
Chapter 2A

Discrete-Time Signals and 
Systems in the Time-Domain
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Part A: Discrete-Time Signals
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�� The Sample ProcessThe Sample Process
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1. Time-Domain Representation

� Signals represented as sequences of numbers, 
called samplessamples

� Sample value of a typical signal or sequence 
denoted as x (n) with n being an integer in the 
range n

� x(n) defined only for integer values of n and
undefined for non-integer values of n

� Discrete-time signal represented by {x (n)}
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� Discrete-time signal may also be written as a 
sequence of numbers inside braces: 

{x(n)}={…, 0.2, 2.2, 1.1, 0.2, 3, 7, 2.9, …}

In the above, x( 1)= 0.2, x(0)=2.2, x(3)= 3
etc.

� The arrow is placed under the sample at time 
index n = 0

1. Time-Domain Representation
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� Graphical representation of a discrete-time 
signal with real-valued samples is as shown 
below:

1. Time-Domain Representation

( 5)x �

( )x n

(3)x
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� In some applications, a discrete-time sequence 
{x(n)} may be generated by periodically 
sampling a continuous-time signal at uniform 
intervals of time xa(t)

1. Time-Domain Representation

( 5 )ax T�

( )ax t

(3 )ax T
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� Here, n-th sample is given by

x(n)=xa(t)|t=nT=xa(nT), n =…, 2, 1,0, 1,…

� The spacing T between two consecutive 
samples is called the sampling intervalsampling interval or
sampling periodsampling period

� Reciprocal of sampling interval T, denoted as , 
is called the sampling frequencysampling frequency:

FT=1/T

1. Time-Domain Representation
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� Unit of sampling frequencysampling frequency is cycles per 
second, or hertz (Hz), if T is in seconds 

� Whether or not the sequence {x(n)} has been 
obtained by sampling, the quantity x(n) is
called the nn--thth samplesample of the sequence

� {x(n)} is a real sequencereal sequence, if the n-th sample x(n)
is real for all values of n

� Otherwise, {x(n)} is a complex sequencecomplex sequence

1. Time-Domain Representation
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� Two types of discrete-time signals:
---- SampledSampled--data signalsdata signals
---- Digital signalsDigital signals

� Signals in a practical digital signal processing 
system are digital signals obtained by 
quantizing the sample values either by 
roundingrounding or truncationtruncation

1. Time-Domain Representation
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� A discrete-time signal may be a finitefinite--lengthlength
or an infiniteinfinite--lengthlength sequence

� Finite-length (also called finite-duration or 
finite-extent) sequence is defined only for a 
finite time interval N1 n N2 ,
where < N1 and N2 < with N1 < N2

� Length or duration of the above sequence is
N = N2 N1 + 1

1. Time-Domain Representation
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� The length of a finite-length sequence can be 
increased by zerozero--paddingpadding, i.e., by appending 
it with zeros

� Infinite-length sequences can be classified as 
following
x(n) =0 for n <N1 rightright--sided sequencesided sequence
x(n) =0 for n >N2 leftleft--sided sequencesided sequence
x(n) 0 for n doubledouble--sided sequencesided sequence

1. Time-Domain Representation
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2. Operations on Sequences

� A single-input, single-output discrete-time 
system operates on a sequence, called the inputinput
sequencesequence, according to some prescribed rules 
and develops another sequence, called the 
output sequenceoutput sequence, with more desirable 
properties

Discrete-Time
SystemInput Sequence Output Sequence

x(n) y(n)

h(n) 15

2. Operations on Sequences

Basic OperationsBasic Operations

�� ProductProduct
�� AdditionAddition
�� MultiplicationMultiplication
�� TimeTime--ShiftingShifting
�� TimeTime--Reverse (folding)Reverse (folding)
�� BranchingBranching
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2. Operations on Sequences

�� ProductProduct (modulation)(modulation) operation:    

----ModulatorModulator

� An application is in forming a finite-length 
sequence from an infinite-length sequence by 
multiplying the latter with a finite-length 
sequence called an window sequencewindow sequence. The 
process is called windowingwindowing

w(n)

x(n) y(n)
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2. Operations on Sequences

�� AdditionAddition operation:

----AdderAdder y(n)=x(n)+w(n)
�� MultiplicationMultiplication operation:

----MultiplierMultiplier y(n)=Ax(n)

+x(n)

w(n)

y(n)

x(n)
A

y(n)
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2. Operations on Sequences

�� TimeTime--shiftingshifting operation: y(n)=x(n N)
If N > 0, it is delaying operation
--Unit delay

