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Time SystemsTime Systems ((DTFT of the impulseDTFT of the impulseTime Systems Time Systems ((DTFT of the impulse DTFT of the impulse 
responseresponse))
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1.1 Definition of CTFT

DefinitionDefinition

� The CTFT of a continuous-time signal xa(t) is 
given bygiven by

( ) ( ) j t
a aX j x t e dt

� � �

�
� � �

� Often referred to as the Fourier SpectrumFourier Spectrum or 
simply the SpectrumSpectrum of the continuous time

���

simply the SpectrumSpectrum of the continuous-time 
signal
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1.1 Definition of CTFT

DefinitionDefinition
Th i CTFT f F i T f� The inverse CTFT of a Fourier Transform 
Xa(j�) is given by

1( ) ( )
2

j t
a ax t X j e d

�
� �

��
� � ��

� Often referred to as the Fourier integralFourier integral
A CTFT i ill b d d

2�

� A CTFT pair will be denoted as 
CTFT( ) ( )x t X j�
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CTFT( ) ( )a ax t X j������



1.1 Definition of CTFT

� � is real and denotes the continuous-time 
l f i bl i diangular frequency variable in radians

� In general, the CTFT is a complex function of g p
� in the range ��<�< � 

� It can be expressed in the polar formpolar form as� It can be expressed in the polar formpolar form as
( )( ) ( ) aj

a aX j X j e � �� � �
where

( ) ( )a aj j

( ) arg{ ( )}a aX j� � � �
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1.1 Definition of CTFT

� The quantity |Xa(j�)| is called the magnitude magnitude a
spectrumspectrum and the quantity �a(�) is called the 
phase spectrumphase spectrumphase spectrumphase spectrum

� Both spectrums are real functions of �
� In general, the CTFT Xa(j�) exists if xa(t)

satisfies the DirichletDirichlet ConditionsConditions (satisfies the DirichletDirichlet Conditions Conditions (
) given on the next slide
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1.1 Definition of CTFT

Dirichlet ConditionsDirichlet Conditions
(a) The signal xa(t) has a finite number of 
di ti iti d fi it b f idiscontinuities and a finite number of maxima 
and minima in any finite interval

(b) The signal is absolutely integrable, i.e. 

( )ax t dt
�

��
	 ��
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1.1 Definition of CTFT

� If the Dirichlet ConditionsDirichlet Conditions are satisfied, then
1 ( )

2
j t

aX j e d
�

� �

��
� ��

converges to xa(t) at values of t except at 
l f t h (t) h di ti iti

2�

values of t where xa(t) has discontinuities
� It can be shown that if xa(t) is absolutely absolutely a( ) yy

integrableintegrable, then |Xa(j�)| <� proving the 
existence of the CTFT
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existence of the CTFT

1.2 Energy Density Spectrum

� The total energy �x of a finite energy 
continuous-time complex signal xa(t) is given 
byby

2 *( ) ( ) ( )x a a ax t dt x t x t dt
� �

�� ��
� �� ��

� The above expression can be rewritten as
1
 �*1( ) ( )

2
j t

x a ax t X j e d dt
�

� � � �

�� ��


 �� � �� 
� �� ��
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1.2 Energy Density Spectrum

� Interchanging the order of the integration, we g g g
get

*1 j t� � �
 �� �� *1 ( ) ( )
2
1

j
x

t
a aX j x t e dt d

�
� �

�� ��


 �� � �� 
� �� ��

*1 ( )
2

( )a aX j X j d
�

�

��
� ��� �

21 ( )
2 a jX d
�

�

�
� � ��
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1.2 Energy Density Spectrum

� Hence� Hence

2 21( ) ( )x t dt X j d
� �

� � �� �
Th b l ti i l k

( ) ( )
2a ax t dt X j d
��� ��

� � �� �
� The above relation is more commonly known 

as the Parseval’sParseval’s relationrelation for finite energy 
continuous-time signals
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1.2 Energy Density Spectrum

� The quantity |Xa(j�)|2 is called the energy energy 
d it td it t f (t) d ll d t ddensity spectrumdensity spectrum of xa(t) and usually denoted 
as

2

Th ifi d f

2( ) ( )xx aS X j� � �

� The energy over a specified range of 
frequencies �a����b can be computed using 

1 ( )
2

b

x r xxS d
�

�
� � ���
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, ( )
2 a

x r xx� ��

1.3 Band-limited Continuous-Time 
Signals

� A fullfull--bandband, finite-energy, continuous-time A fullfull bandband, finite energy, continuous time 
signal has a spectrum occupying the whole 
frequency range ��<�< �frequency range �<�< �

