学术信息网 西电导航 关于 使用说明 搜索 系统首页 登录 控制面板 收藏 张强的留言板
学术论文

    在IEEE Transactions on Image Processing、IEEE Transactions on Circuits and Systems for Video Technology、Pattern Recognition、Information Fusion、Computer Vision and Image Understanding、《红外与毫米波学报》、《自动化学报》、International Conference on Computer Vision (ICCV)等国内外期刊和CCF A 类会议发表相关论文30余篇,SCI检索20多篇,单篇最高SCI他引168次,ESI高被引论文2篇,申请国家发明专利30余项(已获授权20项)。

[1] Qiang Zhang, Nianchang Huang, Lin Yao, Dingwen Zhang, Caifeng Shan, Jungong Han, RGB-T salient object detetion via fusing multi-level CNN features, IEEE Transactions on Image Processing 29(2020) 3321-3335.

[2] Yi Liu, Jungong Han, Qiang Zhang*, Caifeng Shan, Deep salient object detection with contextual information guidance, IEEE Transactions on Image Processing 29 (2019) 360-374.

[3] Yi Liu, Qiang Zhang,* Dingwen Zhang, Jungong Han, Employing deep part-object relationships for salient object detection, IEEE International Conference on Computer Vision, 2019, pp. 1232-1241.

[4] Qiang Zhang, Jinhan Wang, Zaihao Liu, Dingwen Zhang, A structure-aware splitting framework for separating cell clumps in biomedical images, Signal Processing 168 (2020) 107331.

[5] Qiang Zhang, Zhen Huo, Yi Liu, Yunhui Pan, Caifeng Shan, Jungong Han, Salient object detection employing a local tree-structured low-rank representation and foreground consistency, Pattern Recognition 92 (2019) 119-134.

[6] Qiang Zhang, Tao Shi, Fan Wang, Rick S. Blum, Jungong Han, Robust sparse representation based multi-focus image fusion with dictionary construction and local spatial consistency, Pattern Recognition 83(2018) 299-313.

[7] Qiang Zhang, Yi Liu, Rick S. Blum, Jungong Han, Dacheng Tao, Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review, Information Fusion 40 (2018) 57-75.

[8] Qiang Zhang, Martin D. Levine. Robust multi-focus image fusion using multi-task sparse representation and spatial context. IEEE Transactions on Image Processing 25(5) (2016) 2045-2058.

[9] Yi Liu, Jungong Han, Qiang Zhang*, Long Wang, Salient object detection via two-stage graphs, IEEE Transactions on Circuits and Systems for Video Technology 29(4) (2019) 1023-1037.

[10] Qiang Zhang, Yabin Wang, Martin D. Levine, Xiaoqing Yuan, Long Wang, Multisensor video fusion based on higher order singular value decomposition. Information Fusion 24 (2015) : 54-71.

[11] Qiang Zhang, Yi Liu, Siyang Zhu, Jungong Han, Salient object detection based on super-pixel clustering and unified low-rank representation, Computer Vision and Image Understanding 161 (2017) 51-64.

[12] Yi Liu, Qiang Zhang*, Jungong Han, Long Wang, Salient object detection employing robust sparse representation and local consistency, Image and Vision Computing, 69 (2018) 155-167.

[13] 张强,刘毅,关永强,霍臻,王龙.基于鲁棒稀疏表示与拉普拉斯正则项的显著目标检测方法.国家发明专利,2019年授权,授权号:ZL201710419857.0.

[14] 张强,邵蓓,韩军功,王龙. 基于单应变换的视频同步方法.国家发明专利,2019年授权,授权号:ZL201810086745.2.

[15] 张强,李亚军,朱韵茹,相朋,王龙. 基于变换不变低秩纹理的投影变换图像匹配方法.国家发明专利,2019年授权,授权号:ZL201510969075.5

[16] 张强,梁宁,朱四洋,王龙. 基于稀疏子空间聚类和低秩表示的显著性目标检测方法.国家发明专利,2019年授权,授权号:ZL201510951934.8.

[17] 张强,邵蓓,关永强,焦强,李亚军.基于投影不变描述子的视频同步方法.国家发明专利,2019年授权,授权号:ZL201710430461.6.

[18] 张强,郑元世,陈月玲,王亚彬,王龙. 结合区域匹配和点匹配的大视角图像匹配方法. 国家发明专利,2016年授权,授权号:ZL201310325400.5.

[19]张强,华胜,袁小青,王龙. 基于高阶奇异值分解的视频融合性能评价方法. 国家发明专利,2016年授权,授权号:ZL201410099933.0.

[20] 张强, 陈月玲, 陈闵利, 王龙. 基于时空显著性检测的多传感器视频融合方法.国家发明专利,2015年授权,授权号:ZL201310047223.9.

[21] 张强,马兆坤,王龙. 基于SCDPT变换及其幅相结合的多模态图像融合方法.国家发明专利,2015年授权,授权号:ZL201210275279.5.

[22] 张强,华胜,袁小青,王龙. 基于时空显著性检测的视频融合性能评价方法.国家发明专利,2015年授权,授权号:ZL201410114553. X.

[23] 张强,陈闵利,王龙. 基于3维Log-Gabor变换的视频图像融合性能评价方法. 国家发明专利,2015年授权,授权号:ZL201210493342.2.