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1.1 Definition H

e An LTI discrete-time system is completely
characterized in the time-domain by its
impulse response sequence {/(n)}.

e Thus, the transform-domain representation of
a discrete-time signal can also be equally
applied to the transform-domain
representation of an LTI discrete-time system.

1.1 Definition H

1.1 Definition H

e Such transform-domain representations
provide additional insights into the behavior
of such systems.

e It is easier to design and implement these
systems in the transformed-domain for certain
applications.

e We consider now the use of the DTFT in
developing the transform domain
representations of an LTI system.

o In this course we shall be concerned with LTI
discrete-time systems characterized by linear
constant coefficient difference equations of
the form:

N M
> dy(n—k)=> px(n—k)
k=0 k=0

1.1 Definition H

e Applying the DTFT to the difference equation
and making use of the linearity and the time-
invariance properties, we arrive at the input-
output relation in the transform-domain as

[ﬁ dee j Y= (Z P j X(e"”)
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1.1 Definition H

\

e Most discrete-time signals encountered in
practice can be represented as a linear
combination of a very large, maybe infinite
number of sinusoidal discrete-time signals of

1.1 Definition H

e An important property of an LTI system is
that for certain types of input signals, called
eigen functions, the output signal is the input
signal multiplied by a complex constant.

1.1 Definition

e Its I-O relationship in the time domain is given
by the convolution sum.

0

y(n) =Y x(k)h(n—k)= Y h(k)x(n—k)

different angular frequencies. L k= e
g 4 e We consider one such eigen function as the e If the input is of the form
e Thus, knowing the response of the LTI system input jom
: . : ; : mput. x(n)=e’"" —oo<n<ow
0 a single sinusoidal signal, we can . .
determine its response to more complicated e Consider the following LTI system then o o ® ny
signalst by making use of the superposition () ) y(n)= k_z_: h(k)e™"™ = [k_z_:h(k)ef‘” )ef”"
property. . \ “H(e“”) .
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e Then we can write Definition

y(n) — H(e/'m)e/'nm

e Thus for a complex exponential input
signal ¢/", the output of an LTI discrete-time
system is also a complex exponential signal of
the same frequency multiplied by a complex
constant {(e’”)

e Thus ¢/“" is an eigen function of the system

e The DTFT of the impulse response of an LTI
system is called the Frequency Response of
this system

H(e") = H(&""") = H, (") + jH,, (")

7 i ! Joyy
— ‘H(e’w)‘ o/t ()

1 | 1

magnitude phase
response  response

e In some cases, the magnitude function is
specified in decibels as

G(w) = 20log,|H (e")| dB
where G(w) is called the gain function
e The negative of the gain function
A(w) =-G(w)

is called the attenuation or loss function




1.2 Frequency-Domain Characterization
of the LTI Discrete-Time System

e The convolution sum description of the LTI
discrete-time system is given by

y(n)= D" h(k)x(n—k)
k=—o0
e Taking the DTFT of both sides we obtain

Y(e)= i [ i h(k)x(n —k)]e’“’"

n=-—ow \ k=—w0

1.2 Frequency-Domain Characterization
of the LTI Discrete-Time System

e Interchanging the summation signs on the
right-hand side and rearranging we arrive at

0

Y(e'”) = i h(k)( D x(n k)ef””']

—0 n=-ow

B . h(k)(ix(l)e’”“*“]

k=—x0 [=—0
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1.2 Frequency-Domain Characterization | $32°
of the LTI Discrete-Time System H

e [t follows from the previous equation
H(E)=Y(")/ X(e™)

e For an LTI system described by a linear

constant coefficient difference equation of the

form we have u

pke— jok
H(e./’w) — k=0
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\ —jok
Y de
k=0

1.3 Frequency Response Computation | $23°
using Matlab H

e The function freqgz (h, w) can be used to
determine the values of the frequency response
vector / at a set of given frequency points w

e From £, the real and imaginary parts can be
computed using the functions real and imag,

and the magnitude and phase functions using
the functions abs and angle

1.3 Frequency Response Computation | $33°
using Matlab H

Example
e Consider a moving-average filter
/M, 0<n<M-1
h(n) = .
0, otherwise
e Program 3_2 can be used to generate the

magnitude and gain responses of an M-point

moving average filter as shown in the next
slide
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1.4 The Concept of Filtering

e One application of an LTI discrete-time system
is to pass certain frequency components in an
input sequence without any distortion (if
possible) and to block other frequency
components.

o Such systems are called digizal filters and one
of the main subjects of discussion in this
course.

