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1.1 Definition

� An LTI discrete-time system is completely y p y
characterized in the time-domain by its 
impulse response sequence {h(n)}.p p q { ( )}

� Thus, the transformtransform--domain representation domain representation of 
a discrete time signalsignal can also be equallya discrete-time signalsignal can also be equally 
applied to the transformtransform--domaindomain
representationrepresentation of an LTI discretean LTI discrete time systemtime systemrepresentationrepresentation of an LTI discretean LTI discrete--time systemtime system.
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1.1 Definition

� Such transform-domain representations 
provide additional insightsinsights into the behaviorprovide additional insightsinsights into the behavior 
of such systems.

� It is easier to design and implement easier to design and implement these 
systems in the transformed-domain for certain y
applications.

� We consider now the use of the DTFTDTFT in� We consider now the use of the DTFTDTFT in 
developing the transform domain 
representations of an LTI system
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representations of an LTI system.

1.1 Definition

� In this course we shall be concerned with LTI 
discrete-time systems characterized by linear 
constant coefficient difference equations ofconstant coefficient difference equations of 
the form:

N M
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0 0k k� �
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1.1 Definition

� Applying the DTFTDTFT to the difference equation pp y g q
and making use of the linearity and the time-
invariance properties, we arrive at the input-invariance properties, we arrive at the input
output relation in the transform-domain as
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1.1 Definition

� Most discrete-time signals encountered in 
practice can be represented as a linearpractice can be represented as a linear 
combinationcombination of a very large, maybe infinite 
number of sinusoidal discretesinusoidal discrete--time signalstime signals ofnumber of sinusoidal discretesinusoidal discrete time signalstime signals of 
different angular frequenciesdifferent angular frequencies.
Th k i th f th LTI t� Thus, knowing the response of the LTI  system 
to a single sinusoidal signala single sinusoidal signal, we can  
d t i it t li t ddetermine its response to more complicated  
signals by making use of the superposition superposition 
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propertyproperty.

1.1 Definition

� An important property of an LTI system is  
that for certain types of input signals calledthat for certain types of input signals, called  
eigeneigen functionsfunctions, the output signal is the input the output signal is the input 
i l lti li d b l t ti l lti li d b l t tsignal multiplied by a complex constantsignal multiplied by a complex constant.

� We consider one such eigeneigen functionfunction as the gg
input.

� Consider the following LTI system� Consider the following LTI system

h(n)x(n) y(n)
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( )( )

1.1 Definition

� Its I-O relationship in the time domain is given 
by the convolution sumby the convolution sum.

( ) ( ) ( ) ( ) ( )y n x k h n k h k x n k
� �
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k k��� ���
 �
( )jH e �

1.1 Definition

� Then we can write
j j

� Thus for a complex exponential input
( ) ( )j j ny n H e e� ��

� Thus for a complex exponential input 
signal        , the output of an LTI discrete-time 
system is also a complex exponential signal of

j ne �

system is also a complex exponential signal of 
the same frequency multiplied by a complex 
constant ( )jH e �constant              

� Thus        is an eigen functioneigen function of the system
( )H e

j ne �
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1.1 Definition

DefinitionDefinition
Th DTFTDTFT f h i l f LTI� The DTFTDTFT of the impulse response of an LTI 
system is called the Frequency ResponseFrequency Response of 
this system

� �2( ) ( ) ( ) ( )jj j jH H H jH� �� � �� �� �

arg{ ( )}
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magnitudemagnitude phasephase
11

magnitude magnitude 
responseresponse

phase phase 
responseresponse

1.1 Definition

� In some cases, the magnitude function is 
specified in decibelsdecibels asspecified in decibelsdecibels as

10( ) 20log ( ) dBjH e �� ��
where          is called the gain functiongain function
Th ti f th i f ti

( )��
� The negative of the gain function

( ) ( )� �� �� �
is called the attenuationattenuation or loss functionloss function

( ) ( )
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1.2  Frequency-Domain Characterization q y
of the LTI Discrete-Time System

� The convolution sum description of the LTI  p
discrete-time system is given by

( ) ( ) ( )h k k
�

�
� Taking the DTFT of both sides we obtain

( ) ( ) ( )
k

y n h k x n k
���

� ��
� Taking the DTFT of both sides we obtain
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1.2  Frequency-Domain Characterization q y
of the LTI Discrete-Time System