� A bandband--limitedlimited continuous-time signal has a 
spectrum that is limited to a portion of the 
frequency range ��<�< �frequency range �  
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1.3 Band-limited Continuous-Time 
Signals

� An ideal bandideal band--limitedlimited signal has a spectrum An ideal bandideal band limitedlimited signal has a spectrum 
that is zero outside a finite frequency range 
� �|�|�� that is�a�|�|��b, that is 

0, 0
( ) aX j

� � � � ��� �( )
0,a

b

X j� � � � � � � ���
� However, an ideal band-limited signal cannot 

be generated in practice
16

g p

1.3 Band-limited Continuous-Time 
Signals

� Band-limited signals are classified according g g
to the frequency range where most of the 
signal’s is concentratedsignal s is concentrated

� A lowpasslowpass, continuous-time signal has a 
spectrum occupying the frequency range 
|�|��p<� where �p is called the bandwidthbandwidth| | p p
of the signal
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1.3 Band-limited Continuous-Time 
Signals

� A highpasshighpass, continuous-time signal has a g pg p g
spectrum occupying the frequency range 0<�p 
� |�|<� where the bandwidthbandwidth of the signal is� |�|<� where the bandwidth bandwidth of the signal is 
from �p to �

� A bandpassbandpass, continuous-time signal has a 
spectrum occupying the frequency range 0<�Lp py g q y g L 
� |�| ��H <� where �H��L is the bandwidthbandwidth
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2.1 Definition of DTFT

DefinitionDefinition
� The discretediscrete--time Fourier transformtime Fourier transform (DTFTDTFT) 

X(ej�) of a sequence x(n) is given byX(e ) of a sequence x(n) is given by
( ) ( )j j nX e x n e� �

�
�� �

� In general, X(ej�) is a complex function of the 
real variable � and can be written as

n���

real variable � and can be written as
( )( ) ( )j j jX e X e e��� �� � �
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2.1 Definition of DTFT

� | X(ej�) | is called the magnitude functionmagnitude function and 
�( ) i ll d th h f tih f ti�(�) is called the phase functionphase function

� In many applications, the DTFT is called they pp ,
Fourier spectrumFourier spectrum
Lik i | X( j�) | d �( ) ll d th� Likewise, | X(ej�) | and �(�) are called the    
magnitudemagnitude and phase spectraphase spectra

� It should be noted that DTFT is a continuous 
function of �

20

function of �

2.1 Definition of DTFT

� For a real sequence x(n), | X(ej�) | and 
Re[X(ej�)] are even functionseven functions of �, whereas, 
�(�) and Im[X(ej�)] are odd functionsodd functions of �( ) [ ( )]

� Note that, for any integer k
( )( ) ( )j j jX e X e e� � � ��
� �( ) 2( ) j kjX e e � � �� ��
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2.1 Definition of DTFT

� The phase function �(�) cannot be uniquely p ( ) q y
specified for any DTFT

� Unless otherwise stated we shall assume that� Unless otherwise stated, we shall assume that 
the phase function �(�) is restricted to the 
following range of values:following range of values:

( )� � � �� � �
called the principal valueprincipal value

( )
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2.1 Definition of DTFT

ExampleExample

� The DTFT of the unit sample sequence {�(n)}
is given by �is given by

( ) ( ) (0) 1j j n

n
X e n e� �� �

�
�

���

� � ��
� Consider the causal sequence x(n)=anu(n) 

|a|<1

n� �

1( )j n j nX
�

��� �

0

1( )
1

j n j n
j

n
X e a e

ae
�

�
�

� �
��� �

�
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2.1 Definition of DTFT

Simulation ResultsSimulation Results
� The magnitude and phase of the DTFT� The magnitude and phase of the DTFT 

X(ej�)=1/(1 0.5e�j�) are shown below
Phase Response
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2.1 Definition of DTFT

� The DTFT of a sequence x(n) is a continuouscontinuous� The DTFT of a sequence x(n), is a continuous continuous 
functionfunction of �. It is also a periodic functionperiodic function of 
� with a period 2�� with a period 2�

� The Inverse discreteInverse discrete--time Fourier transformtime Fourier transform
(IDTFT) f X( j�) i i b(IDTFT) of X(ej�) is given by

1( ) ( )j j nX d
� � ��ProofProof -

( ) ( )
2

j j nx n X e e d� �

�
�

�
� �
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2.2 Convergence Condition

� If x(n) is an absolutely summable sequenceabsolutely summable sequence, 
i ifi.e., if