If N < 0, it is an advance operation
--Unit advance

x(n) y(n)=x(n 1)z 1

x(n) y(n)=x(n+1)z
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2. Operations on Sequences

�� TimeTime--reversal (folding)reversal (folding) operation: y(n)=x( n)
�� BranchingBranching operation: Used to provide 

multiple copies of a sequence

� Operations on two or more sequences can be 
carried out if all sequences involved are of 
same length and defined for the same range 
of the time index n

x(n)

x(n)

x(n)
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2. Operations on Sequences

� However if the sequences are not of same 
length, in some situations, this problem can be 
circumvented by appending zero-valued 
samples to the sequence(s) of smaller lengths 
to make all sequences have the same range of 
the time index

� The combination of basic operations can 
realize desirable functions
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2. Operations on Sequences

An ExampleAn Example

z-1

a1

z-1

a2

z-1

a3 a4

+
y(n)

x(n)
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2. Operations on Sequences

Sampling Rate AlterationSampling Rate Alteration
� Employed to generate a new sequence y(n)

with a sampling rate      higher or lower than 
that of the sampling rate of a given 
sequence x(n)

�� Sampling rate alteration ratioSampling rate alteration ratio is
If R > 1, the process called interpolationinterpolation (( ))

If R < 1, the process called decimationdecimation (( ))

'
TF

TF

' /T TR F F�
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2. Operations on Sequences

� In upup--samplingsampling ( ) by an integer factor L
> 1, equidistant zero-valued samples are 
inserted by the upup--samplersampler between each two 
consecutive samples of the input sequence x(n):

( / ), 0, , 2 ,...
( )

0,u

x n L n L L
x n

otherwise
� � ��

� �
�

Lx(n) xu(n)
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2. Operations on Sequences
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2. Operations on Sequences

� In downdown--samplingsampling ( ) by an integer 
factorM > 1, every M-th samples of the input 
sequence are kept and M 1 in-between
samples are removed:

( ) ( )y n x nM�

Mx(n) y(n)
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2. Operations on Sequences
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3. Classification of sequences

� A discrete-time signal can be classified in 
various ways, such as lengthlength,, symmetrysymmetry,,
summabilitysummability,, energyenergy and powerpower.

�� ConjugateConjugate--symmetricsymmetric sequence: x(n)=x*( n)
If x(n) is real, then it is an even sequence

�� ConjugateConjugate--antisymmetricantisymmetric sequence: x(n)=
x*( n), If x(n) is real, then it is an odd
sequence
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3. Classification of sequences

� It follows from the definition that for a 
conjugate-symmetric sequence {x(n)}, x(0)
must be a real numberreal number

� Likewise, it follows from the definition that for 
a conjugate anti-symmetric sequence {y(n)},
y(0) must be an imaginary numberan imaginary number

� From the above, it also follows that for an odd 
sequence {w(n)}, w(0) = 0
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3. Classification of sequences

� Any complex sequence can be expressed as a 
sum of its conjugateconjugate--symmetric partsymmetric part and its 
conjugate anticonjugate anti--symmetric partsymmetric part:

x(n) =xcs(n) + xca(n)
where

xcs(n) =(1/2)[x(n)+x*( n)]
xca(n) =(1/2)[x(n) x*( n)]
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3. Classification of sequences

� For a length-N sequence defined for 0 n N
1, it has a different definition as follows
x(n) =xpcs(n) + xpca(n)    0 n N 1

where
xpcs(n) =(1/2)[x(n)+x*(N n)]     0 n N 1

is the periodic conjugateperiodic conjugate--symmetric partsymmetric part, and
xpca(n) =(1/2)[x(n) x*(N n)]     0 n N 1
is the periodic conjugateperiodic conjugate--antisymmetricantisymmetric partpart
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3. Classification of sequences

� A length-N sequence x(n) is called a periodicperiodic
conjugateconjugate--symmetric sequencesymmetric sequence if

and is called a periodic conjugateperiodic conjugate--antianti--
symmetric sequencesymmetric sequence if

Q: How to get x( n) in the interval 0 n N 1

* *( ) ( ) ( ) 0 1Nx n x n x N n n N� �� 	 � � 
 
 �

* *( ) ( ) ( ) 0 1Nx n x n x N n n N� � �� 	 � � � 
 
 �
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3. Classification of sequences

*( )Nx n�� 	
*( )x N n�

x(n)
Conjugating

x*(n)
Folding

x*( n) Periodical
Extension

RN(n)(0 1)n N
 
 �

x*(n)

n

x*(—n)

n
n

� �

*( )Nx n�� 	
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3. Classification of sequences

