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e The CTFT of a continuous-time signal x () is
given by

X (jQ) = r’ X, (1)e ™ dt
e Often referred to as the Fourier Spectrum or

simply the Spectrum of the continuous-time
signal

e The inverse CTFT of a Fourier Transform
X,(jQ) is given by
x, (1) = - [ x,(jQe™d
2w

e Often referred to as the Fourier integral
o A CTFT pair will be denoted as
x,(H)crrr X, (jQ)




1.1 Definition of CTFT :
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e () is real and denotes the continuous-time
angular frequency variable in radians

e In general, the CTFT is a complex function of
Q in the range —c0<Q< o0

e It can be expressed in the polar form as
X,(jQ) =|X, (j)|e ™

where
0,(Q) =arg{X,(jQ)}

e The quantity |X(jQ2)| is called the magnitude
spectrum and the quantity 0,(€Q) is called the
phase spectrum

e Both spectrums are real functions of Q

e In general, the CTFT X (jQ) exists if x(7)
satisfies the Dirichlet Conditions (k7% & %
) given on the next slide

Dirichlet Conditions

(a) The signal x () has a finite number of
discontinuities and a finite number of maxima
and minima in any finite interval

(b) The signal is absolutely integrable, i.e.
[ @] dr <o
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\
e If the Dirichlet Conditions are satisfied, then
1 0 .
—| X (jQ)e'™dO
Py Jw ()
converges to x,(¢) at values of 7 except at

values of 7 where x_(7) has discontinuities

e [t can be shown that if x (7) is absolutely
integrable, then | X (jQ)| <co proving the
existence of the CTFT

e The total energy &, of a finite energy
continuous-time complex signal x,(7) is given

by
&=,

e The above expression can be rewritten as

x, (1) dt = j“; X, (0)x. (t)d

-~ © 1 © P _ i
£=[ x, (z)[zﬂ [ x(e” dQJ di

e Interchanging the order of the integration, we
get
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== [ |x. ool do




1.2 Energy Density Spectrum H

e Hence
o0

J.—oo

e The above relation is more commonly known

as the Parseval’s relation for finite energy
continuous-time signals

1 ©
x, ()| dt = -+ [ x| do

1.2 Energy Density Spectrum H

e The quantity |X(jQ)|? is called the energy
density spectrum of x,() and usually denoted
as

S.(@) =[x, (j)f

e The energy over a specified range of
frequencies Q <Q<Q, can be computed using

1.3 Band-limited Continuous-Time seet
Signals H

e A full-band, finite-energy, continuous-time
signal has a spectrum occupying the whole
frequency range —o0<Q<

e A band-limited continuous-time signal has a
spectrum that is limited to a portion of the
frequency range —0<Q< oo

£ —ij""s (Q)dQ
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e An ideal band-limited signal has a spectrum
that is zero outside a finite frequency range
Q <IQ[<Q,, that is

, 0, 0<|Q[<Q,
X,(jQ) =
0, Q,<|Q<w»

e However, an ideal band-limited signal cannot

be generated in practice

e Band-limited signals are classified according
to the frequency range where most of the
signal’s is concentrated

e A lowpass, continuous-time signal has a
spectrum occupying the frequency range

|Q[<Q,<o0 where Q, is called the bandwidth
of the signal

e A highpass, continuous-time signal has a
spectrum occupying the frequency range 0<Q,
<|Q|<co where the bandwidth of the signal is
from Q) to oo

e A bandpass, continuous-time signal has a
spectrum occupying the frequency range 0<Q,
< Q| <Q, <o where Q,,—Q; is the bandwidth
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2.1 Definition of DTFT

Definition
e The discrete-time Fourier transform (DTFT)
X(&”) of a sequence x(n) is given by
X)) = Z x(n)e "
e In general, X(¢/®) isngigomplex function of the
real variable @ and can be written as
X()= |X(ejw)| /f@

\
e | X(&/”) | is called the magnitude function and
6(w) is called the phase function
e In many applications, the DTFT is called the
Fourier spectrum

e Likewise, | X(¢/) | and O(w) are called the
magnitude and phase spectra

e It should be noted that DTFT is a continuous

function of w
20

e For a real sequence x(n), | X(¢®) | and
Re[X(¢/”)] are even functions of w, whereas,
6O(w) and Im[X(&/®)] are odd functions of w

e Note that, for any integer k

ejﬁ(w)

X(e)=|Xx(e")

ej(H((u)+2kir)

=[x (")
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2.1 Definition of DTFT

e The phase function 6(w) cannot be uniquely
specified for any DTFT

e Unless otherwise stated, we shall assume that
the phase function 6(w) is restricted to the
following range of values:

1<) <rx
called the principal value

22

Example

e The DTFT of the unit sample sequence {d(n)}
is given by "
X()=> 8(me ™ =5(0)=1
e Consider the causal sequence x(n)=a"u(n)

jaf<1 o 1
X(e/a)) _ Zanef/am —
n=0

1—ae’®
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Simulation Results
e The magnitude and phase of the DTFT
X(&”)=1/(1—0.5¢77*) are shown below

Magnitude Response Phase Response
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2.1 Definition of DTFT :

e The DTFT of a sequence x(n), is a continuous
function of w. It is also a periodic function of
o with a period 2n

e The Inverse discrete-time Fourier transform
(IDTFT) of X(e/®) is given by

1 ¢# . .
x(n)=—/| X(“)e'"dw
(=~ X"

2.2 Convergence Condition

e If x(n) is an absolutely summable sequence,
ie., if

Z|x(n)| <00
Then o
|X(ej‘”) = Z x(n)e /| < Z |x(n)| < oo

e Thus, the absolute summability of x(n) is a

2.3 DTFT Properties

e Linearity

e Shifting (in time and in frequency domain)

e Differentiation

nx(n) < j

dX(e’”)
do

e Convolution (in time and in frequency domain)