� Interchanging the summation signs on the 
right-hand side and rearranging we arrive atright-hand side and rearranging we arrive at
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1.2  Frequency-Domain Characterization q y
of the LTI Discrete-Time System

� It follows from the previous equation

F LTI t d ib d b lili

( ) ( ) / ( )j j jH e Y e X e� � ��

� For an LTI system described by a lineara linear
constant coefficient difference equationconstant coefficient difference equation of the 
f hform we have M
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1.3 Frequency Response Computationq y p p
using Matlab

� The function freqz(h,w)freqz(h,w) can be used toThe function freqz(h,w)freqz(h,w) can be used to 
determine the values of the frequency response 
vector h at a set of given frequency points wwvector h at a set of given frequency points ww

� From h, the real and imaginary parts can be 
t d i th f ti ll d iicomputed using the functions realreal and imagimag, 

and the magnitude and phase functions using 
th f ti bb d llthe functions absabs and angleangle
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1.3 Frequency Response Computationq y p p
using Matlab

ExampleExample
� Consider a movingmoving--averageaverage filter

1/ 0 1M n M� � ��1/ 0 1
( )

0 otherwise
M n M

h n
� � ��

� �
�

� Program 3_2 can be used to generate the 
magnitude and gain responses of an M-point g g p p
moving average filter as shown in the next 
slide
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1.3 Frequency Response Computationq y p p
using Matlab
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1.4 The Concept of Filtering

� One application of an LTI discrete-time system pp y
is to passpass certain frequency components in an 
input sequence without any distortion (if p q y (
possible) and to blockblock other frequency 
components.p

� Such systems are called digital filtersdigital filters and one 
of the main subjects of discussion in thisof the main subjects of discussion in this 
course.
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1.4 The Concept of Filtering

� The key to the filtering process isy g p
1( ) ( )

2
j j nx n X e e d

� � � �� �
� It expresses an arbitrary input as a linear 

-
( ) ( )

2 �� �
p y p

weighted sum of an infinite number of 
exponential sequences, or equivalently, as a p q , q y,
linear weighted sum of sinusoidal sequences.
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1.4 The Concept of Filtering

� By appropriately choosing the values of the y pp p y g
magnitude function              of the LTI digital 
filter at frequencies corresponding to the 

( )jH e �

q p g
frequencies of the sinusoidal components of 
the input, some of these components can be p , p
selectively heavily attenuatedattenuated or filteredfiltered with 
respect to the others.respect to the others.
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1.4 The Concept of Filtering

� To understand the mechanism behind the� To understand the mechanism behind the 
design of frequencyfrequency--selectiveselective filters, consider a 
real-coefficient LTI discrete-time systemreal coefficient LTI discrete time system 
characterized by a magnitude function.

�1, 0
( )

0
cjH e � � �

� � �
� � ��� �  ���0, c� � � ���
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1.4 The Concept of Filtering

� We apply an input

to this system
1 2 1 2( ) cos cos , 0 cx n A n B n� � � � � �� �    

to this system

� Because of linearitylinearity, the output of this system yy, p y
is of the form 

1( ) ( ) cos( ( ))jy n A H e n� � � ��1

2

1 1

2 2

( ) ( ) cos( ( ))

( ) cos( ( ))

j

j

y n A H e n
B H e n�

� � �

� � �

� �

� �
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2 2( ) ( ( ))
Eigen-function, conjugate-symmetric for real h(n)

1.4 The Concept of Filtering

� As
1( ) 1jH � 2( ) 0jH � �

the output reduces to

1( ) 1jH e � � 2( ) 0jH e � �

e ou pu educes o
1

1 1( ) ( ) cos( ( ))jy n A H e n� � � �� �

� Thus, the system acts like a lowpass filterlowpass filter
� In the following example, we consider the� In the following example, we consider the 

design of a very simple digital filter.
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1.4 The Concept of Filtering

ExampleExample
� Design of a high passhigh pass digital filter 
� The input � �( ) cos(0 1 ) cos(0 4 ) ( )x n n n u n�� The input                                                       

which consists of two frequency components 
0 1 d/ l d 0 4 d/ l

� �( ) cos(0.1 ) cos(0.4 ) ( )x n n n u n� � �

0.1 rad/sample and 0.4 rad/sample.
� For simplicity, assume the filter to be an FIR p y

filter of length 3 with an impulse response:
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1.4 The Concept of Filtering
h( )h(n)

