Chapter 10

FIR Digital Filter Design

1. Truncating the Impulse
Response

The transfer function is a polynomial in z-!.

e Let H (e“) denote the desired frequency
response function. 7 (&) is periodic
function of @ with period 2 7and can be

PYYS Basic approaches in designing FIR filters

o000 . . . . expressed as a Fourier series

eeo00 # Truncating the Fourier series representation of _ » A

FIR Digital Filter Design -4 the desired frequency response => Window H (€)= hy(m)e ™
[ ] n=—ow
method e The Fourier coefficients {/,(n)} are the
¢ Computer-aided design based on optimization impulse response samples
h,(n)= LJ'” H, (')’ dw, —o<n<w
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e Thus, given H (¢/“) we can compute /,(r)
and the corresponding H (z)

e Usually, H (¢/*) is piecewise constant with
ideal (or sharp) transitions between bands =>
{h(n)} sequence is of infinite length and
noncausal

e The objective is to find a finite-duration
impulse response {/,(n)} of length 2A/+1
whose DTFT H/(¢/“) approximates the
desired DTFT H,(¢/*)

e Minimizing the integral squared error
®= Lj” |H (")~ H,(") do
2m -

M
where H@) =3 hme ™
n=—M

e Using the Parseval’s relation
=" |hm)~h, ()|

=S I -h o+ Y e S B

n=-M n=M+1

@ is minimum when constant term
h(n)=hn)for =M <n <M, 5

e The best finite-length approximation is
obtained by truncating the impulse response

e A causal impulse response /(n) can be
obtained from /,(n) by delaying it with M
samples

h(n)=h(n-M)

e /i(n) has the same magnitude response as /(1)
but its phase response has a linear phase shift
of @M radians
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Th delav of h(n) is M 1 e The ideal lowpass filter has a zero-phase e Truncating to range —M<n<Mand delaying
¢ thegroupdelayo d(n) 18 M saiples frequency r;;’gonse P with M samples yields the causal FIR lowpass
7(0)=———(-oM)=M oy _ 1 el <o, filter ,
do H,,p(e") = sin(a@,(n—M))
here the li h is — oM 0, o <|o|<7, - e 0<n<2M
whete the fincat phase response 1s e The corresponding impulse response hyp(n) = z(n—M)
coefficients Sinwn 0, otherwise
hyp(n) = Tn(’ —0<n<o e The truncation of the impulse response
is doubly infinite, not absolutely summable coefficients of the ideal filters exhibit an
and therefore unrealizable ’ oscillatory behavior in the respective
magnitude responses
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3. Gibbs Phenomenon

Magnitude
o

|
e (Gibbs phenomenon - Oscillatory behavior in

the magnitude responses of causal FIR filters
obtained by truncating the impulse response
coefficients of ideal filters

— N=20| il i
L /\, a| mpactof the length of the window function
b (1) Narrower transition band

(2) More ripples
(3) Smaller ripple width
(4) Same largest peak ripple
\/\ The performance is better.
v How to reduce the highest ripple?
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3. Gibbs Phenomenon

e As can be seen, as the length of the lowpass
filter is increased, the number of ripples in
both passband and stopband increases, with a
corresponding decrease in the ripple widths

e Height of the largest ripples remain the same
independent of length

e Similar oscillatory behavior observed in the
magnitude responses of the truncated versions
of other types of ideal filters

e Truncation of 4 () can be expressed by
windowing operation, i.e., by multiplying the
h (n) sequence with a finite-length sequence
w(n)
h,(n) = h,(n)-w(n)

where w(n) is a window function
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e . . < e (e )
. e Multiplication in the time domain corresponds \ o=r 1 o <o<n
e For a rectangular window to convolution in the frequency domain A e IS S ol M R Tt
- 1 a . . T e ™ -m e we T
L -M<ns<M H(e)===[" H,(e")¥("")dp
W) = 0, otherwise 2r s i\’ 0<0<o
’ where 1,(/") = F {h,(n)}  ¥(e) = F {w(n)} Y -~
e The Gibbs p henomqnon can be exp lalped mn e H () is obtained by a periodic continuous ® i
the frequency domain by the convolution convolution of the frequency response # (¢/*) H,(e)
theorem with the Fourier transform W(¢/©) of the ] '
window o
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3. Gibbs Phenomenon

Amplitude

Rectangular Window |

— =10

l—ws}l » The frequency response W (¢/)

has a narrow mainlobe

centered at =0

> All the other ripples in the

‘-‘J‘u ‘}“./* frequency response are called

sidelobes

Y

The main lobe is characterized by its width
4 1 /(2M+1) defined by the first zero crossings on
both sides of =0