� A sequence          satisfying

is called a periodic sequenceperiodic sequence with a period N,
where N is a positive integer and k is any 
integer

� Smallest value of N satisfying
is called the fundamental periodfundamental period

� A sequence not satisfying the periodicity 
condition is called an aperiodicaperiodic sequencesequence

( ) ( ) for allx n x n kN n� �� �
( )x n�

( ) ( )x n x n kN� �� �
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3. Classification of sequences

�� Total energyTotal energy of a sequence x(n) is defined by

� An infinite length sequence with finite sample 
values may or may not have finite energy

� A finite length sequence with finite sample 
values has finite energy

2( )x
n

E x n
�

���

� 
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3. Classification of sequences

� The average poweraverage power of a periodic sequenceof a periodic sequence with
a period N is given by

� The average power of an average power of an aperiodicaperiodic sequencesequence is
defined by

1
2

0

1 ( )
N

x
n

P x n
N

�

�

�  �

21lim ( )
2 1

K

x K n K
P x n

K��
��

�
� 
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3. Classification of sequences

� A sequence x(n) is said to be boundedbounded if

� A sequence x(n) is said to be absolutelyabsolutely
summablesummable if

� A sequence x(n) is said to be squaresquare
summablesummable if

( ) xx n B
 � �

2( )
n

x n
�

���

� �

( )
n

x n
�

���

� �
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4. Typical Sequences

�� Unit Sample SequenceUnit Sample Sequence

((nn)  vs.)  vs. ((tt))

Their energies are
both equal to 1. (n)
is of engineering
value, but (t) only
has meaning in theory

1, 0
( )

0, 0
n

n
n

�
��

� � ��

-8 -6 -4 -2 0 2 4 6 8
0

0.5

1

Time

� (
n)
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4. Typical Sequences

�� Unit Step SequenceUnit Step Sequence
1, 0

( )
0, 0
n

n
n

�
��

� � 
�

((nn)  vs.)  vs. uu((nn))

0
( ) ( ) ( )

n

k k
n n k k� � �

�

� ���

� � � 
( ) ( ) ( 1)n n n� � �� � �

-8 -6 -4 -2 0 2 4 6 8
0

0.5

1

Time

u(
n)
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4. Typical Sequences

�� Real sinusoidal sequenceReal sinusoidal sequence--
x(n)=Acos( 0 n+ )

where A is the amplitudeamplitude, 0 is the angularangular
frequencyfrequency, and is the phasephase of x(n)

�� Complex exponential sequenceComplex exponential sequence--

where A and     are real or complex numbers. 
In general,                     and

( ) ,nx n A n�� �� 
 
 �
�

0 0( )je � �� �� jA A e ��
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4. Typical Sequences

� An arbitrary sequence can be represented in 
the time-domain as a weighted sum of some 
basic sequence and its delayed (advanced) 
versions

� Another interpretation is that the above 
equation can be viewed as a convolutionconvolution of
x(n) and (n)

( ) ( ) ( )
k

x n x k n k�
�

���

� �
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5. The Sampling Process

� Often, a discrete-time sequence x(n) is
developed by uniformly samplinguniformly sampling a
continuous-time signal xa(n) as indicated 
below

� The relation between the two signals is
x(n)=xa(t)|t=nT=xa(nT), n=…, 2, 1,0,1,2,…

T n-3 -2 -1  0  1  2  3
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5. The Sampling Process

� Time variable t of xa(t) is related to the time 
variable n of x(n) only at discrete-time tn
instants given by

with FT=1/T denoting the sampling frequencysampling frequency
and                  denoting the sampling angular sampling angular 
frequencyfrequency

2
n

T T

n nt nT
F

�
� � �

�

2T TF�� �
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5. The Sampling Process

� Consider the continuous-time signal

� The corresponding discrete-time signal is
0 0( ) cos(2 ) cos( )ax t A f t A t� � �� � � � �

0 0

0
0

1( ) cos( ) cos

2cos cos( )

T

T

x n A nT A n
F

A n A n

� �

� � � �

� �
� � � � � �� �

� �
� ��

� � � �� ��� �
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5. The Sampling Process

where
is the normalized digital angular frequencynormalized digital angular frequency of
x(n)

� If the unit of sampling period T is in seconds, 
the unit of normalized digital angular
frequency      is radians/sampleradians/sample while the unit 
of normalized analog angular frequency      is 
radians/secondradians/second

0
0

2

T

�� �
�

�

o�
0�
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5. The Sampling Process

