∩ w| = i . Then

|V1| = 0, |V2| = 15, |V3| = 20, |V4| = 30, |V5| = 0.

Moreover, H is transitive on each of V2, V3 and V4, and so M11 has a transitive
permutation representation on V of permutation rank 4. Since all H-orbit sizes are
distinct, each orbit on pairs must be self-paired. We can therefore define three non-
trivial M11-invariant graph structures on V , according as V2, V3 or V4 is chosen as
the set of neighbours of v. Denote the resulting graphs by G2, G3 and G4. In Fig. 3
we record some basic properties of these graphs. On the left, each of the diagrams
has a small circle, representing the vertex v of G. The larger circles represent the
other H-orbits on V . The number inside each circle is the size of the orbit.

The numbers next to a circle are to be thought of as being attached to a ‘loop’
on the circle. The remaining numbers are attached to arrows from one circle to
another. The number f attached to an arrow from circle i to circle j indicates that
there are precisely f vertices of the H-orbit in circle j that are adjacent to a fixed
vertex in circle i . We can reformulate this as

f = |G j (v) ∩ G1(w)| for w ∈ Gi (v).

As suggested by the definition, this number does not depend on the choice of the
vertex w in circle i . For example, the number 10 above the circle containing the

0
5

4

4

4

4

1 1
1 4

8

9

12 12

4

6 9

3

3

3
6 6

6

10

10

10

10

10

30 30

30
30

20

20
20

20

15
15

15
15

1515

Fig. 3.



9 Distance-transitive graphs 229

number 20 in the middle diagram indicates that a neighbour of v is adjacent to ten
other neighbours of v.

Several important properties of G can be read off directly from these so-called
collapsed adjacency diagrams: the terminology is very close to Soicher’s termi-
nology (see Chapter 10) in the software GRAPE for the analysis of graphs with
group action in the software system GAP; compare with the double coset diagram
in [13]. One of the key properties of a distance-transitive graph is the fact that,
if G is such a graph, then the collapsed adjacency diagram of G is a path. For
example, the collapsed adjacency diagram of the graph G of Example 2.2 is as
shown in Fig. 4. It is a path of length 2, in accordance with the fact that the graph
is distance-transitive with diameter 2.

The graphs of Example 3.1 are connected and have diameter 2, but they are not
paths. Hence, there is no M11-invariant graph structure on V of which M11 is a
distance-transitive group of automorphisms.

Example 3.2 The Hamming graph H (d, q) has vertex-set V = Zd
q , where two

vertices are adjacent if they differ in exactly one coordinate. The wreath product
Sq � Sd is a semi-direct product of d copies of the symmetric group Sq (each acting
on a single component) and Sd (permuting the coordinates of the vertices), and is
a distance-transitive group of automorphisms of H (d, q). The diameter of H (d,q)
is d, and its collapsed adjacency diagram is shown in Fig. 5.

Example 3.3 Let V be the vector space of all homogeneous polynomials over
F3 in two variables x , y of degree 2; then V has dimension 3. Define a graph
G on V by decreeing that two members of V are adjacent if and only if they
differ by an irreducible polynomial. Since a polynomial f in V is irreducible
if and only if − f is, this defines a graph on V . The neighbours of 0 in G are
x2 + y2, x2 + xy − y2, x2 − xy − y2, and their negatives; thus, G(0) has 6 ver-
tices. We shall write Gi for the graph on V whose edges are those pairs of vertices

1
33

3
2

2

Fig. 4.

d

q − 1
(q − 1)d

d(q − 2)

d(q − 1)
d( q − 1)

1
(d)  (q − 1)2(d − 1)(q − 1)

2(q − 2)

2

q − 2

2

Fig. 5.
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x, y ∈ V with d(x, y) = i , where the distance d(x, y) is taken in G. Forming all
differences of irreducible polynomials, we see that G2(0) consists of all polynomi-
als in V that are products of two distinct linear factors, so |G2(0)| = 12. Similarly,
all distinct triples of elements of G1(0) yield squares of linear terms and their
negatives, so |G3(0)| = 8. Since 1 + 6 + 12 + 8 = 27 = |V |, we have accounted
for all members of V .

Let us now consider the group G of automorphisms of G. The group of trans-
lations of V preserves G and is transitive on V , so each vertex has degree 6.
The stabilizer G0 of 0 in G(= Aut(G)) contains the linear transformations induced
from a projective linear transformation in x and y. More explicitly, if the latter is
determined by x �→ ax + by and y �→ cx + dy, with ad − bc = ±1, then the lin-
ear transformation of V determined by x2 �→ a2x2 − abxy + b2 y2, xy �→ acx2 +
(ad + bc)xy + bdy2 and y2 �→ c2x2 − cdxy + d2 y2, belongs to G0. Moreover,
homotheties in x and y (that is, linear transformations with b = c = 0 and a = d)
act trivially, so PGL(2, 3) acts, and the homotheties on V belong to G0. So G
contains the semidirect product of the additive group V and the linear group
PGL(2, 3) × 〈−1〉. It follows directly that G0 is transitive on Gi (0), for i = 0, 1, 2,
and hence that G is distance-transitive on G. The collapsed adjacency diagram of
G is shown in Fig. 6. In fact, G is isomorphic with the Hamming graph H (3, 3),
and so its full automorphism group G is the wreath product S3 � S3, of size 64. By
an order argument, this is isomorphic with the group 33

� (PGL(2, 3) × 〈−1〉).

4. Combinatorial properties

Distance-transitivity is naturally associated with the presence of a group of
automorphisms. Nevertheless, we can derive some properties of distance-transitive
graphs that are purely combinatorial. Here are the most prominent of these
properties.

Theorem 4.1 If G is a distance-transitive graph with diameter d, then there are
non-negative integers

a1, a2, . . . , ad , b0, b1, . . . , bd−1, c1, c2, . . . , cd , k1, k2, . . . , kd

1
1

1

6
4

2

2

2

3

3

12 86

Fig. 6.
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such that the collapsed adjacency diagram of G is

a1

1

a2

c2 c3
cd−1 cd

ad−1
ad

k1 k1
b1 b2

bd−2 bd−1kd−1 kdk2

These numbers satisfy the following relations:
� b0 = k1, c1 = 1;
� ai + bi + ci = k1;
� ki−1bi−1 = ki ci , for i = 1, 2, . . . , d.

In particular, they are all determined by the array

(b0, b1, . . . , bd−1; c1, c2, . . . , cd ).

The array mentioned at the end of this theorem is called an intersection array.
A graph is distance-regular if its collapsed adjacency diagram can be drawn in
this manner, with one ‘circle’ of vertices for each distance from a fixed vertex v,
and with the same intersection array for each vertex. Recall from Example 3.3
that Gh is the graph on the vertex-set of G in which two vertices are adjacent if
and only if they are at distance h in �. If G is a graph for which the cardinality
|Gi (v) ∩ G j (w)| does not depend on the choice of the edge {v, w} of Gh , then G
is distance-regular. In this case, one usually writes ph

i j for |Gi (v) ∩ G j (w)|.
Such a graph is regular; we usually denote its degree by k, so k = k1. If G is

distance-regular, then the numbers ph
i j are uniquely determined by the numbers

bi = pi
i+1,1 and ci+1 = pi

i−1,1, for i = 0, 1, . . . , d − 1. For example, k = p0
1,1 =

b0, ai = k − bi − ci , ph
i, j = 0 if i + j < h, and pi

i−2,2 = ci ci−1/c2.
The Petersen graph (see Example 2.1) is distance-regular with intersection array

(3, 2; 1, 1); its diagram is shown in Fig. 7.
These combinatorial properties hold in graphs that admit distance-transitive

groups of automorphisms.

Theorem 4.2 Each distance-transitive graph is distance-regular.

1
3

3 2

1

2

6

Fig. 7.
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Fig. 8.

The result is easily proved, but the converse statement is false. Figure 8 shows a
counter-example due to Adels’son-Vel’skii, Veı̆sfeiler, Leman and Faradz̆ev (see
[13, p. 136]). It is a distance-regular graph on 26 vertices with intersection array
(10, 6; 1, 4). It has an automorphism of order 13 that can be visualized as a rotation
of the picture, but has no distance-transitive group.

For an algebraic description of this graph, we write V = {ai , bi : i = 1, 2, . . . ,

13}, and define adjacency ∼ on V by

ai ∼ a j ⇔ |i − j | ∈ {1, 3, 4},
bi ∼ b j ⇔ |i − j | ∈ {2, 5, 6},
ai ∼ b j ⇔ i − j ∈ {0, 1, 3, 9}.

For each diameter larger than 1, distance-regular graphs that are not distance-
transitive are known (see [13, p. 290]).

The intersection array of the Johnson graph J (n, d) is

(
d(n − d), (d − 1)(n − d − 1), . . . , (n − 2d + 1); 1, 4, 9, . . . , d2

)
.

The group G = Sn acts distance-transitively on this graph, with vertex-stabilizer
Sd × Sn−d . This illustrates the remarkable fact that a single permutation repre-
sentation of a group G on V may correspond to more than one group-invariant
distance-transitive graph structure on V . To see this, let n = 2d + 1 and define
the odd graph Od+1 to be the graph whose vertex-set consists of the d-subsets
of X = {1, 2, . . . , n}, and where adjacency is defined by x ∼ y if and only if
x ∩ y = ∅ – that is, the vertices x , y are at distance d in J (2d + 1, d). Then Od+1

is a distance-transitive graph with diameter d and with intersection array

(d + 1, d, d, d − 1, d − 1, . . . , �(d + 1)/2�; 1, 1, 2, 2, 3, . . . , �(d + 1)/2�).
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For d = 2, the intersection array is (3, 2; 1, 1), and we recover the Petersen graph.
The permutation action of S2d+1 on the vertex-set of Od+1 is the same as that on
J (2d + 1, d).

5. Imprimitivity

Although we are primarily interested in distance-transitive graphs, some notions
can be treated entirely within the wider context of distance-regular graphs. An
example of such a notion is imprimitivity, with which we deal next. For a permu-
tation group G, it means that the stabilizer of a vertex is not a maximal subgroup
of G.

Recall that Gi denotes the relation ‘being at distance i’ on the vertex-set of
G; thus, (v, w) ∈ Gi and v ∈ Gi (w) both mean that v is at distance i from w in
G. The following beautiful characterization of distance-regular graphs that are
imprimitive in a combinatorial sense is due to Smith (see [13]).

Theorem 5.1 Let G be a connected distance-regular graph with diameter d and
intersection array (b0, . . . , bd−1; c1, . . . , cd ), and let I be a minimal proper subset
of {0, 1, . . . , d} for which

⋃
i∈I Gi is an equivalence relation with I �= {0}. Then

at least one of the following properties holds:
� G is antipodal – that is, for each vertex v, the distance between any two vertices

from Gd (v) is d, and bi = cd−i for all i �= �d/2�; in this case, I = {0, d};
� G is bipartite – that is, a1 = a2 = · · · = ad = 0, ci = k − bi for i < d, and

cd = k; in this case, I = {0, 1, . . . , d} ∩ 2Z.