� �

�

0 1 2 n

� �

� Note that h(n) is a linear phase FIR filter
which will be discussed in the latter chapters

0        1       2 n

which will be discussed in the latter chapters
� The frequency response of this filter is given 

bby 2( ) (0) (1) (2)
(2 )

j j j

j

H e h h e h e� � �

��

� �� � �
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1.4 The Concept of Filtering

� The magnitude and phase functions are
j� ( )�

� In order to block the low-frequency component, 
( ) 2 cosjH e � � � �� � ( )� � �� �

o de to b oc t e ow eque cy co po e t,
the magnitude function at � = 0.1 should be 
equal to zeroequal to zero

� Likewise, to pass the highpass the high--frequency frequency 
componentcomponent, the magnitude function at � = 0.4
should be equal to one
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1.4 The Concept of Filtering

� Thus, the two conditions that must be satisfied 
areare

S l i h b i
2 cos0.1 0 2 cos0.4 1� � � �� � � �

� Solving the above two equations we get
6.76195 13.456335� �� � �

� Thus the output-input relation of the FIR filter 
is given by

( ) 6.76195 ( ) 13.456335 ( 1)
6 76195 ( 2)

y n x n x n
x n

� � � �
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6.76195 ( 2)x n� �

1.4 The Concept of Filtering

� Figure below shows the plots generated by 
running program 3 3

4
y(n)
x (n)

running program 3_3
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1.4 The Concept of Filtering

� Figure below shows the frequency response 
of this highpass filterof this highpass filter
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2.1  Definition of Phase and Groupp
delays

� The output h(n) of a frequency-selective LTI p ( ) q y
discrete-time system with a frequency 
response                exhibits some delaydelay relative( )jH e �p yy
to the input caused by the nonzero phase nonzero phase 
responseresponse of the system

( )H e

pp y

� For an input
�  ( ) arg ( )jH e �� � �

� For an input

0( ) cos( )x n A n n� !� � ��   �
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2.1  Definition of Phase and Groupp
delays

The output is

� Thus the output lags in phaselags in phase by

0
0 0( ) ( ) cos( ( ) )jy n A H e n� � � � !� � �

( )� �� Thus, the output lags in phaselags in phase by            
radians

0( )� �

� Rewriting the above equation we get

0( )j � �� �� �
� 	0

0
0

( )( ) ( ) cosjy n A H e n� � �� !
�

� �� �
� � �� 	� 	� 	
 �
 �

32

2.1  Definition of Phase and Groupp
delays

� Denote phase delayphase delay 0 0 0( ) ( ) /p" � � � �� �
� Now consider the case when the input signal 

contains many sinusoidal components with y p
different frequencies that are not harmonically 
related

� In this case, each component of the input will 
go through different phase delays whengo through different phase delays when 
processed by a frequency-selective LTI 
discrete time system

33
discrete-time system

2.1  Definition of Phase and Groupp
delays

� To develop the necessary expression, consider 
di t ti i l ( ) bt i d ba discrete-time signal x(n) obtained by a 

doubledouble--sideband suppressed carrier (DSBsideband suppressed carrier (DSB--SC)SC)
d l ti ith i f fmodulation with a carrier frequency     of a 

low-frequency sinusoidal signal of frequency      
c�

0�

0( ) cos( ) cos( )cx n A n n
A A

� ��

cos( ) cos( )
2 2l u
A An n� �

� � � � � �

� �

�
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0 0l c u c� � � � � �� � � �

2.1  Definition of Phase and Groupp
delays

� Let the above input be processed by an LTI 
di t ti t ith fdiscrete-time system with a frequency 
response              satisfying the condition( )jH e �

� The output y(n) is then given by
( ) 1j

l uH e for� � � �� � �
� The output y(n) is then given by

� � � �( ) cos ( ) cos ( )
2 2l l u u
A Ay n n n� � � � � �� � � �� � � �

0

( ) ( ) ( )
2 2

( ) ( ) ( ) ( )cos cos

l l u u

u l u l

y

A n n� � � � � � � �� �� �� � � �� � �� 	 � 	
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2.1  Definition of Phase and Groupp
delays

� Note: The output is also in the form of a o e: e ou pu s so e o o
modulated carrier signal with the same carrier 
frequency and the same modulation�frequency      and the same modulation 
frequency      as the input.