An ExampleAn Example

Consider the three continuous-time signals

g1(t)=cos(6 t), g2(t)=cos(14 t), g3(t)=cos(26 t)

of frequencies 3 Hz, 7 Hz, and 13 Hz, are sampled at 
a sampling rate of 10 Hz, i.e. with T = 0.1 sec.
generating the three sequences 

g1(n)=cos(0.6 n), g2(n)=cos(1.4 n),g3(n)=cos(2.6 n)
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0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Time
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m
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g1(t)
g1(n)
g2(t)
g2(n)
g3(t)
g3(n)

Plots of these sequences and their parent time 
functions are shown below: 

Note that each sequence has exactly the same  sample 
value for any given n

5. The Sampling Process
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This fact can also be verified by observing that

As a result, all three sequences are identical and it is 
difficult to associate a unique continuous-time function 
with each of these sequences

5. The Sampling Process

2 ( ) cos(1.4 ) cos((2 0.6 ) ) cos(0.6 )g n n n n� � � �� � � �

3( ) cos(2.6 ) cos((2 0.6 ) ) cos(0.6 )g n n n n� � �� � � �
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5. The Sampling Process

� The above phenomenon of a continuous-time signal 
of higher frequency acquiring the identity of a 
sinusoidal sequence of lower frequency after 
sampling is called aliasingaliasing

� Therefore, additional conditions need to imposed so 
that the sequence x(n) can uniquely represent the 
parent continuous-time signal xa(t)
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5. The Sampling Process

Another Example
Determine the discrete-time signal v(n) obtained by 
uniformly sampling at a sampling rate of 200 Hz the
continuous-time signal
va(t)=6cos(60 t)+3sin(300 t)+2cos(340 t)

+4cos(500 t)+10sin(660 t)
Note: It is composed of 5 sinusoidal signals of 
frequencies 30 Hz, 150 Hz, 170Hz, 250 Hz and 330
Hz
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5. The Sampling Process

� The sampling period is T=1/200=0.005sec
� The generated discrete-time signal v(n) is thus given 

by
( ) 6cos(0.3 ) 3sin(1.5 )

2cos(1.7 ) 4cos(2.5 ) 10sin(3.3 )
      6cos(0.3 ) 3sin((2 0.5) )2cos((2 0.3) )

4cos((2 0.5) ) 10sin((4 0.7) )
      6cos(0.3 ) 3sin(0.5 ) 2cos(0.3 )
        4c

v n n n
n n n
n n n

n n
n n n

� �
� � �

� � �
� �

� � �

� �
� � �

� � � �
� � � �

� � �
� os(0.5 ) 10sin(0.7 )
8cos(0.3 ) 5cos(0.5 0.6435) 10sin(0.7 )

n n
n n n
� �
� � �

�
� � � � 51

5. The Sampling Process

� Note: v(n) is composed of 3 discrete-time sinusoidal 
signals of normalized angular frequencies: 0.3 ,
0.5 , and 0.7

� Note: An identical discrete-time signal is also 
generated by uniformly sampling at a 200-Hz
sampling rate the following continuous-time signals:

( ) 8cos(60 ) 5cos(100 0.6435) 10sin(140 )
( ) 2cos(60 ) 4cos(100 ) 10sin(260 )   

           6cos(460 ) 3sin(700 )

a

a

w t t t t
u t t t t

t t

� � �
� � �

� �

� � � �

� � �

� �
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5. The Sampling Process

� Recall

Thus if T> 2 0, then the corresponding 
normalized digital angular frequency of the 
discrete-time signal obtained by sampling the 
parent continuous-time sinusoidal signal will 
be in the range < <

�� No aliasingNo aliasing

0
0

2

T

�� �
�

�
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5. The Sampling Process

� On the other hand, if T< 2 0, the 
normalized digital angular frequency will 
foldover into a lower digital frequency 

0={2 T / T} 2in the range < <
because of aliasingaliasing

� Hence, to prevent aliasing, the sampling 
frequency T should be greater than 2 times 
the frequency 0 of the sinusoidal signal 
being sampled

� From the above analysis, we state the SampleSample
TheoremTheorem as follows

0 0 2
2 / T �

� �� � �

54

Sampling Theorem

� Consider an arbitrary continuous-time signal 
xa(t) composed of a weighted sum of a number 
of sinusoidal signals

� xa(t) can be represented uniquely by its 
sampled version {x(n)} if the sampling 
frequency T is chosen to be greater than 2 
times the highest frequency contained in xa(t)

� This theorem can be proofed via Fourier 
Transform in chapter 5