If G acts distance-transitively on G, and if the stabilizer H in G of the vertex
v is contained in a proper subgroup K of G, then the K-orbit of v is a union of
H-orbits and is thus of the form

⋃
i∈I Gi (v), for some subset I of {0, 1, . . . , d}.

If I �= {0}, then K strictly contains H. Note that I is a proper subset, since K is a
proper subgroup of G containing H. Thus,

⋃
i∈I Gi is an equivalence relation on

V (G), and so the above theorem applies.
Conversely, if I is a proper subset of {0, 1, . . . , d} for which

⋃
i∈I Gi is an

equivalence relation on V (G), then the stabilizer of the subset
⋃

i∈I Gi (v) is a
proper subgroup of G containing H. It coincides with H if and only if I = {0}.
Consequently, we have the following result.

Corollary 5.2 Let G be a group acting distance-transitively on a connected graph
G. Then G is imprimitive if and only if G is antipodal or bipartite.
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The classification problem of distance-transitive graphs can be reduced to primi-
tive (that is, non-imprimitive) distance-transitive graphs, by the following beautiful
result and Theorem 5.4 below.

Theorem 5.3 Suppose that G acts distance-transitively on the connected graph G
with diameter d.
� If G is antipodal, then G acts distance-transitively on the graph whose vertices

are the equivalence classes of G0 ∪ Gd, and in which two vertices are adjacent
whenever they contain adjacent vertices in G.

� If G is bipartite, then G acts distance-transitively on each of the two graphs
obtained from G by taking one of the bipartite classes, and letting two vertices
be adjacent wherever they are at distance 2 in G.

For imprimitive distance-regular graphs, these two constructions lead to distance-
regular graphs. They are called the antipodal quotient in the antipodal case, and
the halved graphs in the bipartite case.

An example of an antipodal quotient comes from the Johnson graph J (2d, d).
The complement in {1, 2, . . . , 2d} of a vertex v is the unique vertex of J (2d, d)
at distance d from v. Thus, G0 ∪ Gd is an equivalence relation, and J (2d, d) is
antipodal; the antipodal quotients of J (4, 2) and J (6, 3) are the complete graphs
K3 and K10, respectively, The Hamming graph H (d, q) is antipodal if and only if
q = 2, in which case it is also bipartite.

To each imprimitive distance-regular graph G, we can apply a finite sequence
of halvings and antipodal quotients, until we arrive at a primitive distance-regular
graph 
. We say that G is associated with 
.

Theorem 5.4 For each primitive distance-regular graph of degree k > 2, the num-
ber of associated imprimitive distance-regular graphs is finite.

The proof of this result is not complicated. As a consequence, the classifications of
distance-regular graphs and of distance-transitive graphs can be thought of as two-
stage procedures: first find all primitive examples, and then, for each individual
primitive example, determine all the associated imprimitive examples. In what
follows, we focus on the first stage for distance-transitive graphs. Much has been
done regarding the second stage; see, for example, [13], [25], [37], [17] and [21].

In [21], many interesting examples of antipodal covers of complete graphs can
be found. Complete bipartite graphs Kk,k with parts of equal size k are distance-
transitive with intersection array (k, k − 1; 1, k); antipodal covers of Kk,k are stud-
ied in [25] and [17].
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6. Bounds

The intersection array provides a very useful set of numerical invariants for the
classification of distance-regular graphs; for example, it specifies all the eigenval-
ues of the adjacency matrix and their multiplicities. We present a selection of the
many inequalities satisfied by the numbers in the array. As usual, for a graph G,
a vertex v and a distance i , we write ki for the cardinality of Gi (v), the set of
vertices at distance i from v.

Theorem 6.1 Let G be a distance-regular graph with diameter d and degree k.
Then its intersection array (b0, b1, . . . , bd−1; c1, c2, . . . , cd ) satisfies the following
conditions:
� 1 = c1 ≤ c2 ≤ · · · ≤ cd;
� k = b0 ≥ b1 ≥ · · · ≥ bd−1;
� if i + j ≤ d, then bi ≥ c j ;
� c2 ≥ k − 2b1;
� if G contains a 4-cycle, then ci+2 − bi+2 ≥ ci+1 − bi+1 + a1 + 2, for

i ≤ d − 3;
� there exist i and j, with i < j, such that

k = k1 < k2 < · · · < ki−1 < ki = ki+1 = · · · = k j > k j+1 > · · · > kd ;

� for these i and j, if α = ki/ki−1 and β = ki+ j/ki+ j+1, then

|V | ≤
(

α

α − 1
+ β

β − 1
+ j − 1

)
ki .

If G is a permutation group on V that leaves invariant a distance-transitive graph
structure on V , then often the only parameters besides |V | , and sometimes d, that
we can evaluate among those relevant for the intersection array are the numbers
ki – and frequently just a few of them. In this light, the above inqualities for the ki

are important when finding the graphs on which G acts distance-transitively.
Recall the definition of a group character: this is the function that assigns to a

group element the trace of a matrix of the element in a given linear representation
of the group. A group character χ is irreducible if the representation is irreducible,
and real if the representation can be defined over the reals.

Theorem 6.2 Suppose that G is distance-transitive on a graph G with diameter
d, with stabilizer H. Then

|H| ≥
√

|G|/(d + 1) ≥
√

|G|/(r + 1),

where r is the number of irreducible real characters of G. If, moreover, G contains
a 4-cycle, then |H| ≥ √|G|/5.
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The latter part follows directly from the last two parts of Theorem 6.1. The proof
of the first part rests on the powerful observation below. A group character χ is
multiplicity-free if no irreducible character occurs more than once in the decom-
position of χ as a sum of irreducibles. We often say that the representation itself
is multiplicity-free if its character is.

Theorem 6.3 The permutation character of a distance-transitive group action on
a graph is multiplicity-free.

The proof of the theorem follows from the fact that a permutation representation
is multiplicity-free if all of its orbits on pairs are self-paired. The idea of studying
multiplicity-free permutation representations stems from Saxl (see [13, p. 230]).
Baddeley [3] proved an O’Nan-Scott type theorem for multiplicity-free permuta-
tion representations, which essentially reduces the study of primitive permutation
groups with only self-paired orbits to almost simple groups.

An outstanding question is whether there are only a finite number of distance-
regular graphs of a fixed degree k > 2 (see [14]). If, in addition to the degree, the
so-called ‘geometric girth’ is also fixed, then the diameter is known to be bounded
(see [13, p. 184]). This result was used by Weiss to obtain a bound for distance-
transitive graphs of degree k > 2: the diameter does not exceed (k6)!22k (see [13,
Cor. 7.3.2]). This implies immediately the following result.

Theorem 6.4 There are only a finite number of distance-transitive graphs of any
given degree k > 2.

The condition k > 2 is necessary in view of polygons that can have arbitrarily
large diameter. For k ≤ 13, the explicit list of distance-transitive graphs is known –
see [13], for details and other references. Despite the fact that the upper bounds
on the diameter are astronomical, the result indicates that there is some hope for a
classification of distance-transitive graphs. The real progress in the classification
of primitive distance-transitive graphs, however, is due to the classification of finite
simple groups, as we shall see in the next sections.

7. Finite simple groups

In this section, we summarize the classification of finite simple groups. A classical
finite simple group is a simple group, obtained from a group H of linear transfor-
mations on a finite vector space V that leave invariant a quadratic or sesquilin-
ear form on V by taking the quotient of the commutator subgroup of H by its
centre.
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Table 1.

Name Condition Order

An−1(q) n ≥ 2 q
n(n−1)

2 (q2 − 1)(q3 − 1) . . . (qn − 1)/ gcd (n, q − 1)
2An−1(q) n ≥ 3 q

n(n−1)
2 (q2 − 1)(q3 + 1) . . . (qn − (−1)n)/ gcd (n, q + 1)

Bn(q) n ≥ 2 qn2
(q2 − 1)(q4 − 1) . . . (q2n − 1)/ gcd (2, q − 1)

Cn(q) n ≥ 3 qn2
(q2 − 1)(q4 − 1) . . . (q2n − 1)/ gcd (2, q − 1)

Dn(q) n ≥ 4 qn2−n(q2 − 1)(q4 − 1) . . . (q2n−2 − 1)(qn − 1)/ gcd (4, qn − 1)
2Dn(q) n ≥ 4 qn2−n(q2 − 1)(q4 − 1) . . . (q2n−2 − 1)(qn + 1)/ gcd (4, qn + 1)

Let q be a prime power, and let n (≥ 2) be an integer.
If the form is identically zero, and if V = Fn

q , then the classical group is denoted
by An−1(q), and if the form is non-degenerate hermitian and V = Fn

q2 , then the

classical group is denoted by 2An−1(q).
If the form is non-degenerate and quadratic, and if V = F2n

q , then the classical
group is denoted by 2Dn(q), if the Witt index, the dimension of a maximal linear
subspace of V on which the form vanishes identically, is n − 1, and by Dn(q), if
the Witt index equals n.

If the form is non-degenerate and quadratic, and if V = F2n+1
q , then the classical

group is denoted by Bn(q).
If the form is non-degenerate, anti-symmetric, and bilinear, and if V = F2n

q ,
then the classical group is denoted by Cn(q).

Each classical simple group is isomorphic to one of those listed in Table 1.
Except for A1(2), A1(3),2 A2(2), which are solvable, and for B2(2), which is iso-
morphic to S6, all of these groups are simple.

There are some further series of simple groups obtained from more elaborate
constructions in multilinear algebra or Lie algebras. When q is a prime power,
these are as shown in Table 2. The commutator subgroups of the groups in the
table are simple, with the exception of 2B2(2), which is solvable. All of the other
groups are isomorphic to their commutator subgroups, with the exception of G2(2)
(whose commutator subgroup is isomorphic to 2A2(3)), 2G2(3) (whose commutator
subgroup is isomorphic to A1(8)) and 2F4(2) (whose commutator subgroup has
index 2). The simple groups described in this paragraph are the exceptional finite
simple groups.

A group is called of Lie type if it is either classical or exceptional; the prime
divisor of q is called the defining characteristic of the group.

Finally, 26 sporadic groups have been found to exist. Among these are the five
Mathieu groups (Example 3.1 introduced the smallest of these) and the Monster
group.
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Table 2.