( )
n

x n
�

�

	 ��
Then

n��

( ) ( ) ( )j j nX � �
� �

� 	 	 �� �
� Thus the absolute summabilityabsolute summability of x(n) is a

- -
( ) ( ) ( )j j n

n n
X e x n e x n� �

� � � �

� 	 	 �� �
� Thus, the absolute summabilityabsolute summability of x(n) is a 

sufficient conditionsufficient condition for the existence of the 
DTFT
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2.3 DTFT Properties

�� LinearityLinearity
ShiftiShifti (i ti d i f d i )�� ShiftingShifting (in time and in frequency domain)

�� DifferentiationDifferentiation � �jdX e �� �
( )

jdX e
nx n j

d�
�

�� ConvolutionConvolution (in time and in frequency domain)

� � � �( ) ( ) j jx n y n X e Y e� �� � �� � � �( ) ( )x n y n X e Y e� � �

� � � �( - )1( ) ( ) j jx n y n X e Y e d
� � � � �� �
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� � � �( ) ( )

2
x n y n X e Y e d

�
�

� �
� �

2.3 DTFT Properties

�� Area TheoremArea Theorem (simple but useful)
�1 � �0

-
( )j

n
X e x n

�

� �

� �� �
-

1(0)
2

jx X e d
� �

�
�

�
� �

�� Parseval’sParseval’s TheoremTheorem

� � � �* *1 j j��

� � � � � �* *

-
-

1( ) ( )
2

j j

n
x n y n X e Y e d

� � �

�
�

�� �

�� �
CorollaryCorollary——Energy is preserved

� � 22 1( ) jX d
� �

�

� �
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� �2( )
2

j

n
x n X e d�

�
�

� �
���

�� �

2.3 DTFT Properties

�� Symmetry Relations (DTFT pairs)Symmetry Relations (DTFT pairs)
( ) ( )j

r csx n X e �� ( ) ( )j
i cajx n X e ��

( ) ( )j
Rx n X e �� ( ) ( )j

Ix n jX e ��

� For an arbitrary real sequence
( ) ( )cs Rx n X e� ( ) ( )ca Ix n jX e�

CorollaryCorollary

*( ) ( )j jX e X e��� �

Corollary Corollary 
( )j

RX e � ( )jX e �( )j
IX e � arg ( )j

RX e �
 �� �
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2.3 DTFT Properties

30



2.3 DTFT Properties

ExampleExample

Determine the DFT Y(ej�) of y(n)=(n+1)anu(n)
(|a|<1)(| | )

Step 1: Let x(n)=anu(n) . Therefore
y(n)=nx(n)+x(n)y(n)=nx(n)+x(n)

Step 2: Calculate the DTFT X(ej�)
1

-

1( )
1

j
jX e

ae
�

��
�
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2.3 DTFT Properties

Step 3: Calculate the DTFT of nx(n)p ( )

� � � �2 2
( )

1 1

j j j

j j

dX e aje aej j
d

� � �

� ��

� ��
� �

Step 4: Calculate the DTFT Y(ej�) of y(n)
� � � �1 1j jd ae ae� �� � �� �

p ( ) y( )

� �
� � � �2 2

1 1
1

j
j

jj j

aeY e
�

�
�

�

�� � �� �
� � � �2 211 1

jj jaeae ae
�� �� ��� �
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2.4 Energy Density Spectrum

� The total energy of a finite-energy sequence The total energy of a finite energy sequence 
g(n) is given by

2( )
�

��

F P l’ l ti b th t

( )g
n

g n
���

� ��

� From Parseval’s relation we observe that

� � 22 1( ) jG d
� �

�

� �� � �( )
2

j
g

n
g n G e d�

�
�

� �
���

� �� ��
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2.4 Energy Density Spectrum

� The quantity� The quantity

� � � � 2j j
ggS e G e� ��

is called the energy density spectrumenergy density spectrum
� � � �gg

� The area under this curve in the range          
di id d b i th f th

� � �� � �
divided by       is the energy of the sequence2�
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2.4 Energy Density Spectrum

� Recall that the autocorrelation sequence rgg(l)
of g(n) can be expressed as 

( ) ( ) ( ( )) ( ) ( )r l g n g l n g l g l
�

� � ��
� As we know that the DTFT of g( l) is G(e j�)

( ) ( ) ( ( )) ( ) ( )gg
n

r l g n g l n g l g l
���

� � � � � ��
� As we know that the DTFT of g( l) is G(e j ), 

therefore, the DTFT of                     is given by 
|G( j�)|2 here e ha e sed the fact that for afor a

