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Part A: Discrete-Time Signals

e Time-Domain Representation
e Operations on Sequences

e Classification of Sequences

e Typical Sequences

o The Sample Process

1. Time-Domain Representation

e Signals represented as sequences of numbers,
called samples CRAFE. FEA)

e Sample value of a typical signal or sequence
denoted as x (n) with 7 being an integer in the
range — e <Sp<< o

e x(n) defined only for integer values of » and
undefined for non-integer values of »

e Discrete-time signal represented by {x ()}

1. Time-Domain Representation

e Discrete-time signal may also be written as a
sequence of numbers inside braces:

x(m}={..., -0.2,2.2,1.1,0.2, -3,7,2.9, ...}

In the above, x(—1)= —0.2, x(0)=2.2, x(3)=—3
etc.

e The arrow is placed under the sample at time
index n=0
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e Graphical representation of a discrete-time e In some applications, a discrete-time sequence e Here, n-th sample is given by
signal with real-valued samples is as shown {x(n)} may be generated by periodically x(n)=x,(O)| -, 7=x,nT), n=..., =2, —1,0, —1,...
below: sampling a continuous-time signal at uniform aomm .
wa intervals of time x (7) o The spacing 7" between two consecutive
) ) “ samples is called the sampling interval or
I " I ’ T T T sampling period
I 3ase7sonnnf T T . e Reciprocal of sampling interval 7, denoted as ,
’"’ " ’” " e 2 § mmser is called the sampling frequency:
pling Ireq y
r(})
. F=1T .

1. Time-Domain Representation

e Unit of sampling frequency is cycles per
second, or hertz (Hz), if 7 is in seconds

e Whether or not the sequence {x(n)} has been
obtained by sampling, the quantity x(n) is
called the »-th sample of the sequence

e {x(n)} is a real sequence, if the n-th sample x(n)
is real for all values of n

e Otherwise, {x(n)} is a complex sequence

1. Time-Domain Representation

e Two types of discrete-time signals:
-- Sampled-data signals
-- Digital signals

e Signals in a practical digital signal processing
system are digital signals obtained by

quantizing the sample values either by
rounding C(HU¥E) or truncation (51)

1. Time-Domain Representation

\
e A discrete-time signal may be a finite-length
or an infinite-length sequence

e Finite-length (also called finite-duration or
finite-extent) sequence is defined only for a
finite time interval Ny < n < N,,

where —eo< N, and N, << with N, <N,

e Length or duration of the above sequence is
N=N,-N,+1
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e The length of a finite-length sequence can be e A single-input, single-output discrete—time. Basic Operations

increased by zero-padding, i.e., by appending system operates on a sequence, call@d the input o Product

it with zeros sequence, according to some prescribed rules roduc

and develops another sequence, called the e Addition

o Infinite-length sequences can be classified as output sequence, with more desirable e Multiplication

following properties e Time-Shifting

x(n) =0 for n <N, right-sided sequence x(n) Discrete-Time | V() e Time-Reverse (folding)

x(n) =0 for n >N, left-sided sequence Input Sequence System Output Sequence o Branchin

x(n)7#0 for > <n< = double-sided sequence g

13 h(n) 14 15

2. Operations on Sequences s 2. Operations on Sequences : :

e Product (modulation) operation:

x(n) %97 ¥(n)
--Modulator

w(n)

e An application is in forming a finite-length
sequence from an infinite-length sequence by
multiplying the latter with a finite-length
sequence called an window sequence. The
process is called windowing 1)

e Addition operation:
x(n) %Qﬁ ¥

w(n)

--Adder y(n)y=x(n)+w(n)
e Multiplication operation: 4
x(n) ——— > ()
--Multiplier  y(n)=Ax(n)

2. Operations on Sequences

e Time-shifting operation: y(n)=x(n—N)
If N> 0, it is delaying operation

y(n)=x(n—1)

If N<O0, it is an advance operation

--Unit delay
x(n)

--Unit advance

x(n) 4’.—‘ Y(n)=x(n+1)