Name Condition Order

2B2(q) q = 22m+1 q2(q − 1)(q2 + 1)
3D4(q) q12(q2 − 1)(q6 − 1)(q8 + q4 + 1)

E6(q) gcd (3, q − 1)−1q36
∏

m∈{2,5,6,8,9,12} (qm − 1)
2E6(q) gcd (3, q + 1)−1q36

∏
m∈{2,5,6,8,9,12} (qm − (−1)m)

E7(q) gcd (2, q − 1)−1q63
∏

m∈{2,6,8,10,12,14,18} (qm − 1)

E8(q) q120
∏

m∈{2,8,12,14,18,20,24,30}(q
m − 1)

F4(q) q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1)
2F4(q) q = 22m+1 q12(q − 1)(q3 + 1)(q4 − 1)(q6 + 1)

G2(q) q6(q2 − 1)(q6 − 1)
2G2(q) q = 32m+1 q3(q − 1)(q3 + 1)

The above-mentioned simple groups are all finite simple groups, according to
the classification of finite simple groups (see [22] for more details).

Theorem 7.1 Let G be a finite non-abelian simple group. Then G is isomorphic
to An (for n ≥ 5), to a classical simple group, to an exceptional simple group, or
to a sporadic simple group.

8. The first step

The rest of this chapter is devoted to the prospective classification of primitive
distance-transitive graphs. Previous overviews can be found in [24] and [10].

The starting point in the classification of primitive distance-transitive graphs is
the following theorem, proved by Praeger, Saxl and Yokoyama (see [4] and [13,
p. 229]). In view of the determination of all permutation groups with permutation
rank 3 (see [13, p. 229]), for the classification of distance-transitive graphs, we
may assume that d ≥ 3. Also, since the only connected distance-regular graphs
with degree k = 2 and diameter d are the 2d-gon and the (2d + 1)-gon, we may
also assume that k ≥ 3.

Theorem 8.1 Let G be a primitive distance-regular graph with a distance-
transitive group G of automorphisms, and assume that k ≥ 3 and d ≥ 3. Then one
of the following holds:
(i) G is associated with a Hamming graph;
(ii) G has an elementary abelian normal subgroup which is regular on V (G);
(iii) there is a simple non-abelian normal subgroup N of G for which G embeds

canonically in Aut(N ) – that is, the centralizer CG(N ) of N in G is trivial.
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The basic ingredient of the proof of Theorem 8.1 is the celebrated O’Nan-Scott
Theorem (see [2]), which does not use the classification of finite simple groups. In
Case (i), the graph G is well known, but the possibilities for the group G are not
completely determined – it is typically a wreath product. Case (ii) has been dealt
with completely, and will be discussed in Section 9; we refer to it as the affine case.
Case (iii), the simple socle case, is the hardest, since no strong general techniques
have been found for ruling out subgroups of small index as stabilizers of distance-
transitive actions on graphs. In Section 10, we go into more detail on this case.

Let us discuss the distinct cases in terms of subgroups. A subnormal subgroup
of a group G is a subgroup N for which there exists a chain

N = N1 � N2 � · · · � Nt = G,

with the property thatNi is a normal subgroup ofNi+1, for each i . The generalized
Fitting subgroup F∗(G) of G is the product of all minimal non-trivial subnormal
subgroups of G. In Case (ii) of the Praeger-Saxl-Yokoyama theorem, the general-
ized Fitting subgroup satisfies F∗(G) ∼= Fn

s for some prime power s, and in Case
(iii), F∗(G) is a (single) non-abelian simple group – the simple socle. To conclude
this section, we give examples of graphs belonging to each of the Cases (ii) and (iii).

Case (ii): the affine case. The Hamming graphs can be thought of as the ‘field-size-
1’ specializations of the so-called ‘bilinear forms graphs’. For n ≥ d, the bilinear
forms graph G = BF(n, d, q) has as its vertex-set the (n × d)-matrices over Fq ,
and two vertices v and w are adjacent whenever rk(v − w) = 1. For each vertex
v, the map x �→ x + v is an automorphism of G. In this way, the additive group
N of the vector space Fn×d

q is a group of automorphisms of G: it is even a regular
permutation group on the vertex-set.

Let H be the subgroup of GL(Fn×d
q ) generated by all left-multiplications by

invertible (n × n)-matrices and all right-multiplications by invertible (d × d)-
matrices. Then the semidirect product G = N �H acts distance-transitively on
G. For, N is regular on the vertex-set and so, in order to verify that G is distance-
transitive on G, we need establish only that Gi (0) is a singleH-orbit, for 0 ≤ i ≤ d.
A matrix lies in Gi (0) if and only if it is the sum of i matrices of rank 1 and no
fewer; but this is equivalent to having rank i . It is well known that the matrices of
rank i form a single H-orbit for each value of i , and so Gi (0) is a single H-orbit;
in particular, the diameter of G is d. Moreover, G belongs to the affine case with
socle N ; its intersection array is

(
(qn − 1)(qd − 1)

q − 1
,
(qn − q)(qd − q)

q − 1
, . . . ,

(qn − qd−1)(qd − qd−1)

q − 1
;

1,
q3 − q

q − 1
, . . . ,

q2d−1 − qd−1

q − 1

)
.
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Case (iii): the simple socle case. The Johnson graphs can be thought of as the
‘field-size-1’ specializations of the so-called ‘Grassmann graphs’. For d ≤ n/2,
the Grassmann graph G(n, d, q) has as its vertex-set the d-dimensional subspaces
of the vector space Fn

q of dimension n over Fq , and two vertices v and w are
adjacent whenever dim(v ∩ w) = d − 1. The general linear group GL(n, q) acts
distance-transitively on G(n, d, q). The pairs of vertices at mutual distance i form
a single orbit, for each value of i in the range 0 ≤ i ≤ d, which coincides with
G(n, d, q)i ; in particular, the diameter of G(n, d, q) is d. The kernel of the action
of GL(n, q) on G(n, d, q) is the centre of the group. For n ≥ 3, the quotient group
PGL(n, q) has generalized Fitting subgroup PSL(n, q) = An−1(q). So this is a
simple socle case when (n, q) �= (2, 3) or (2, 4); its intersection array is

(
(qd − 1)(qn+1 − q)

(q − 1)2
,
(qd − q)(qn − q2)

(q − 1)2
, . . . ,

(qd − qd−1)(qn−d+2 − qd )

(q − 1)2
; 1,

(q2 − 1)

(q − 1)2

2

, . . . ,
(qd − 1)2

(q − 1)2

)
.

9. The affine case

In this section, G is a graph admitting a primitive group of automorphisms G in
such a way that the vertex-set of G can be identified with a vector space V over the
field Fs of order s; here, s = rb is some power of a prime r , maximal with respect
to G0 ⊆ �L(V ), where G0 is the stabilizer in G of 0 ∈ V , and �L(V ) is the group
of all semi-linear transformations of V .

The assumption that G is primitive amounts to requiring that the action of G0 on
V must be irreducible. In his thesis [4] (see also [6]), van Bon showed that there is a
reduction to the case where G0 is quasi-simple; more precisely, he proved Theorem
9.1 below. Here, a projective representation of a group H on a vector space is a
linear representation on that vector space of a group Ĥ for which the quotient
Ĥ/Z (Ĥ) of Ĥ by its centre Z (Ĥ) coincides with H. For every finite non-abelian
simple group H, there is a minimal finite group Ĥ for which every projective
representation of H comes from a linear representation of Ĥ. This group satisfies
Ĥ/Z (Ĥ) ∼= H, and is equal to its commutator subgroup. A projective or linear
representation is absolutely irreducible if it is irreducible and remains irreducible
after every finite extension of the field of scalars of the vector space.

Theorem 9.1 Let G be an affine group that acts primitively and distance-transit-
ively on a connected non-complete graph G with degree and diameter at least 3.
Then, with s and V as above, one of the following must hold:
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(i) G is associated with a Hamming graph;
(ii) G is a bilinear forms graph;
(iii) V = Fs is 1-dimensional, and G0 is a subgroup of �L(Fs);
(iv) the ‘generalized Fitting subgroup’ F∗(G0/Z (G0 ∩ GL(V ))) is non-abelian

and simple, and its projective representation on V is absolutely irreducible
and can be realized over no proper subfield of Fs .

The importance of this theorem lies in the fact that it reduces the affine case
to the study of simple groups and their projective representations. For, in Case
(iv), the group G0 is – up to a finite number of possibilities – determined by
projective representations of the generalized Fitting subgroup appearing there, and
this must be a non-abelian finite simple group. Given such a group K, the group
G0 is contained in the normalizer of the image of K in �L(V ) for an irreducible
representation space V for K. The number of possibilities for V leading to a
V �G0-invariant distance-transitive graph structure on V is not yet under control.
Theorem 9.3 takes care of this.

The proof of Theorem 9.1 is based on Aschbacher’s analysis [1] of subgroups
of classical groups. In the first two cases, the graphs are fully determined (as
discussed above). The next case was dealt with by Cohen and Ivanov [18], who
proved the following result.

Theorem 9.2 Suppose that Case (iii) of Theorem 9.1 holds. Then s = 64, G0 is a
semidirect product of the cyclic group of order 9 with a cyclic group of order 3 or
6, and G is the Hamming graph H (4, 3).

The proof uses the Hasse-Weil estimates of the number of vectors (x1, x2, . . . , xn)
in Fn

q that satisfy xm
1 + · · · + xm

n = 0.
The remainder of this section is devoted to Case (iv) of Theorem 9.1. The general

technique here is to use the bounds of Theorem 6.2 and the following result of van
Bon [4].

Theorem 9.3 Let G, s = rb, and V be as in Theorem 9.1. Then:

(i) G0 is closed under scalar multiplication by F∗
r ;

(ii) if dimFr V = c, then G0 has at most c orbits in V ;
(iii) |V | ≤ 5|G0|.

Part (iii) follows from the observation that G contains a 4-cycle, so Theorem 6.2
can be applied: |G0| ≥ √|G|/5.
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The general idea of the approach for a fixed simple group K is to determine all
possible projective representations of K on finite vector spaces V for which there
exist G0 and G, as in Case (iv) of Theorem 9.1, with V as the vertex-set of G and
with K isomorphic to (G0 ∩ GL(V ))/Z (G0 ∩ GL(V )).

Up to relatively small factors for the central part Z (G0 ∩ GL(V )) (bounded by
|Z (K)|) and for the non-linear part �L(V )/GL(V ) (bounded by b), the upper bound
for |V | in terms of G0 in Theorem 9.3(iii) can be translated into a slightly weaker
upper bound for |V | in terms of K. Consequently, when given K, we find a finite
list of projective representations V for G0 which is usually short. For each K, there
is a finite list of pairs (G0, V ) that possibly lead to a G-invariant structure on V for
which the permutation group G = V �G0 is a primitive distance-transitive group
of automorphisms.

Although there are an infinite number of possibilities for K, the simple groups
can be dealt with series-by-series corresponding to the lines of the tables in Sec-
tion 6. As we have seen in Section 3, we need to analyze G0-orbits on V .

One of the few results of a general nature for deciding whether a subgroup G0

of �L(V ) leads to a distance-transitive graph is due to van Bon [7]. It deals with
the case where F∗

s is contained in G0 and K leaves invariant a unitary or orthogonal
form on V .