1.4 The Concept of Filtering

e The key to the filtering process is
x(n) = ij” X' dw
27 o
e It expresses an arbitrary input as a linear
weighted sum of an infinite number of

exponential sequences, or equivalently, as a
linear weighted sum of sinusoidal sequences.

20

1.4 The Concept of Filtering

e By appropriately choosing the values of the
magnitude function ‘H (e’ ”)| of the LTI digital
filter at frequencies corresponding to the
frequencies of the sinusoidal components of
the input, some of these components can be
selectively heavily attenuated or filtered with
respect to the others.

21

1.4 The Concept of Filtering

e To understand the mechanism behind the
design of frequency-selective filters, consider a
real-coefficient LTI discrete-time system

characterized by a magnitude function.
I, 0< ]a)| <o,
0, o <|oj<z

[H (™) = {
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1.4 The Concept of Filtering

e We apply an input
x(n)=Acoswn+Bcoswn, 0<w <o, <o, <7
to this system

e Because of /inearity, the output of this system
is of the form

y(n) = A|H (™)
+B|H (e’ )| cos(m,n+0(w,))

Eigen-function, conjugate-symmetric for real h(n) 23

cos(mn+6(w,))

1.4 The Concept of Filtering

o As

~

(™| =1 [H(e™)|=
the output reduces to
y(n) = A|H(e")|cos(eyn + 0(e,))
e Thus, the system acts like a lowpass filter

e In the following example, we consider the
design of a very simple digital filter.

24




1.4 The Concept of Filtering

1.4 The Concept of Filtering

1.4 The Concept of Filtering

Example
e Design of a high pass digital filter

e The input x(n) = [cos(0.1n) + cos(0.4n) |- u(n)
which consists of two frequency components
0.1 rad/sample and 0.4 rad/sample.

e For simplicity, assume the filter to be an FIR
filter of length 3 with an impulse response:

25

e Note that /4(n) is a linear phase FIR filter
which will be discussed in the latter chapters

e The frequency response of this filter is given
Y H(e™) = h(0)+ h(D)e " + h(2)e

=Qacosw+ Be "’
26

e The magnitude and phase functions are
|H(e’”) =[2acosw+ fj| O(w)=-o
e In order to block the low-frequency component,
the magnitude function at w = 0.1 should be
equal to zero

e Likewise, to pass the high-frequency
component, the magnitude function at ® = 0.4
should be equal to one

27

1.4 The Concept of Filtering

e Thus, the two conditions that must be satisfied
are
2cc0s0.1+ =0 2acos0.4+ =1
e Solving the above two equations we get
a=-6.76195 [ =13.456335
e Thus the output-input relation of the FIR filter
is given by
y(n)=-6.76195x(n)+13.456335x(n—1)
—6.76195x(n—2)
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1.4 The Concept of Filtering

\
e Figure below shows the plots generated by
running program 3 3
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1.4 The Concept of Filtering

\
e Figure below shows the frequency response
of this highpass filter
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2.1 Definition of Phase and Group eco
delays

e The output 4(n) of a frequency-selective LTI
discrete-time system with a frequency
response ‘ H(e’”)| exhibits some delay relative
to the input caused by the nonzero phase
response of the system

O(w) = arg{H(ej”)}

e For an input

x(n)=Acos(wn+¢) —o<n<o
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2.1 Definition of Phase and Group
delays

The output is
y(n) = A|H(e"™)|cos(@yn +0(e,) + ¢)

e Thus, the output /ags in phase by (w,)
radians

e Rewriting the above equation we get

cos(a)0 (n+9(a)°)j+¢j
@y

y(n) = A|H(e")
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2.1 Definition of Phase and Group eco
delays

e Denote phase delay () =-0(@,)/ @,

e Now consider the case when the input signal
contains many sinusoidal components with
different frequencies that are not harmonically
related

e In this case, each component of the input will
go through different phase delays when
processed by a frequency-selective LTI

discrete-time system
33

2.1 Definition of Phase and Group eco
delays

e To develop the necessary expression, consider
a discrete-time signal x(n) obtained by a
double-sideband suppressed carrier (DSB-SC)
modulation with a carrier frequency ¢, of a
low-frequency sinusoidal signal of frequency ),

x(n) = Acos(wyn) cos(w_n)
A cos(w,n)+ A cos(w, n)
2 1 2 u

a)/ = a)c - wO a)u = wc + a)()
34

2.1 Definition of Phase and Group ece
delays

e Let the above input be processed by an LTI
discrete-time system with a frequency
response H (¢’”) satisfying the condition