2. Operations on Sequences

!
e Time-reversal (folding) operation: y(n)=x(—n)

e Branching operation: Used to provide
multiple copies of a sequence

x(n) . x(n)
I x(n)

e Operations on two or more sequences can be
carried out if all sequences involved are of
same length and defined for the same range
of the time index »

2. Operations on Sequences

e However if the sequences are not of same
length, in some situations, this problem can be
circumvented by appending zero-valued
samples to the sequence(s) of smaller lengths
to make all sequences have the same range of
the time index

e The combination of basic operations can
realize desirable functions
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2. Operations on Sequences

An Example

x(n)

21

2. Operations on Sequences

Sampling Rate Alteration

e Employed to generate a new sequence y(7)
with a sampling rate F, higher or lower than
that of the sampling rate F, of a given
sequence x(n)

e Sampling rate alteration ratio is R=F, / F,
If R > 1, the process called interpolation (P41d)
If R < 1, the process called decimation (fl1HY)
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2. Operations on Sequences

e In up-sampling (J} K£¥) by an integer factor L
> 1, equidistant zero-valued samples are
inserted by the up-sampler between each two
consecutive samples of the input sequence x(n):

x(n/L), n=0,£L,£2L,...
x,(n)=

0, otherwise

x(n) tL x,(m)
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2. Operations on Sequences

Inur Sequénce

Jny

]

Amglitoide

Ohutyral sespuemice i sanigled by 3
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2. Operations on Sequences

e In down-sampling (F£K+¥) by an integer
factor M > 1, every M-th samples of the input

2. Operations on Sequences :

eence down-samgled by 3

3. Classification of sequences :

e A discrete-time signal can be classified in
various ways, such as length, symmetry,
summability, energy and power.

sequence are kept and M/—1 in-between 4
sa?nples are remlz)ved' : = - d i e Conjugate-symmetric sequence: x(7)=x*(—n)
: 4| 9 l‘k {‘ |f . If x(n) is real, then it is an even sequence
y(n) = x(nM) l 111 ] ) . .
ol ol LAl . G ) . 2 e Conjugate-antisymmetric sequence: x(n)=—
() Y () U Rl W e e o x*(—n), If x(n) is real, then it is an odd
L= sequence
25 26 27
seeo seeo seeo
i i i
3. Classification of sequences : 3. Classification of sequences : 3. Classification of sequences :

e [t follows from the definition that for a
conjugate-symmetric sequence {x(n)}, x(0)
must be a real number

o Likewise, it follows from the definition that for
a conjugate anti-symmetric sequence {)()},
y(0) must be an imaginary number

e From the above, it also follows that for an odd
sequence {w(n)}, w(0) =0

28

e Any complex sequence can be expressed as a
sum of its conjugate-symmetric part and its
conjugate anti-symmetric part:

x(n) =x () + x,,(n)
where
x(n) =(12)[x(n)+x*(—n)]
Xo(n) =(1/2)[x(n) —x*(—n)]

29

e For a length-N sequence defined for 0<<n<<N
—1, it has a different definition as follows
x(n) zxpcs(n) + xpca(n) 0sn< N—1
where
Xpes(m) =(1/2)[x(n)+x*(N—n)]  0sn< N—1
is the periodic conjugate-symmetric part, and
Xped?) =(12)[x(n) —x*(N—n)]  O0<n< N—1

is the periodic conjugate-antisymmetric part
30




3. Classification of sequences

\
e A length-N sequence x(n) is called a periodic
conjugate-symmetric sequence if

x(n)=x"((-n),)=x (N-n) 0<n<N-1
and is called a periodic conjugate-anti-
symmetric sequence if

x(n)=—x ((-n),)=—x(N—n) 0<n<N-1

Q: How to get x(—n) in the interval 0<<n<< N—1

3. Classification of sequences

x*(n) \ . ‘x*(— n) [ Periodical
\F olding \ 1 Extension

I
x(n
% Conjugating

e X ((=n)y)
- (N _
J_LL (olg n< Nn—) 5 Ry(n)

x¥(—n) X ((=npy)

dll :5>'-1H)wm1m---

3. Classification of sequences

o A sequence 3(n) satisfying

X(n)=x(n+kN) foralln
is called a periodic sequence with a period N,
where N is a positive integer and & is any
integer
e Smallest value of N satisfying x(n) = X(n+kN)
is called the fundamental period

e A sequence not satisfying the periodicity
condition is called an aperiodic sequence