The remainder of this section follows the above subdivision of types for a
non-abelian finite simple group K.

Affine alternating groups

For K ∼= An(n ≥ 5), the complete analysis was achieved by Liebeck and Praeger
[34].

Theorem 9.4 Suppose that G, s = rb, G and K are as in Theorem 9.1(iv), where
K ∼= An for some integer n ≥ 5. Then G is associated with a Hamming graph.

Affine groups of Lie type in the same characteristic

We next take K to be a group of Lie type with defining characteristic r , the
characteristic of the field over which the projective representation spaces V to be
considered here are defined. The following result is due to van Bon, Cohen and
Cuypers; see [8] and [11].

Theorem 9.5 Suppose that G, s = rb, V, G,K are as in Theorem 9.1(iv), where
K = F∗(G0 ∩ GL(V ))/Z (G0 ∩ GL(V )) is a simple group of Lie type with defining
characteristic r. Then one of the following holds:
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(i) K ∼= E6(q), V is a 27-dimensional vector space over Fq , and q = s; the
intersection array of G is

(
(q12 − 1)(q9 − 1)

q4 − 1
, q8(q4 + 1)(q5 − 1), q16(q − 1); 1, q8 + q4,

q20 − q8

q4 − 1

)
;

(ii) K ∼= Am−1(q), and G is the bilinear forms graph BF(m, m, q) on Fm
q , so G0

contains SL(Fm
q )/〈−(−1)m Im〉;

(iii) K ∼= Am−1(q), and V is the (m(m − 1)/2)-dimensional vector space of
alternating forms on Fm

q , so G0 contains SL(Fm
q )/〈−(−1)m Im〉;

(iv) K ∼= Am−1(q2), and V is the (m(m + 1)/2)-dimensional vector space over
Fq of all Hermitian forms on Fm

q2 , so G0 contains SL(m, q2)/〈−(−1)m Im〉;
(v) K ∼= A1(8), and G is the primitive distance-regular graph 
 associated with

the Hamming graph H (9, 2);
(vi) K ∼= A1(8), and G is the distance 2 graph 
2 of the graph 
 in part (v).

The graphs in the conclusions exist and are distance-transitive. Those in Cases (ii)
and (iii) are known as the alternating and Hermitian forms graphs, denoted by
AF(m, q) and HF(m, q2), respectively (see [13]).

We outline the proof. By the use of representation theory of the groups of
Lie type, it is relatively easy to provide a list of small-dimensional projective
representation spaces V for K over Fs , among which all affine distance-transitive
examples must occur. Here, ‘small’ means that the somewhat larger group G0

with F∗(G0 ∩ GL(V )/Z (G0 ∩ GL(V ))) ∼= K satisfies sm ≤ 5|G0|, in accordance
with Theorem 9.3(iii).

An intuitive argument (based on closures of orbits in the module over the
algebraic closure of Fs) tells us that the so-called ‘highest-weight orbit’ of G0 in
such a representation space V is among the smallest orbits; the notion ‘highest-
weight orbit’ comes from the theory of groups of Lie type. In view of Theorem
6.1, the G0-orbit that defines adjacency in G must be among the smallest. Thus,
it makes sense to exploit knowledge of the highest-weight orbit to analyse the
possible distance-transitive graph structures on V .

To this end, for a G0-orbit O of vectors in V , we consider the following two
properties:

(O1) if v ∈ O, then λv ∈ O for all λ ∈ F∗
q ;

(O2) for each v, w ∈ O with w /∈ 〈v〉, there exists g ∈ G0,v with gw − w ∈ O.

The next theorem shows that the existence of such an orbit O often leads to a
small diameter or is the adjacency orbit in G.
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Theorem 9.6 Suppose that G, s = rb, V and G are as in Theorem 9.1 (iv), and
let O be a G0-orbit satisfying (O1) and (O2). Then, with i = d(0, v), one of the
following holds for any v ∈ O:
(i) i = 1;
(ii) i = 2 and, if a2 �= 0, then there exists w ∈ O with v − w ∈ G1(0);
(iii) i = 3 or 4, and there exists w ∈ O with v − w ∈ G2(0); moreover,

(a) if a1 �= 0, then i = d;
(b) if there is no non-trivial G0-orbit that consists of sums of two elements

of O of size smaller than |O|, then d ≤ 5;

(iv) i = d, ad = 0, bd−1 = 1, and G0 = G0,vG0,w, for some w ∈ G1(0).

If O is the smallest of all non-trivial G0-orbits, then either d ≤ 4 or (i) or (iv)
holds. But case (iv) leads to a factorization of the group K of Lie type into two
factors, one of which (the one corresponding to G0,v) is a ‘parabolic subgroup’ of
K – for our purposes, it suffices to know that a parabolic subgroup is a well-studied
subgroup that occurs as the stabilizer in G of the 1-dimensional subspace generated
by a highest-weight vector in a projective representation of G. This situation has
been studied satisfactorily, leaving a limited number of possibilities for G0,w; see
[23] and [35].

Affine groups of Lie type of cross characteristic

There is an irreducible projective representation on V = F6
3 of the sporadic group

M12, discovered by Mathieu and realizable as a 5-transitive permutation group on
12 letters. The resulting semi-direct product of F6

3 and a groupG0 with centre of size
2 and quotient isomorphic to M12 is a distance-transitive group of automorphisms
on a graph of 729 vertices with intersection array (24, 22, 20; 1, 2, 12) (see [13,
p. 359]). This graph may thus be expected to occur in the classification of affine
distance-transitive graphs with (almost) sporadic vertex-stabilizer. Indeed it does
(see Theorem 9.8, below); however it also appears here. The following result was
obtained by Cohen, Magaard and Shpectorov [19].

Theorem 9.7 Suppose that G, s = rb, V, G and K are as in Theorem 9.1(iv),
where K is a simple group of Lie type whose defining characteristic is a prime p
distinct from r, and suppose that K cannot be defined as a group of Lie type with
defining characteristic r. Then K ∼= A1(11) (so p = 11) and G is the graph on 729
vertices associated with M12 (discussed above).

As in the other cases, the first stage in the proof of this theorem is the determina-
tion of pairs K, V = Fn

s for which the bound of Theorem 9.3(iii) is satisfied. Here,
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the results of Landazuri, Seitz and Zalesskii [39] are used to obtain lower bounds
for non-trivial projective representation spaces for K, in characteristic r �= p. As
a consequence, a finite (but not really small) list of modules V for groups G0 with
K = F∗(G0 ∩ GL(V )/Z (G0 ∩ GL(V ))) is found. The next stage is an analysis of
G0-orbits on V . One typically arrives at too many G0-orbits on V for G to exist, in
view of Theorem 8.3(ii), or at one or two candidate G0-orbits for G1(0), in which
case inspection of G2(0) often leads to more than one G0-orbit.

Affine sporadic groups

The successful classification of those affine distance-transitive graphs for which
K is a simple sporadic group was achieved by van Bon, Ivanov and Sax [12].

Theorem 9.8 Suppose that G, s, V, G,K are as in Theorem 9.1(iv), where K is a
sporadic simple group. Then G and K are as described in Table 3.

All of the graphs appearing in this table have been discussed in [13]. For most of
the 26 sporadic simple groupsK, the representation spaces V satisfying the bounds
of Theorem 9.3 could be found by use of the Modular Atlas [27]. For the Conway
groups, special arguments were needed in order to find a finite list of all modules
V that might occur as regular normal subgroups in Case (iv) of Theorem 9.1.

10. The simple socle case

The classification of finite simple groups can be invoked to make a further sub-
division of the possibilities for F∗(G). Knowledge of the maximal subgroups of
F∗(G) of moderate index should then help to finish the classification of primitive
distance-transitive graphs. The multiplicity freeness criteria (see Theorem 6.3)
give a method for ruling out several cases.

In cases where the permutation representation of G on the vertex-set of G is
equivalent to conjugation on a conjugacy class of involutions of G, van Bon [5]
has given strong restrictions. This is one of the few necessary conditions for a

Table 3.

|V | Array Name K

36 (26, 24, 19; 1, 3, 8) ternary Golay M12

210 (22, 21, 20; 1, 2, 6) truncated Golay M22

211 (23, 22, 21; 1, 2, 3) perfect Golay M23

212 (24, 23, 22, 21; 1, 2, 3, 24) extended Golay M24
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permutation representation to come from a distance-transitive action that rules out
many examples that survive the multiplicity freeness criteria.

Alternating groups

The case F∗(G) ∼= An(n ≥ 5) is dealt with by Ivanov as well as by Liebeck, Praeger
and Saxl; the multiplicity-free permutation representations of the alternating and
symmetric groups were found by Saxl (see [13, p. 230]).

Theorem 10.1 Let G be a primitive distance-transitive group on the graph G,
where d ≥ 3 and k ≥ 3. If F∗(G) ∼= An for some n ≥ 5, then G is associated with
a Johnson graph J (n, d) or (if n = 2d + 1 is odd) an odd graph Od+1.

Groups of Lie type

This is the hardest subproblem that remains in the classification of primitive
distance-transitive graphs. The parabolic subgroups for which the permutation
representation is distance-transitive are well understood; roughly speaking, they
correspond to the (possibly imprimitive) distance-transitive permutation represen-
tations of the corresponding Weyl groups – that is, ‘field-size-1’ specializations of
the groups of Lie type (see [13]).

The classification is expected to follow the pattern of PSL(n, q), which was
treated by van Bon and Cohen in [9]. The proof uses results of Inglis, Liebeck and
Saxl (see [13, p. 230]) to exclude various permutation representations that are not
multiplicity free.

Theorem 10.2 LetG be a group with PSL(n, q) �G ≤ Aut(PSL(n, q)), for n ≥ 2
and (n, q) �= (2, 2), (2, 3). If G is a graph with diameter d ≥ 3 on which G acts
primitively and distance-transitively, then G is either a Grassmann graph or is as
listed in Table 4.

See [13] for details on these graphs.
For those F∗(G) that are of classical Lie type, major progress has been made by

van Bon, Inglis and Saxl. They used Aschbacher’s list of subgroups of classical
groups (see, for example, [1] or [29]) to distinguish between cases, and they used
known bounds on subgroups to limit the possibilities for vertex-stabilizers when
F∗(G) is given. Lawther has analysed several series of pairs of a group of Lie
type and a maximal subgroup with respect to multiplicity freeness (see [30], [31]
and [32]).