‘H (e’)

e The output y(n) is then given by

=1 for o S|a)‘ <o,

y(n)= g cos (a},n + 0(0)1)) +§cos(a)ﬂn +0(w, ))

e(w”)+9(w’)jcos( 9<wl,>fe<w,>j
2

:Acos(a{n+ w,n+ 3
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2.1 Definition of Phase and Group oo
delays

e Note: The output is also in the form of a
modulated carrier signal with the same carrier
frequency , and the same modulation
frequency w,as the input.

e However, the two components have different
phase lags relative to their corresponding
components in the input

36




2.1 Definition of Phase and Group
delays

e Now consider the case when the modulated
input is a narrow band signal with the
frequencies @, and @, very close to the carrier
frequency @, , i.e. @, is very small

e In the neighborhood of @, we can express the
phase response f(w) as

2.1 Definition of Phase and Group eco
delays

by making a Taylor’s series expansion and
keeping only the first two terms

e Using the above formula, we now evaluate the
time delays of the carrier and the modulating
components

2.1 Definition of Phase and Group eco
delays

e In the case of the carrier signal we have

_0(@,)+0@) _ 0@,)
20, 10)

c c

~

which is seen to be the same as the phase delay
if only the carrier signal is passed through the

o= 0@)+ 22 (w-a) ystem
h 37 38 39
2.1 Definition of Phase and Group 3T 2.1 Definition of Phase and Group 3T 2.1 Definition of Phase and Group 3T
delays H delays H delays H

e In the case of the modulating component we
have
_O(w)-0(w) _ Ow,)-0w)_ di(e)

2@0 a)l’ - C()/ da) 0=,
e The parameter 7 (w,)= _do(o)
¢ dw

0=0,

is called the group delay or envelope delay
caused by the system at v =,
40

e The group delay is a measure of the linearity of
the phase function as a function of the frequency

e It is the time delay between the waveforms of
underlying continuous-time signals whose
sampled versions, sampled at = nT, are precisely
the input and the output discrete-time signals

e [f the phase function and the angular frequency ®
are in radians per second, then the group delay is
in seconds

41

\
e Figure below illustrates the evaluation of the
phase delay and the group delay

Phase delay -~
42




2.1 Definition of Phase and Group eco
delays

e Figure below shows the waveform of an |

amplitude-modulated input and the output
generated by an LTI system

43

2.1 Definition of Phase and Group
delays

e The carrier component at the output is
delayed by the phase delay and the envelope
of the output is delayed by the group delay
relative to the waveform of the continuous-
time input signal in the previous slide

e The waveform of the underlying continuous
time output shows distortion when the group
delay of the LTI system is not constant over
the bandwidth of the modulated signal
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2.1 Definition of Phase and Group eco
delays

o [f the distortion is unacceptable, a delay
equalizer is usually cascaded with the LTI
system so that the overall group delay of the
cascade is approximately linear over the
band of interest.

e To keep the magnitude response of the
parent LTI system unchanged, the equalizer
must have a constant magnitude response at
all frequencies
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2.1 Definition of Phase and Group eco
delays

Example
e The phase function of the FIR Filter

v(n)=ax(n)+ px(n—-1)+ax(n-2)
is O(w)=-w

e Hence its group delay is given by 7, (w) =1

46

2.2 Phase and Group delay Computation
Using Matlab

e Phase delay and group delay can be computed
using the function phasedelay, grpdelay
respectively

e Figures in the next slide shows the phase delay
and group delay of the DTFT
0.1367(1—e**)

H(E")= — —
1-0.5335¢77” +0.7265¢ 7°*
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2.2 Phase and Group delay Computation 5:-
Using Matlab H

Phase delay, samples

Group delay, samples
- e W s ow o
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