2 k7] 23
[ XX ) [ XX ) [ XX )
eeeo P48 s,
[ X LR 00 00
o0 e0o b
[ 1) [ 1) [ 1)

4 °

3. Classification of sequences :

e Total energy of a sequence x(n) is defined by

= 2
E, =2 |x(n)
e An infinite length séquence with finite sample
values may or may not have finite energy

e A finite length sequence with finite sample
values has finite energy

34

3. Classification of sequences

e The average power of a periodic sequence with
a period N is given by

1 & 2
P =—> Ix(n
= Sk
o The average power of an aperiodic sequence is

defined by 1 K 2
P =1li
x Klill 2K +1 ”Z |x(n)|

=K
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3. Classification of sequences

e A sequence x(n) is said to be bounded if
|x(n)|< B, <

e A sequence x(n) is said to be absolutely
summable if =

Z |x(n)| <o
e A sequence x(n) is said to be square

summable if i |x(n)|2 o

36




4. Typical Sequences

e Unit Sample Sequence  &(n) :{(1)’ n=0

n#0

>

S(n) vs. 8(r)

= Their energies are

= both equal to 1. & (n)
is of engineering
value, but & (7) only

4. Typical Sequences

- 1, n=0
e Unit Step Sequence HD=10 <o

8(n) vs. u(n)

w(n)= ié‘(nfk) = i o(k)

S(n) = u(n)— u(n-1)

4. Typical Sequences

e Real sinusoidal sequence-
x(n)=Acos( w,n+ @)

where A4 is the amplitude, @, is the angular
frequency, and @ is the phase of x(n)

e Complex exponential sequence-

x(n)=Aa", —wo<n<w

sogesesslogagacoy has meaning in theory $osogo where 4 and « are real or complex numbers.
e e In general, o = ¢!/ and A =|4|e”
g >
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4. Typical Sequences

e An arbitrary sequence can be represented in
the time-domain as a weighted sum of some
basic sequence and its delayed (advanced)
versions ©

x(n)= Y. x(k)o(n—k)

k=0

e Another interpretation is that the above
equation can be viewed as a convolution of
x(n) and S (n)

40

5. The Sampling Process

e Often, a discrete-time sequence x(7) is
developed by uniformly sampling a
continuous-time signal x_(») as indicated
below

M AN A

ﬂz-mzs Tl ] n

e The relation between the two signals is
x(n)y=x ,0)| -, 7~x,nT), n=..., =2, —1,0,1,2,...

41

5. The Sampling Process

o Time variable 7 of x(7) is related to the time
variable » of x(n) only at discrete-time 7,
instants given by

t,=nT = 2= 2zn
T
with F,=1/T denoting the sampling frequency
and Q. =27F, denoting the sampling angular
frequency

42
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. . . 270,
o Consider the continuous-time signal where W, = ? An Example
x, (1) = Acos(2r fit + §) = Acos(Qyt + §) is the normalized digital angular frequency of Consider the three continuous-time signals
e The corresponding discrete-time signal is x(m) g,(fy=cos(6 1 1), g,(1)=cos(14 T 1), g;(1)=cos(26 T )
1 e If the unit of sampling period 7'is in seconds £1i ies 3 Hz. 7 Hz. and 13 H led
-4 OnT+d)= A On—t - i 1] 5 of frequencies z, Z, an z, are sampled at
x(n) cos( Oﬁ 2 COS( o’ E, ¢j the unit of normalized digital angular a sampling rate of 10 Hz, i.e. with 7= 0.1 sec.
; 2 O frequency o, is radians/sample while the unit generating the three sequences
= ACOS{ 0 tn+ ¢J = Acos(w,n+ ) of normalized analog angular frequency Q) is g1(n)=c0s(0.6 7n), g,(n)y=cos(1.4 7n),gy(n)=cos(2.6 7n)
ol X radians/second
43 44 45
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5. The Sampling Process