For those F∗(G) that are of exceptional Lie type, Cohen, Liebeck and Saxl have
obtained partial results. As before, the idea of the proof is to use results of Liebeck
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Table 4.

|V | (n, q) Array Name

28 (2, 7) (3, 2, 2, 1; 1, 1, 1, 2) Coxeter
36 (2, 9) (5, 4, 2; 1, 1, 4) Sylvester
45 (2, 9) (4, 2, 2, 2; 1, 1, 1, 2) generalized

8-gon (2, 1)
68 (2, 16) (12, 10, 3; 1, 3, 8) Doro
102 (2, 17) (3, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 1, 3) Biggs-Smith
57 (2, 19) (6, 5, 2; 1, 1, 3) Perkel
65 (2, 25) (10, 6, 4; 1, 2, 5) Hall
q3 + 2q2 + 2q + 1 (3, q) (2q, q, q; 1, 1, 2) generalized

6-gon (q, 1)
280 (3, 4) (9, 8, 6, 3; 1, 1, 3, 8) HF(3, 4)3

56 (4, 2) (15, 8, 3; 1, 4, 9) J (8, 3)

and Saxl [36] to determine the maximal groups of relatively small index, and to
prune the series that fail to be multiplicity-free (see [30] and [32]). A case-by-case
study for each of the remaining permutation groups then needs to be conducted.
There exists a short list of hard cases that have not yet been dealt with.

Sporadic groups

For F∗(G) sporadic, the possible graphs G have been determined by Ivanov, Linton,
Lux, Saxl and Soicher [26]. The proof was based on a computer search for all
possible multiplicity-free permutation characters and subsequent calculation of
the collapsed adjacency diagrams.

Theorem 10.3 If G is a primitive distance-transitive group of automorphisms of a
graph G, with d ≥ 3 and a sporadic simple generalized Fitting subgroup K, then
G and K are as described in Table 5.

Details of all six graphs can be found in [13].

Table 5.

|V | K Array Name

266 J1 (11, 10, 6, 1; 1, 1, 5, 11) Livingstone graph
315 J2 (10, 8, 8, 2; 1, 1, 4, 5) near octagon
759 M24 (30, 28, 24; 1, 3, 15) Witt graph
506 M23 (15, 14, 12; 1, 1, 9) truncated from Witt
330 M22 (7, 6, 4, 4; 1, 1, 1, 6) doubly truncated Witt
22880 Suz (280, 243, 144, 10; 1, 8, 90, 280) Patterson graph
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11. Conclusion

We conclude by providing references to three topics that we have not touched
upon:
� in view of their high degree of symmetry, it should be no surprise that there

have been some applications of distance-regular graphs: (see [20], [28] and
[38]);

� infinite distance-transitive graphs are treated in [16] and [13];
� there is a ‘directed’ version of distance-transitive graphs due to Lam; see [13,

p. 232] and [33] for results on these.
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Computing with graphs and groups

LEONARD H. SOICHER

1. Introduction
2. Permutation group algorithms
3. Storing and accessing a G-graph
4. Constructing G-graphs
5. G-breadth-first search in a G-graph
6. Automorphism groups and graph isomorphism
7. Computing with vertex-transitive graphs
8. Coset enumeration
9. Coset enumeration for symmetric graphs
References

In this chapter we discuss the computational study of graphs with groups
acting on them, and demonstrate various ways in which computational group-
theoretic methods are used in the study of graphs and groups. We place
particular emphasis on the ideas and methods behind the GRAPE and nauty
computer packages.

1. Introduction

The study of graphs with groups acting on them is the study ofG-graphs. AG-graph
G = (G,G, φ) consists of a graph or digraph G, a group G, and a homomorphism
φ : G → Aut(G). (The study of graphs without groups acting on them is just the
special case of G-graphs for which G is the trivial group.) G-graphs arise naturally
in many areas, most obviously in the study of graphs related to permutation groups,
but also in the study of finite geometries and designs.

An example of a G-graph (where G is the symmetric group Sn) is the Johnson
graph J (n, k), defined to be the graph whose vertex-set consists of all k-subsets of
{1, 2, . . . , n}, with a vertex v adjacent to a vertex w exactly when |v ∩ w| = k − 1.

250
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Now J (n, k) = (J (n, k),Sn, φ) is an Sn-graph: if v = {i1, i2, . . . , ik} is a vertex
of J (n, k) and x ∈ Sn , then vφ(x) = {i1x, i2x, . . . , ik x}.

The GAP package GRAPE (see [13] and [38]) is designed for computing with
G-graphs, and in particular makes use of the group G acting on a G-graph G in
order to construct, store, and compute with G efficiently. The nauty package (see
[26]) contains the most powerful programs available for computing automorphism
groups of graphs and testing graph isomorphism; nauty is available as a stand-alone
package, or may be used from within GRAPE or MAGMA (see [27]).

There are many computer systems that are useful for studying graphs and groups
which we do not discuss here. These include the algebra system MAGMA, which
supports computation with graphs and includes the nauty package, the CoCo pack-
age [11] for computing with coherent configurations (see [5] and [12]), and Kocay’s
package Groups & Graphs [21] (for Macintosh and Windows), which includes a
graphical user interface to compute with graphs, geometric configurations, com-
binatorial designs, and their automorphism groups. Also worth mentioning are the
algorithms of Rees and the author for computing fundamental groups and covers
of combinatorial cell complexes, and which have been implemented for simplicial
complexes (see [32]).

This chapter is organized as follows. We first describe some basic algorithms
for permutation groups that are used in the study of G-graphs. We then discuss
the efficient storage and construction of G-graphs, and how to use a modified
form of breadth-first search to determine efficiently many properties of a G-graph.
Following that, we concentrate on the methods used by nauty. Next, we discuss
the application of computational methods to the study of vertex-transitive graphs.
Then, after a brief discussion of the coset enumeration procedure, we describe
some applications of coset enumeration to the study of symmetric graphs.

Throughout this chapter, a digraph is allowed to have loops, but no multiple
arcs, and by the adjacency set or neighbourhood G(v) of a vertex v in a graph or
digraph G we mean the set of all vertices w such that vw is an edge or arc of G.

2. Permutation group algorithms

In this section, we describe some basic permutation group algorithms that are
important in the study of G-graphs; more detailed elementary expositions can be
found in [4] and [9], and a comprehensive treatment of the state of the art in
permutation group algorithms is the book by Seress [33]. Throughout this section,
V is a finite set of size n, and we are computing with the permutation group G
given by a generating set X of permutations of V . The image of v ∈ V under the
permutation x of V is denoted by vx .
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Orbits and Schreier vectors

Let v ∈ V . The orbit of v under G is the set vG = {vg : g ∈ G}. The calculation
of all of the orbits {vG : v ∈ V } of G = 〈X 〉 is equivalent to determining the
connected components of the ‘Schreier graph’ with respect to X , for G acting on
V . This Schreier graph S(V, X ) is a digraph with vertex-set V , where (v, w) is an
arc exactly when vx = w for some x ∈ X . A set of rooted directed spanning trees of
the connected components of S(V, X ) describes a set R of orbit representatives (the
roots) and their G-orbits (the vertices in each tree). These trees are called Schreier
trees, and we always direct a Schreier tree so that the direction of each arc is away
from the root. A set of Schreier trees can be compactly encoded using a ‘Schreier
vector’, usually implemented as an array. A Schreier vector s = s(V, X ), for a set R
of orbit representatives and a set of Schreier trees in S(V, X ) that they root, is a map

s : V → {0} ∪ X,

for which s(v) = 0 if v ∈ R, and s(v) = x ∈ X means that (vx−1, v) is an arc of
one of the Schreier trees (so vx−1 is the ‘parent’ of v in that tree).

The computation of a single orbit rG, and the definition of the Schreier vector
entries s(v) for the vertices v in this orbit, are usually done using a breadth-first
search of the connected component containing r . We first define s(r ) = 0 and
perform the breadth-first search outwards from r , finding the adjacency set of a
vertex u by applying each element of X to u. Whenever we encounter a new vertex
v in our breadth-first search – say by applying x to u – we define s(v) = x .

If we are given a Schreier vector s = s(V, X ) and a point v ∈ V , then we can
determine a pair (r, w) for which r is the root of the Schreier tree containing v,
and w is a word in X such that rw = v. This calculation proceeds as follows:

1. w := emptyword; r := v; x := s(r );
2. while x 
= 0 do w := xw; r := r x−1; x := s(r ); end do;

On completion, (r, w) is the required pair.
Some brief remarks are in order. We do not keep evaluating the inverses of

elements of X , since we either make X inverse-closed, and so can access directly
the inverse of a generator in X , or we compute r x−1 by tracing r through its cycle
in x until we find the point mapped to r by x . Finally, note that our definition of a
Schreier vector (for all the orbits of a group simultaneously) is not the usual one.

Bases and strong generating sets

A sequence B = (b1, b2, . . . , bm) of elements of V is a base forG if the (pointwise)
stabilizer GB of B is the trivial group. A base B defines a chain

G = G(1) ≥ G(2) ≥ · · · ≥ G(m) ≥ G(m+1) = {1}
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of subgroups of G, for which G(i) is the (pointwise) stabilizer of (b1, b2, . . . , bi−1).
We observe that

|G| =
m∏

i=1

|G(i) : G(i+1)| and |G(i) : G(i+1)| = |biG(i)|.

A strong generating set for G, relative to B, is a generating set Y for G with the
property that

〈Y ∩ G(i)〉 = G(i), for i = 1, 2, . . . , m + 1.

Given a strong generating set relative to B, the orbits biG(i) can easily be computed,
and we can thus obtain the order of G. A base and associated strong generating set
are required by most advanced permutation group algorithms, and are very useful
in G-graph computations.

As well as introducing the fundamental concepts of base and strong generating
set, Sims [34] devised an algorithm, now called the Schreier-Sims algorithm, to
construct a base and associated strong generating set for the permutation group
G = 〈X〉. Modern variants of this algorithm and others, implemented in GAP
and MAGMA, can be used to compute bases and strong generating sets for many
permutation groups of degree 105 or more (see [33, Chs. 5, 8]). It is shown in [33,
Ch. 5] that, given a base B for G, a strong generating set for G can be computed in
O(n|B|2|X |(log|G|)3) time. Of course, we could take B to be a sequence of length
n of all of the elements of V , but in practice we often know (or can compute) a
much shorter base.

Some permutation group algorithms, such as those for determining the G-
stabilizer of a set of points of V or determining the centralizer of a subgroup of G,
currently use backtrack search, and are not polynomial-time algorithms. Modern
implementations of certain permutation group backtrack algorithms can be quite
efficient in practice, however, even when V has size 105 or more (see [22]). It
would be extremely interesting if polynomial-time algorithms could be found for
set-stabilizer or subgroup-centralizer, especially since the problem of determining
graph isomorphism is polynomial-time reducible to each of these tasks (see [33,
Ch. 3]).