( ) ( )g l g l� �
|G(ej�)|2, where we have used the fact that for a for a 
real sequencereal sequence g(n), G(e j�)=G*(ej�)
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2.4 Energy Density Spectrum

A lt th d it t S ( j�)� As a result, the energy density spectrum Sgg(ej�) 
of a real sequence g(n) can be computed by 
t ki th DTFT f it t l titaking the DTFT of its autocorrelation 
sequence rgg(l), i.e.,

� � ( )j j l
gg gg

l
S e r l e� �

�
�� �

l���
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2.4 Energy Density Spectrum

ExampleExample
� Compute the energy of the sequence� Compute the energy of the sequence

sin( ) cnh n n�
� �� � � �

� Here
( ) ,LPh n n

n�
� � � � �

� � 22 1( ) jh d
� �

�

� � � �2

-

1( )
2

j
LP LP

n
h n H e d�

�
�

����

�� �
�where � � 1, 0

0
cj

LPH e � � �
� � �

� � ��� � 	 ���
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0, c� � �	 ���

2.4 Energy Density Spectrum

� Therefore Compute the energy of the� Therefore, Compute the energy of the 
sequence

2

-

1( )
2

c

c

c
LPh n d

�

�

��
� �

�

� � 	 �� �
� Hence, hLP(n) is a finitefinite--energy sequenceenergy sequence

2 cn � ����
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2.5 DTFT Computation Using MATLAB

� The function freqzfreqz can be used to compute qq p
the values of the DTFT of a sequence, 
described as a rational function in the form of

� �
- -

0 1
j j M

j M
j j N

p p e p eX e
� �

� � � �
�

�

at a prescribed set of discrete frequency points

� � - -
0 1

j j N
N

X e
d d e d e� �� � ��

at a prescribed set of discrete frequency points 
�= �l .
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2.5 DTFT Computation Using MATLAB

� For example, the statement H= freqz(p,d,�)
returns the frequency response values as areturns the frequency response values as a 
vector H of a DTFT defined in terms of the 
vectors p and d containing the coefficients {p }vectors p and d containing the coefficients {pi}
and {di} , respectively at a prescribed set of 
frequencies between 0 and 2� given by thefrequencies between 0 and 2� given by the 
vector �.

� For example
p=[0.008 0.033 0.05 0.033 0.008] 

40
d=[1 2.37 2.7 1.6 0.41]

2.5 DTFT Computation Using MATLAB
R l t I i t
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1
Real part

de
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2.6 Linear Convolution Using DTFT

� According to the convolution theoremg

� � � � � �( ) ( ) ( ) j j jy n x n h n Y e X e H e� � �� � � �

� An implication of this result is that the linear 

� � � � � �
p

convolution y(n) of the sequences x(n) and 
h(n) can be performed as follows:h(n) can be performed as follows:
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2.6 Linear Convolution Using DTFT

Step 1:  Compute the DTFTs X(ej�) and H(ej�)Step 1:  Compute the DTFTs X(e ) and H(e )
of the sequences x(n) and h(n), respectively.

St 2 F th DTFT Y( j�) X( j�)H( j�)Step 2: Form the DTFT Y(ej�)= X(ej�)H(ej�)
Step 3: Compute the IDTFT y(n) of Y(ej�)p p y( ) ( )

DTFTx(n) X(ej�)
Y(ej�) y(n)

DTFT

IDTFT
h(n)

H(ej�)

( ) y(n)
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H(ej )

2.7 DTFT for Special Sequence

� The DTFT can also be defined for a certain 
l f hi h ithclass of sequences which are neither 

absolutely summable nor square summable.
� Examples of such sequences are the unit step 

sequence u(n), the sinusoidal sequence  q ( ), q
and the exponential sequence

� For this type of sequences a DTFT
0cos( )n� �� nA�

� For this type of sequences, a DTFT 
representation is possible using the Dirac delta Dirac delta 
functionfunction ( )

44
function function ( )

2.7 DTFT for Special Sequence

� A Dirac delta functionDirac delta function ( ) is a function of �( )
with infinite height, zero width, and unit area

� It is the limiting form of a unit area pulseunit area pulse� It is the limiting form of a unit area pulse unit area pulse 
functionfunction as  goes to zero satisfying( )p �  

lim ( ) ( )p d d� � � � �
� �

�� �0
lim ( ) ( )p d d� � � � � �� �� !

�� �

45

2.7 DTFT for Special Sequence

( )p � 1
  

�
/ 2 / 2� / 2 
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