h h diff

c�
0�

� However, the two components have different 
phase lags relative to their corresponding 
components in the input
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2.1  Definition of Phase and Groupp
delays

� Now consider the case when the modulated 
i t i b d i l ith thinput is a narrow band signal with the 
frequencies       and      very close to the carrier 
f i i ll

u�l�
frequency      , i.e. is very small

� In the neighborhood of we can express the
0�c�

�� In the neighborhood of       we can express the 
phase response           as

c�
( )� �

( )d� ( )( ) ( ) ( )c c
d

d � �

� �� � � � � �
� �

� � � �
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2.1  Definition of Phase and Groupp
delays

by making a Taylor’s series expansion andby making a Taylor s series expansion and 
keeping only the first two terms
U i h b f l l h� Using the above formula, we now evaluate the 
time delays of the carrier and the modulating 
components
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2.1  Definition of Phase and Groupp
delays

� In the case of the carrier signal we haveg

( ) ( ) ( )u l c� � � � � ��
� � �

hi h i b h h h d l

2 c c� �
� � �

which is seen to be the same as the phase delay 
if only the carrier signal is passed through the 
system
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2.1  Definition of Phase and Groupp
delays

� In the case of the modulating component we 
havehave

( ) ( ) ( ) ( ) ( )u l u l d� � � � � � � � � �� �
� � � � �

� The parameter
02

cu l d � �� � � � ��
( )( ) d� �

� The parameter ( )( )
c

g c d � �

" �
� �

� �

is called the group delaygroup delay or envelope delayenvelope delay
caused by the system at � ��
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caused by the system at              c� ��

2.1  Definition of Phase and Groupp
delays

� The group delay is a measure of the linearity of the linearity of 
the phase functionthe phase function as a function of the frequencythe phase functionthe phase function as a function of the frequency

� It is the time delay between the waveforms of 
d l i i i i l hunderlying continuous-time signals whose 

sampled versions, sampled at t = nT, are precisely 
th i t d th t t di t ti i lthe input and the output discrete-time signals

� If the phase functionphase function and the angular frequencyangular frequency �
are in radians per secondradians per second, then the group delaygroup delay is 
in secondsseconds
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2.1  Definition of Phase and Groupp
delays

� Figure below illustrates the  evaluation of the 
phase delay and the group delayphase delay and the group delay
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2.1  Definition of Phase and Groupp
delays

Fi b l h th f f� Figure below shows the waveform of an 
amplitude-modulated input and the output 

d b LTIgenerated by an LTI system

43

2.1  Definition of Phase and Groupp
delays

� The carrier component at the output is 
d l d b th h d l d th ldelayed by the phase delay and the envelope 
of the output is delayed by the group delay 

l ti t th f f th tirelative to the waveform of the continuous-
time input signal in the previous slide

� The waveform of the underlying continuous 
time output shows distortion when the group p g p
delay of the LTI system is not constant over 
the bandwidth of the modulated signal
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t e ba dw dt o t e odu ated s g a

2.1  Definition of Phase and Groupp
delays

� If the distortion is unacceptable,  a delay 
equalizer is usually cascaded with the LTIequalizer is usually cascaded with the LTI 
system so that the overall group delay of the 
cascade is approximately linear over thecascade is approximately linear over the 
band of interest.

� To keep the magnitude response of the� To keep the magnitude response of the 
parent LTI system unchanged, the equalizer 
must have a constant magnitude response atmust have a constant magnitude response at 
all frequencies
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2.1  Definition of Phase and Groupp
delays

ExampleExamplepp
� The phase function of the FIR  Filter 

is
( ) ( ) ( 1) ( 2)y n x n x n x n� � �� � � � �

( )� � ��is
� Hence its group delay is given by

( )� � �� �
( ) 1g" � �g
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2.2 Phase and Group delay Computationp y p
Using Matlab

� Phase delay and group delay can be computed 
using the function phasedelay, grpdelay phasedelay, grpdelay 
respectivelyp y

� Figures in the next slide shows the phase delay 
d d l f th DTFTand group delay of the DTFT

20 1367(1 )j
j e ���

2

0.1367(1 )( )
1 0.5335 0.7265

j
j j

eH e
e e

�
� �� ��

� �
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2.2 Phase and Group delay Computationp y p
Using Matlab
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