3. Storing and accessing a G-graph

We now consider how GRAPE stores a G-graph G = (G,G, φ) in a compact way
that also enables the efficient recovery of basic information about the graph or
digraph G. In this implementation, we store φ(G) by a generating set, so we now
assume that G = φ(G) ≤ Aut(G) and let G be given by a generating set X .
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Let V1, V2, . . . , Vk be the orbits of G on the set V of vertices of G, with re-
spective representatives v1, v2, . . . , vk . We store G using a record data structure,
containing:
� the permutation generators X for G;
� the list v1, v2, . . . , vk of orbit representatives;
� the list G(v1), G(v2), . . . , G(vk) of the adjacency sets of these G-orbit

representatives;
� a Schreier vector s(V, X ).
Note that, even if G is trivial, the above method of storing G is not significantly
worse than a represention by a list of adjacency sets of the vertices.

We now describe how to use the Schreier vector s = s(V, X ) to determine
whether (v, w) is an arc of G, for vertices v and w, and to calculate the adjacency
set G(v) of v. We first use s to determine a pair (vi , w) for which vi is the orbit
representative of vG and w is a word in X mapping vi to v. Then (v, w) is an arc
of G if and only if ww−1 ∈ G(vi ), and we have G(v) = G(vi )w.

Our method of storing a G-graph is space-efficient at the cost of time for the
recovery of the adjacency sets of vertices. It is a good idea for the Schreier trees
encoded by s to be as shallow as is reasonably possible – hence the use of breadth-
first search. A thorough discussion on computing shallow Schreier trees is given in
[33, Ch. 4]. We do remark, however, that our method of storing G-graphs can often
save time when constructing a graph, since we need only calculate the adjacency
sets of orbit representatives for G on V .

We discuss one final point concerning the GRAPE data structure for aG-graph G,
which has turned out to be extremely useful when doing ‘real-life’ calculations. In-
ternally, the n vertices of G are represented by the integers 1, 2, . . . , n, but each ver-
tex also has a ‘name’ which can be an object of any GAP type. When constructing
a new graph (possibly from another graph), the vertices of this new graph are num-
bered 1, 2, . . . , n, but their names are chosen to reflect the mathematical nature
of the vertices. Details of this naming for specific functions can be found in the
GRAPE manual. (The use of this naming, which is implemented by a list, was
suggested by P. J. Cameron.)

4. Constructing G-graphs

Although not always necessary, we assume from here on that if we are computing
with a G-graph G = (G,G, φ), then we have a base and associated strong gen-
erating set for φ(G) acting on V = V (G). This allows, for example, the efficient
calculation of the φ(G)-stabilizer of an arbitrary point in V (see [33, Ch. 5]). We re-
mark that, in many constructions of G-graphs, our knowledge about G often allows
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us to compute this base and strong generating set much more efficiently than
otherwise. For example, we often know the order of φ(G), and this allows the use
of a very fast randomized algorithm to compute a base and strong generating set
(see [33, Ch. 8]), often applicable to groups of degree 106 or more. We also remark
that the nauty package [26] outputs the automorphism group of a graph as a base
and associated strong generating set for that group (see Section 6).

GRAPE has many functions to construct G-graphs, including Cayley graphs,
orbital graphs and digraphs, induced subgraphs and quotient graphs. However, the
most useful and general way of constructing aG-graph in GRAPE is to use the func-
tion Graph, which behaves as follows. The input is a group G (which may or may
not be a permutation group), a finite set V on which G acts (the action can be one of
the standard actions in GAP or may be one supplied by the user), and a G-invariant
relation rel on V (given as a function of two vertices v and w and which returns
TRUE or FALSE, according to whether or not (v, w) is in the relation). The output
is the G-graph G with vertex-set V , where (v, w) is an arc if and only if rel(v, w).

The first step is to compute the orbits of G acting on V and the associated
Schreier vector. Then, for each orbit representative r , we need to determine those
vertices v ∈ V such that rel(r, v). In fact, we need check rel(r, s) only for those s
in a set of orbit representatives of the orbits on V of the G-stabilizer H of r , since
rel(r, t) for each t in sH if and only if rel(r, s).

5. G-breadth-first search in a G-graph

In this section, for ease of exposition, we assume that our G-graph G = (V, E) is
a simple graph, and that G is a subgroup of Aut(G). We define Gi (v) to be the set
of all vertices at distance i from a vertex v of G.

Many properties of G can be determined by (possibly repeated) applications
of breadth-first search. These include finding the connected components, diameter
and girth, as well as determining various regularity properties such as whether G
is distance-regular. We describe here a version of breadth-first search, which we
call G-breadth-first search, which takes into account G as a subgroup of Aut(G).

Let v ∈ V , and let H = Gv be the stabilizer in G of v. The key observation is
that if w is a vertex at distance i from v, then each vertex in the orbit wH is at
distance i from v.

Suppose that V1(= {v}),V2, . . . , Vk are the orbits ofH on V , with respective rep-
resentatives v1(= v), v2, . . . , vk , and let R = {v1, v2, . . . , vk}. In a G-breadth-first
search from v, we determine the sets R0, R1, . . . of H-orbit representatives, where

Ri = Gi (v) ∩ R.
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Given Ri , we then have Gi (v) as the union of the (already computed) orbits rep-
resented by the elements of Ri .

Clearly R0 = {v}. The basic step is to obtain Ri+1 from Ri . We actually do
more, in order to obtain more information from our G-breadth-first search. We
start by setting Ri+1 := {} and then, for each r ∈ Ri , do the following:

1. determine C := G(r ) ∩ Gi−1(v), A := G(r ) ∩ Gi (v) and
B := G(r ) − (C ∪ A);

2. add to Ri+1 the representatives of the H-orbits that intersect B non-trivially;
3. for later use, store ci (v, r ) := |C |, ai (v, r ) := |A|, and bi (v, r ) := |B|.
The G-breadth-first search stops with R0, R1, . . . , Rm , when Rm+1 is empty but
Rm is not. If required, it is trivial to recover G0(v), G1(v), . . . , Gm(v), the union of
these sets being the vertices in the connected component containing v. Also note
that m is the greatest distance d(v) from v to any vertex in the connected component
of v. Moreover, if G is connected, then its diameter diam(G) is the maximum value
of d(w), as w ranges over a set of representatives of the G-orbits on V .

Let g(v) be the length of a shortest cycle containing v if v is on some cycle
of G, and let g(v) = ∞ otherwise. The numbers ci (v, r ) and ai (v, r ) computed
above (for each i = 1, 2, . . . , m and each r ∈ Ri ) can be used to determine g(v),
as follows.

Let t be the least value of i ∈ {1, 2, . . . , m} for which ci (v, r ) ≥ 2 or ai (v, r ) ≥
1, for some r ∈ Ri , if such an i exists. If no such i exists, then g(v) = ∞; otherwise,
if ct (v, r ) ≥ 2 for some r ∈ Ri , then g(v) = 2t ; if not, then g(v) = 2t + 1.

Note that the girth of G is the minimum value of g(w) as w ranges over a set
of representatives of the G-orbits on V (a girth of ∞ means that G has no cycles).

Now define c0(v, v) = 0, a0(v, v) = 0 and b0(v, v) = |G(v)|. Let 0 ≤ i ≤ m
and r ∈ Ri . If ci (v, r ) depends only on i and v (and not on the H-orbit representa-
tive r ), then we denote this quantity by ci (v) and call it a local parameter of G.
Similarly, if ai (v, r ) and bi (v, r ) do not depend on r , then these too are called local
parameters, and are respectively denoted by ai (v) and bi (v). Such local param-
eters, if and when they exist, are used in the determination of various regularity
properties of G, the strongest of which is distance-regularity. Indeed, the graph G
is distance-regular if and only if G is connected, d(v) is the same for all vertices v

(so each d(v) = diam(G)), and for each vertex v and i = 0, 1, . . . , diam(G), all
local parameters ci (v), ai (v) and bi (v) exist and do not depend on v, thus giv-
ing the parameters ci , ai and bi of a distance-regular graph; see Chapter 9. Of
course, we need to check these conditions only for those vertices v in a set of orbit
representatives of G on V .

Finally, we remark that G acts distance-transitively on G (see Chapter 9) if and
only if G is connected, G has just one orbit on V , and, for some (and hence all)
vertices v, the number of Gv-orbits on V is diam(G) + 1.
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G-breadth-first search is efficiently implemented in GRAPE in order to deter-
mine connected components, diameter, girth, and regularity properties ofG-graphs.
Although we do not discuss it here, GRAPE includes many other functions for com-
puting with G-graphs, such as backtrack search functions for classifying complete
subgraphs of given weight-sum in a vertex-weighted G-graph and for classifying
partial linear spaces with given point graph and parameters.

6. Automorphism groups and graph isomorphism

Automorphism groups of graphs are discussed in Chapter 5. The most advanced
algorithms and programs for computing automorphism groups of graphs and for
testing graph isomorphism are those of McKay, freely available as part of his
nauty package [26] and useful for graphs with up to about 104 vertices; nauty
also works with digraphs, although we do not consider them in this section. We
shall briefly describe McKay’s method of ‘partition backtrack’, which has been
very influential in computational group theory. Indeed, partition-based backtrack
methods are now used in the most advanced available algorithms for calculating
set-stabilizers, centralizers and normalizers in permutation groups (see [33, Ch. 9]).

Let G = (V, E) be a graph, with V = {1, 2, . . . , n}, and let π be an ordered
partition of V . Thus π is a sequence (V1, V2, . . . , Vk) of distinct subsets of V , for
which {V1, V2, . . . , Vk} is a partition of V : the elements of V are called cells. (One
can think of (G, π ) as being a (not necessarily properly) vertex-coloured graph,
with vertices v and w having the same colour if and only if they belong to the same
cell of π .) Define the ordered partition c(π ) of V to be

({1, 2, . . . , |V1|}, {|V1| + 1, |V1| + 2, . . . , |V1| + |V2|}, . . . ,
{n − |Vk | + 1, n − |Vk | + 2, . . . , n}).

If x is a permutation of V , define Gx to be the graph (V, Ex), where Ex =
{{vx, wx} : {v, w} ∈ E}, and define πx = (V1x, V2x, . . . , Vk x), where Vi x =
{vx : v ∈ Vi }. The automorphism group Aut(G, π ) of (G, π ) is the group of all
permutations x of V for which (Gx, πx) = (G, π ). Thus, when π = (V ), the
automorphism group of (G, π ) is just Aut(G).

The main functions of the nauty package are to determine Aut(G, π ), in the
form of a base and associated strong generating set, and in the process, to compute
the image of (G, π ) under a canonical labelling map (described below) which is
used for isomorphism testing.

A canonical labelling map is a function C such that, for each graph G with
vertex-set V = {1, 2, . . . , n}, each ordered partition π of V , and each permutation
x of V , we have:
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� C(G, π ) = Gy, for some permutation y of V such that πy = c(π );
� C(Gx, πx) = C(G, π ).

The importance of a canonical labelling map C is this. Suppose that G1 and G2

are graphs on the same vertex-set V = {1, 2, . . . , n}, and that π1 and π2 are ordered
partitions of V with c(π1) = c(π2). Then there is a permutation y of V such that
(G1 y, π1 y) = (G2, π2) if and only if C(G1, π1) = C(G2, π2). In particular, G1 is
isomorphic to G2 if and only if C(G1, (V )) = C(G2, (V )).