____________________________

x(m)*y(n) < X () (")
Proof sufficient condition for the existence of the foommees [T St o
DTFT x(my(n) < ——[" X (e”)¥(e/”)do
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! ! Some Comnmon Discrete=Time Fourier Transform Pairs )
e Area Theorem (simple but useful) e Symmetry Relations (DTFT pairs) _\-.i[,,;,..,,,.‘. -:-m"hlm”
1 T . X 0 - . o d[n )
20 ==~ [ X (e)do X(e)=Y x(n) x(me X ) e X, ") = s
- ROED ACOEENOEFACS g e
e Parseval’s Theorem ) i e + Do bl + 2k
- | or e For an arbitrary real sequence Y = 4! el <
* _ jo\y*( ,ie o X, i ’ ) wo < |w| < =
2y ()= [ X (") () do X(e)= X"(7*) _—
Corollary Energy iS preserved Corollary ‘ ‘ . [X ( / ):| cos{uwgn -{.I,_-,.l N Tap [e798(w = wy + 27k) + e I%6(w + wy + 27k))
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2.3 DTFT Properties H

Example
Determine the DFT Y(&/) of y(n)=(n+1)a"u(n)
(lal<T)
Step 1: Let x(n)=a"u(n) . Therefore
y(n)y=nx(n)+x(n)
Step 2: Calculate the DTFT X(¢/®)

2.3 DTFT Properties .

Step 3: Calculate the DTFT of nx(n)
dX () . —aje’” ae’”
do (1 —ae "’ )2 (1 —ae"”"’)2
Step 4: Calculate the DTFT Y(&/®) of y(n)

Y(ejw): ae N 1 _ 1

—jo

2.4 Energy Density Spectrum H

e The total energy of a finite-energy sequence
g(n) is given by

&= lgof

n=—w

e From Parseval’s relation we observe that

2
dw

—jo 2 — —jo 2 = N Z_L . jo
X(e)=—— (1mae7e) 1mae™ (1-ae ) &= 2 letf =3[ [6(e”)
1—ae’”
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2.4 Energy Density Spectrum : 2.4 Energy Density Spectrum e 2.4 Energy Density Spectrum :

e The quantity

S (e)=[a(e")
is called the energy density spectrum

2

e The area under this curve in the range -7 < < 7

divided by 2 is the energy of the sequence

34

e Recall that the autocorrelation sequence (/)
of g(n) can be expressed as

re(D=2 g(mg(=(I-n)=g()*g(-))

n=—0

e As we know that the DTFT of g(-/) is G(e ),
therefore, the DTFT of g(/)* g(-/)is given by
|G(e/®)|?, where we have used the fact that for a
real sequence g(n), G(e7°)=G*(&/*)

35

e As aresult, the energy density spectrum S, (¢/*)
of a real sequence g(n) can be computed by
taking the DTFT of its autocorrelation
sequence r,,(/), i.e.,

()= X re

36




2.4 Energy Density Spectrum

Example
e Compute the energy of the sequence
hyp(n) =220 < <o
e Here nr
1

2
dw

Z |hLP(n)|2 = TIZ‘HLP (e/w)

T
where f7 (ef'“) - {

1, 0<|o|<w,

0, o, <‘a)| <z
37

2.4 Energy Density Spectrum

e Therefore, Compute the energy of the
sequence

= 2 1 o ,
2 e ) =~ j doy=" <

n=—0n

e Hence, /, ,(n) is a finite-energy sequence

38

2.5 DTFT Computation Using MATLAB ::
[

e The function freqgz can be used to compute
the values of the DTFT of a sequence,
described as a rational function in the form of

JjoM

. +pe’’ o+ p, e
dy+de’” +---+de’”
at a prescribed set of discrete frequency points
0=,
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2.5 DTFT Computation Using MATLAB :
[

e For example, the statement H= fireqz(p,d,w)
returns the frequency response values as a
vector H of a DTFT defined in terms of the
vectors p and d containing the coefficients {p,}
and {d } , respectively at a prescribed set of
frequencies between 0 and 27 given by the
vector .

e For example
p=10.008 —0.033 0.05 —0.033 0.008]
d=[12.372.71.60.41]
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2.5 DTFT Computation Using MATLAB

Real part Imaginary part
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2.6 Linear Convolution Using DTFT :

e According to the convolution theorem
y(n) =x(n)*h(n) < Y(ej’”) = X(ej’”)H(ef’”)
e An implication of this result is that the linear

convolution y(n) of the sequences x(r) and
h(n) can be performed as follows:

42




2.6 Linear Convolution Using DTFT :

Step 1: Compute the DTFTs X(¢/®) and H(&/®)
of the sequences x(n) and /4(n), respectively.

Step 2: Form the DTFT Y(¢/®)= X(&/®)H(e/”)
Step 3: Compute the IDTFT y(n) of Y(&/®)
x(n) X(e)

)
o -

y(n)
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2.7 DTFT for Special Sequence .

e The DTFT can also be defined for a certain
class of sequences which are neither
absolutely summable nor square summable.

e Examples of such sequences are the unit step
sequence u(n), the sinusoidal sequence
cos(w,n+¢) and the exponential sequence Aa”

e For this type of sequences, a DTFT
representation is possible using the Dirac delta

function & w)
44

2.7 DTFT for Special Sequence H

e A Dirac delta function & @) is a function of w
with infinite height, zero width, and unit area

e It is the limiting form of a unit area pulse
function p, (@) as A goes to zero satisfying

lim j% py(@)do = j S(w)dw
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2.7 DTFT for Special Sequence
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