Plots of these sequences and their parent time
functions are shown below:

1 T—o0
o g0

Amplitude
- :BQA\A: £LEE

08 1

Time
Note that each sequence has exactly the same sample
value for any given n "

5. The Sampling Process

5. The Sampling Process

This fact can also be verified by observing that
g,(n)=cos(l.47n) = cos((27 —0.67)n) = cos(0.6n)
g,(n) =co0s(2.6n) = cos((27 +0.6r)n) = cos(0.67n)

As a result, all three sequences are identical and it is

difficult to associate a unique continuous-time function

with each of these sequences

47

e The above phenomenon of a continuous-time signal
of higher frequency acquiring the identity of a
sinusoidal sequence of lower frequency after
sampling is called aliasing

e Therefore, additional conditions need to imposed so
that the sequence x(») can uniquely represent the
parent continuous-time signal x (7)

48




5. The Sampling Process

Another Example

Determine the discrete-time signal v(n) obtained by
uniformly sampling at a sampling rate of 200 Hz the
continuous-time signal

v, (1)=6c0s(60 m £)+3sin(300 T £)+2cos(340 7 7)
+4c0s(500 7 £)+10sin(660 = 7)

Note: It is composed of 5 sinusoidal signals of
frequencies 30 Hz, 150 Hz, 170Hz, 250 Hz and 330
Hz

49

5. The Sampling Process

e The sampling period is 7=1/200=0.005sec
e The generated discrete-time signal v(#) is thus given
b
v(nglz 6c0s(0.37zn)+3sin(1.57n)
+2cos(1.7zn)+4cos(2.5zn) +10sin(3.37n)
= 6c0s(0.37n)+3sin((2-0.5)zn)2cos((2—-0.3)zn)
+4cos((2+0.5)zn)+10sin((4—0.7)zn)
= 6¢c0s(0.37n)—3sin(0.57zn) + 2 cos(0.37n)
+4cos(0.57n)—10sin(0.77zn)
= 8c0s(0.37n)+5co0s(0.57n+0.6435)—10sin(0.77zn)so

5. The Sampling Process

e Note: v(7) is composed of 3 discrete-time sinusoidal
signals of normalized angular frequencies: 0.3 7,
0.5m,and 0.7

e Note: An identical discrete-time signal is also
generated by uniformly sampling at a 200-Hz
sampling rate the following continuous-time signals:

w, (1) =8cos(607¢)+5cos(1007 +0.6435) —10sin(1407¢)
u,(t)=2cos(60xt) +4cos(10077) +10sin(2607¢)
+6c0s(4607t)+3sin(7007¢)

51

5. The Sampling Process

e Recall 270,

Q,

T

Thus if Q >2Q , then the corresponding
normalized digital angular frequency of the
discrete-time signal obtained by sampling the
parent continuous-time sinusoidal signal will
be in the range - 7<w< 7

)

o No aliasing
52

5. The Sampling Process

e On the other hand, if Q ,<2Q , the
normalized digital angular frequency will
foldover into a lower digital frequency
@, =(27Q,/Q, ), intherange - 7<w< 7
because of aliasing

e Hence, to prevent aliasing, the sampling
frequency Q ;should be greater than 2 times
the frequency @ of the sinusoidal signal
being sampled

e From the above analysis, we state the Sample
Theorem as follows 53

Sampling Theorem

e Consider an arbitrary continuous-time signal
x,(#) composed of a weighted sum of a number
of sinusoidal signals

e x (7) can be represented uniquely by its
sampled version {x(n)} if the sampling
frequency Q ,is chosen to be greater than 2
times the highest frequency contained in x (7)

e This theorem can be proofed via Fourier
Transform in chapter 5
54