Partition backtrack

As before, G is a graph with vertex-set V = {1, 2, . . . , n} and π = (V1, V2, . . . ,

Vk) is an ordered partition of V . The cells of π of size 1 are called singletons, and
a discrete partition is one in which all cells are singletons.

For each v ∈ V , let u(v, π ), denote the index of the cell in π containing v; in
other words, u(v, π ) = i means that v ∈ Vi . We say that an ordered partition ν of
V is a refinement of π if:
� each cell of ν is contained in some cell of π ;
� for each v, w ∈ V : if u(π, v) < u(π, w), then u(ν, v) < u(ν, w).
A refinement process is a function R such that, for each graph G with vertex-set
V , each ordered partition π of V , and each permutation x of V ,

R(G, π ) is a refinement of π , and R(G, π )x = R(Gx, πx).

In particular, if x ∈ Aut(G), then R(G, π )x = R(G, πx), and so x maps the
ordered partition π to ν only if x maps the refinement R(G, π ) to R(G, ν). In
particular, if c(R(G, π )) 
= c(R(G, ν)), then there is no element of Aut(G) that
maps π to ν. Note that, if R(G, π ) is discrete, then Aut(G, π ) is trivial.

An ordered partition π = (V1, V2, . . . , Vk) of V is G-equitable if there are
constants di j (1 ≤ i, j ≤ k) such that |G(v) ∩ Vj | = di j for each vertex v ∈ Vi .
The default refinement process R used by nauty (for simple graphs) maps (G, π )
to an ordered G-equitable partition ν, such that ν is a refinement of π and, up to
the order of its cells, is the coarsest equitable partition that is a refinement of π .
More precise details can be found in McKay [25].

We now outline (roughly) how the nauty procedure finds Aut(G, π ). For more
details, together with how a canonical labelling map is found, see [25] (see also
[20], [24] and [28]).

We let R be the default refinement process used by nauty. The nauty procedure
proceeds by a depth-first search in a search tree whose nodes are ordered G-
equitable partitions of V ; the root is R(G, π ) and the leaves are discrete partitions.
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We call the first leaf found ζ . Any other leaf λ may give rise to a new automorphism
of (G, π ), and we check to see whether the unique permutation of V mapping ζ

to λ is in Aut(G, π ). A non-leaf ν in the search tree is not discrete, and we obtain
its ‘children’ as follows. First, we choose a non-singleton cell C of ν according to
some rule – we usually just take the first non-singleton cell. Then, for each v ∈ C
(in ascending order of v), we isolate v – that is, we form the ordered partition ν ◦ v

obtained from ν by replacing C by {v}, C − {v}, and then we add R(G, ν ◦ v) as
a ‘child’ of ν. The search tree is pruned in various ways, so as to avoid searching
subtrees providing no new information (see [25]). The search is structured so as to
provide a base and associated strong generating set for Aut(G, π ). In determining
the first leaf ζ , G-vertices w1, w2, . . . , wm , say, are isolated (wi at depth i) for
the formation of the ancestors of ζ (other than the root) and the formation of ζ

itself. It is not difficult to see that (w1, w2, . . . , wm) is a base for Aut(G, π ); nauty
computes a strong generating set relative to this base.

7. Computing with vertex-transitive graphs

Recall that a graph or digraph G is vertex-transitive if Aut(G) acts transitively
on V (G). The class of vertex-transitive graphs includes Cayley graphs and sym-
metric graphs (studied in Chapters 6 and 7), which further includes the class of
distance-transitive graphs (studied in Chapter 9). In this section we consider the
computational study of a G-graph G, where G (a subgroup of Aut(G)) acts tran-
sitively on V (G). Note that the GRAPE data structure for storing a G-graph is
especially compact in this case.

Collapsed adjacency matrices

Let G be a transitive permutation group on a finite set V . Then G has a natural ac-
tion on V × V , defined by (v, w)x = (vx, wx). The orbits of this action are called
orbitals, and the orbits of the stabilizer Gv of a point v ∈ V are called suborbits. It
is well known that the orbitals for G are in one-to-one correspondence with these
suborbits: this correspondence maps an orbital E to the suborbit {w : (v, w) ∈ E}.
The orbital digraph forG associated with an orbital E is simply the digraph (V, E).
If the orbital E is non-diagonal and self-paired (see Chapter 8), then we associate
the orbital graph (V, {{v, w} : (v, w) ∈ E}) with E .

Let v1 ∈ V , and suppose that V1(= {v1}),V2, . . . ,Vk is an ordering of the orbits
of Gv1 , with respective representatives v1,v2, . . . ,vk ; k is the rank of G. Let G =
(V, E) be a graph or digraph on which G acts vertex-transitively, so that E is a
union of orbitals and G(v) is the union of the corresponding suborbits contained
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in {V1,V2, . . . ,Vk}. For i, j = 1, 2, . . . , k, define

ai j = |G(vi ) ∩ Vj |.
Note that ai j does not depend on the choice vi of suborbit representative, and it
can easily be computed using the GRAPE data structure for the G-graph G – in
practice, for |V | up to about 106. The k × k integer matrix A = (ai j ) is the collapsed
adjacency matrix for G, with respect to G and the ordering of the suborbits. This
matrix (which is extremely compact when k is small) contains at least as much
information as that computed in a G-breadth first search from v.

Since G acts vertex-transitively, the single collapsed adjacency matrix A for G
can be used to determine whether G is (strongly) connected, and if so, what its
diameter is; whether G is a simple graph, and if so what its girth is; whether G is
distance-regular, and whether G acts distance-transitively on G. See Praeger and
Soicher [31] for more detailed information and applications of collapsed adjacency
matrices, and also Chapter 9 for examples of ‘collapsed adjacency diagrams’.

We remark that the collapsed adjacency matrices for the orbital digraphs for
the transitive group G are useful in studying the coherent configuration associated
with G (see [5] and [12]), since, with respect to a fixed ordering V1,V2, . . . ,Vk

of the suborbits as above, the collapsed adjacency matrix for an orbital digraph
(V, E) for G is the transpose of the intersection matrix (as defined in [5, Ch. 3])
corresponding to the orbital paired with E .

Distance-transitive graphs

Chapter 9 provides an overview of the state of the classification of distance-
transitive graphs. Here we discuss the application of computing, which has been
used in the discovery, analysis and classification of certain distance-regular and
distance-transitive graphs (see, for example, [37], [31], [23] and [18]). We also
remark that computing is used in the determination of feasible intersection arrays
for possible distance-regular graphs (see, for example, [3]).

Suppose that G acts distance-transitively on a graph G. Then G must be an
orbital graph for G of the smallest or second-smallest vertex-degree (see [18]).
Furthermore, each orbital for G must be self-paired, which is equivalent to the
property that the permutation character of G on V is the sum of distinct complex
irreducible characters, each with Frobenius-Schur indicator +1 (see [2, p. 64]).
For these, and other reasons, it makes sense to analyse the lower degree orbital
graphs of permutation representations whose character is multiplicity-free – that
is, the sum of distinct complex irreducible characters.

Computation has been applied extensively in the classification of the graphs
on which a sporadic simple group or its automorphism group acts primitively and
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distance-transitively (see [23] and [18]; the results of this classification are given in
Chapter 9). In the process of this classification, the primitive multiplicity-free per-
mutation characters for these sporadic groups were also determined, and for most of
the corresponding permutation representations of sporadic groups, a collapsed ad-
jacency matrix was computed for the orbital graph of least degree. This built on the
work of Praeger and Soicher [31], where collapsed adjacency matrices were com-
puted for the orbital digraphs for all permutation representations of rank at most 5 of
the sporadic simple groups and their automorphism groups. The practical computa-
tional determination of permutation characters is described in some detail in Linton,
Lux and Soicher [23], which also details randomized techniques for computing col-
lapsed adjacency matrices for certain permutation representations of degree about
1011, where it would be impossible to store explicit permutation generators. These
techniques make use of graph algorithms as well as permutation group algorithms.

An ambitious project at Lehrstuhl D für Mathematik, RWTH (Aachen), involv-
ing T. Breuer, I. Höhler and J. Müller, has since determined collapsed adjacency
matrices for all orbital digraphs for all multiplicity-free permutation representa-
tions of the sporadic simple groups and their automorphism groups, and the results
are published on the world-wide web [1] (although what they call ‘collapsed ad-
jacency matrices’ we would call intersection matrices).

We remark that many permutation and matrix representations of finite simple
groups and related groups can be downloaded from the online ATLAS of group
representations (see [41]). These group representations are very useful for con-
structing related G-graphs and collapsed adjacency matrices.

8. Coset enumeration

Coset enumeration is one of the oldest and most useful methods of computational
group theory (see [30], [35], [14] and their references). For this chapter, we concen-
trate on what coset enumeration does, and on the application of coset enumeration
and related procedures to problems in graph theory.

Let G = 〈X : R〉 be a finitely presented group – that is, G is generated by the
finite set X , subject (only) to the finite set R of relators which are words in X ∪ X−1

that evaluate to the identity in G (where X−1 = {x−1 : x ∈ X}). The input to coset
enumeration is (X, R, Y ), where Y is a set of words in X ∪ X−1 that generates a
subgroup H of G.

The coset enumeration process attempts to construct a set V , with 1 ∈ V , and
a transitive permutation representation ρ : G → Sym(V ) for which, in this rep-
resentation, H is the stabilizer in G of the point 1. Coset enumeration does this
by using a trial-and-error process for constructing the permutations ρ(X ∪ X−1).
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The name coset enumeration comes from the fact that, if a coset enumeration is
successful, then there is a one-to-one correspondence between the elements of V
and the cosets of H in G, with 1 corresponding to H.

If the index of H in G is infinite, then the coset enumeration process does not
terminate; if it is finite, then the process terminates, but there can be no computable
general bound (in terms of the size of the input and the putative index) on the time
or store required for termination (see, for example, Neubüser [30]).

There is an enormous amount of flexibility in the coset enumeration process, and
many different approaches have been suggested and experimented with (see [30],
[35] and [14]). Depending on the presentation and the approach used, there can be
huge variations in the time and store taken. Currently, the most advanced methods
are due to Havas and Ramsay, and these methods are available in their ACE package
[15], also available as a GAP package [16] and within the MAGMA system [27].

There are many useful variations on coset enumeration. For example, a ‘mod-
ified Todd-Coxeter’ enumeration gives a presentation for H, and the ‘low-index
subgroups procedure’ determines (up to permutation isomorphism) all transitive
representations of G up to some given degree k; see [30] for an excellent introduc-
tion to coset enumeration and its variations.

9. Coset enumeration for symmetric graphs

Recall that a graph G is symmetric if Aut(G) acts transitively on both its ver-
tices and arcs (ordered pairs of adjacent vertices). A subgroup G of Aut(G) acts
symmetrically on G if G acts transitively on both the vertices and arcs of G.

One common way to study connected symmetric graphs with given properties is
by determining the groups that act on them symmetrically, as quotients of universal
completions of appropriate amalgams (see Chapter 7 and [19] for useful overviews,
and [17] for a more general geometric context). In this approach, we first use the
given graph-theoretical properties to determine the possible amalgams of the form
A = {Gv,G{v,w}}, where (v, w) is an arc in the putative graph on which G acts
symmetrically. Since the universal completion U (A) of such an amalgam of two
groups (with neither a subgroup of the other) is infinite, we need to add further
relations to U (A) to obtain the finite groups of automorphisms we seek. Such extra
relations could come from cycles in our graph or from the local graph structure.

Coset enumeration can then be used in an effort to determine the (hopefully
finite) index of H = Gv in G, and to construct the representation of G acting on
the set V of right cosets of H in G. Given such a representation of G on V , we can
reconstruct and study the graph G which may have the properties we seek – or
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we may have been able to prove theoretically that G has the required properties.
This graph G is simply the orbital graph for G for which the orbital contains
(H,Hg), where g is an element of G{v,w} − H. Applications of this kind include
those in Morton [29], where the 4-arc- and 5-arc-transitive connected cubic graphs
of girth up to 11 and girth 13 are classified; see Chapter 7 for a discussion of s-
arc transitivity, and Conder and Dobcsányi (see [6] and [7]), where the connected
symmetric cubic graphs on up to 768 vertices are determined, using a powerful new
low-index subgroups procedure, parallel computation and coset enumeration. Of
course, computational studies of this kind often lead to conjectures and theoretical
results. For more applications of coset enumeration to the study of symmetric
graphs, and for a beautiful and natural characterization and construction of the
sporadic simple group J3, see Weiss [39] and also [40], [36] and [10].

Graphs that are locally a given graph

We now give an example where additional transitivity assumptions and local struc-
ture specification lead to an amalgam of three groups. We use the ATLAS notation
[8] for group structures.

Let G and H be graphs. Then G is said to be locally-H if, for each vertex v

of G, the induced subgraph on G(v) is isomorphic to H (this situation is discuss-
ed briefly in Chapter 5). Given a graph H , coset enumeration can sometimes be used
effectively to study presentations that arise in the classification of the connected
graphs G that are locally-H , for which Aut(G) acts transitively on the ordered
triangles of G. These presentations come from applying the amalgam method to
putative stabilizers of a vertex, incident edge and triangle, contained in a fixed
triangle of such a graph G.

A simple, but good, example of this application of coset enumeration is given
in [10], where H is the incidence graph of the unique 2-(11, 5, 2) design, and
where the ordered-triangle-transitive graphs G that are locally-H are classified.
We discuss here the case where a vertex-stabilizer in the automorphism group of G
is isomorphic to PGL2(11). For such a graph G, it is shown that there is (essentially)
only one possible amalgam A = {X ,Y,Z} of the Aut(G)-stabilizers X ,Y,Z of
x, {x, y}, and {x, y, z}, contained in a triangle {x,y,z} of G. In this amalgam,
X ∼= PGL2(11),Y ∼= S5,Z ∼= (A4 × 3) : 2,X ∩ Y ∼= A5,X ∩ Z ∼= S4, and Y ∩
Z ∼= S4. Then Aut(G) is a homomorphic image of U (A) which has the following
presentation, determined in [10]:
〈
a, b, c, d, e : a3 = b2 = c2 = d2 = (ab)3 = (ac)2 = (ad)2 = a(cd)4

= (bc)3 = (bd)2 = e2 = (ae)2 = (be)2 = (ce)2 = (de)3 = 1
〉
.
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For this presentation of U (A),X maps onto 〈a, b, c, d〉,Y maps onto 〈a, b, c, e〉,
and Z maps onto 〈a, b, d, e〉; the relations (ac)2 = (ad)2 = 1 are consequences
of the others.

Applying coset enumeration, we find that 〈a, b, c, d〉 has index 432 in U (A).
It is then shown that U (A) ∼= (3 × M12) : 2, and that there are just two connected
ordered-triangle-transitive locally-H graphs whose vertex-stabilizer is PGL2(11),
having (respectively) 432 and 144 vertices and automorphism groups isomorphic
to U (A) and U (A)/〈(bcde)11〉 ∼= M12 : 2, the automorphism group of the Mathieu
group M12.
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Faradžev, A. A. Ivanov, M. H. Klin and A. J. Woldar), Kluwer (1994), 417–441.

20. W. Kocay, On writing isomorphism programs, Computational and Constructive
Design Theory (ed. W. D. Wallis), Kluwer (1996), 135–175.

21. W. Kocay, Groups & Graphs; http://www.paddle.mb.ca/G&G/G&G.html.
22. J. S. Leon, Partitions, refinements, and permutation group computation, Groups and

Computation II (eds. L. Finkelstein and W. M. Kantor), DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 28, Amer. Math. Soc. (1997), 123–158.

23. S. A. Linton, K. Lux and L. H. Soicher, The primitive distance-transitive representations
of the Fischer groups, Experimental Math. 4 (1995), 235–253.

24. B. D. McKay, Computing automorphisms and canonical labellings of graphs, Combin.
Math., Proc. Int. Conf., Canberra 1977, Lecture Notes in Mathematics 686, Springer
(1978), 223–232.

25. B. D. McKay, Practical graph isomorphism, Congr. Numerantium 30 (1981), 45–87.
26. B. D. McKay, nauty; http://cs.anu.edu.au/people/bdm/nauty.
27. The Magma Computational Algebra System, Computer Algebra Group, School of

Mathematics and Statistics, University of Sydney; http://magma.maths.usyd.
edu.au.

28. T. Miyazaki, The complexity of McKay’s canonical labelling algorithm, Groups
and Computation II (eds. L. Finkelstein and W. M. Kantor), DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 28, Amer. Math. Soc. (1997),
239–256.

29. M. J. Morton, Classification of 4- and 5-arc-transitive cubic graphs of small girth, J.
Austral. Math. Soc. (A) 50 (1991), 138–149, and Corrigendum, 52 (1992), 419–420.
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Gerŝgorin’s theorem, 59
girth, 3
go into, 9
go out of, 9
Graham-Pollak theorem, 68
Gram matrix, 99
GRAPE, 253
graph, 1, 214, 250
graph isomorphism, 139
graphical regular representation, 145,

169
Grassmann graph, 240
grid graph, 119
Grigorchuk group, 150
group, 19
group character, 235
group of automorphisms, 138
group of Lie type, 21, 246
growth, 150

H -maximal, 100
Hadwiger number, 146
half-arc transitive, 200
halved graph, 234
Hamilton decomposition, 173
Hamilton-connected, 171
Hamilton-laceable, 172

Hamiltonian, 7
Hamming graph, 39, 188, 229
head, 60
Heawood graph, 78
Hoffman polynomial, 36
Hoffman-Singleton graph, 38
homeomorphic, 6
homogeneous, 148
homomorphically equivalent, 152
homomorphism, 19, 152

identity, 19
imprimitive, 183, 215
imprimitivity, 233
imprimitivity sets, 63
in-degree, 9
incidence matrix, 60
incident, 2
independence ratio, 152
index, 20
index of imprimitivity, 63
induced, 3
infinite graph, 2
insertion, 6
integral, 107
Interlacing theorem, 34
intersection array, 231
inverse, 19
irreducible, 62, 235
irreducible component, 62
isometric subgraph, 153
isomorphic, 23, 138
isomorphic factorization, 174
isomorphism, 19, 138
isoperimetric number, 128
isoperimetric problem, 127

Johnson graph, 39, 250
joins, 2
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polynomial partition, 93
positive matrix, 61
primitive, 28, 61, 65, 215
primitive symmetric pair, 186
principal axis theorem, 33
product, 104
projective group, 216
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projective representation, 240
pseudo-geometric, 208

quasi-cyclic shift, 107
quasi-minimal, 171
quasiprimitive, 28, 193
quotient graph, 186
quotient group, 20

r-circular colouring, 175
random Cayley graph, 145
rank, 26, 214, 259
Rayleigh characterization, 120
Rayleigh quotient, 41
real, 235
real n-dimensional space, 10
Reconstruction theorem, 97
reducible, 62
refinement, 258
refinement process, 258
region, 7
regular, 2, 144, 158, 184, 220
retract, 152
right coset, 20
ring-like, 147
root system, 45

Schläfli graph, 205
Schreier coset graph, 146
Schreier graph, 252
Schreier tree, 252
Schreier vector, 252
Schreier-Sims algorithm, 253
Seidel matrix, 50
Seidel spectrum, 90
self-paired, 26, 226, 260
semi-definite program, 126
semi-regularly, 146
semi-symmetric, 199
Shrikhande graph, 52, 210
signed digraph, 75
signed weight, 75
signing, 76
simple graph, 2
simple random walk, 130
simple socle, 239
simplicial, 80
simplicial vertex, 80
simultaneous permutations, 61
singleton, 258
singular graph, 105

socle, 29, 184, 215
spanning, 3
special bound, 213
spectral radius, 58
spectrum, 89
spherical t-design, 213
sporadic groups, 21, 237, 247
square, 59
square lattice graph, 210
square-root, 151
stabilizer, 24
star closed, 45
star complement, 89, 96
star partition, 94
star set, 89, 94
stationary distribution, 131
Steiner system, 209, 210
strong, 9
strong component, 9, 62
strong generating set, 253
strong graph, 219
strong product, 104
strongly connected, 9, 58
strongly regular, 36, 204
subdominant, 50
subgraph, 3
subgroup, 20
subnormal subgroup, 239
suborbit, 259
sum, 104
switching, 219
switching-equivalent, 101
symmetric, 25, 179, 262
symmetric group, 22
symmetric pair, 25
symmetric travelling salesman

problem, 129
symmetrically, 262

t-homogeneous, 149
t-tuple regular, 205
tail, 60
tournament, 9, 67
traceable, 7
trail, 2
transition Laplace matrix, 117
transition probabilities, 130
transitive, 24
transitive graph, 105
transversal design, 210
travelling salesman problem, 129
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triangular graph, 216
trivial partition, 183

union, 6
unique countable random graph, 151
universal, 142
universal Kn-free, 151
universal completion, 185
unlabelled graph, 138

vector, 10
vertex, 1, 9
vertex separator, 80
vertex-edge incidence matrix, 44
vertex-primitive, 146

vertex-set, 1
vertex-transitive, 25, 145, 259
vertex-transitively, 25
Vizing’s theorem, 8

walk, 2, 61
walk-regular, 91, 218
weight, 2, 61, 75
weight function, 115
weight of a perfect matching, 72
weighted, 115
weighted graph, 2, 115, 138
Weiss’s theorem, 189
Witt design, 142
wreath product, 22, 138
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