» As M increases the width of the main lobe decreases
» The area under each lobe remains constant, while the

width of each lobe decreases with increasing M 16

3. Gibbs Phenomenon

e Rectangular window has an abrupt transition
to zero outside the range —M<n< M,
which results in Gibbs phenomenon in H(e/*)

e Gibbs phenomenon can be reduced either:

(a) Using a window that tapers smoothly to
zero at each end, or

(b) Providing a smooth transition from
passband to stopband in the magnitude
specifications

e Symmetric window functions are used in FIR
filter design in order to guarantee the linear
phase response

Different Window Functions: N=25

e Smoother behavior

=

cutoff frequency is
obtained by using

Amplitude
o
Y

different cosine-type

S~

functions instead of | /
the rectangular

window L
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e Various window functions: (rised cosine) * Plots of magnitudes of the DTFTs of these i i
' windows for M = 25 are shown below: ° Magnltudp spectrum qf each window
Hann: R characterized by a main lobe centered at @=0
w(n) = 1{1 + Cos( 27 ﬂ ~-M<n<M i Th followed by a series of sidelobes with
.2 M +1 : = decreasing amplitudes
Hamming: s
Ww(n) = 0.54 +0.46 cos 27n M<n<M e Parameters predicting the performance of a
M +1 window in filter design are:
Blackman: § . .
. 1) Main lobe width
w(n) = 0.42+0 SCos( 2713 0.08cos| 7" j ) o
: : M +1 : M 11 Y 2) Relative sidelobe level
—-M<n<M 19 , 20 21

4. Fixed Window Functions

e Main lobe width - A, given by the distance
between zero crossings on both sides of main
lobe

e Relative sidelobe level - 4, given by the
difference in dB between amplitudes of largest
sidelobe and main lobe
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4. Fixed Window Functions

Lowpass Filter Design by Windowing
H,(e")
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4. Fixed Window Functions

e Observe H (™)) + H (")) =1
e Thus H,(e/*)=0.5
e Passband and stopband ripples are the same

e Distance between the locations of the
maximum passband deviation and minimum
stopband value ~A,,

e Width of transition band A w= @ ,— @ <A

24
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e To ensure a fast transition from passband to e In the case of rectangular Hann Hamming Table 10.2: Properties of fixed window functions
stopband, window should have a very small and Blackman windows, the value of ripple * Rectangular window -A,; =4n/(2M +1)
main-lobe width does not depend on filter length or cutoff A, =133dB. a, =20.9dB, Aw=0,921/ M

e To reduce the passband and stopband ripple &, frequency @, and is essentially constant « Hann window - A, =87/(2M +1)
the z;lrea under the sidelobes should be very e In addition, A w=~c¢/M Ay =315dB.a, =43.9dB, Ao=3.11n/M
sma . . . : .

. where ¢ is a constant for most practical * Hamming window - A,; =8n/(2M +1)
° Unf;)rn(llr.la;tely, these two requirements are purposes A, =427dB, «, =54.5dB, Ao =3.32n/M
contradictory + Blackman window - Ay =12r/(2M +1)
A, =538.1dB,a, =753 dB, A@=35.56n/M
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4. Fixed Window Functions H 4. Fixed Window Functions H 5. Adjustable Window Functions |:

\ \ \

Filter Design Steps - e Lowpass filter of length 51 and @, =7/2 e Dolph-Chebyshev Window —

Hann Window Hamming Window Blackman Window 1 1 M k” an”

@ Set @, =(w, +,)/2 \ \ ) \ W(n):2M+1{;+2AZ:;‘T"('BCOS2M+1]cos[2M+1H

@ Choose window based on specified I ITE amplitude of sidelobe ~—M <n<M

P i i
) e =— -
® Estimate Musing A @~c/M i i where main lobe amplitude
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@ An increase in the main lobe width is associated with an
increase in the width of the transition band
@ A decrease in the sidelobe amplitude results in an increase in

the stopband attenuation
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1 1
/3 =cosh| ——cosh™" —
2M ¥

cos(/cos™ x), for‘x‘ﬁl

cosh(/cos™ x), for|x|>1

and 7;(x) :{
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5. Adjustable Window Functions

e Dolph-Chebyshev window can be designed
with any specified relative sidelobe level
while the main lobe width adjusted by
choosing length appropriately

e Filter order is estimated using N =

where Awis the normalized transitiorzl'zgs(Aa))

bandwidth, e.g, for a lowpass filter Aw =, -,

31

2.056c, —16.4

5. Adjustable Window Functions

\
e Gain response of a Dolph-Chebyshev window
of length 51 and relative sidelobe level of 50

dB is shown below

Dolph-Chebyshev Window
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5. Adjustable Window Functions

\
Properties of Dolph-Chebyshev window:

e All sidelobes are of equal height

e Stopband approximation error of filters
designed have essentially equiripple behavior

e For a given window length, it has the smallest
main lobe width compared to other windows
resulting in filters with the smallest transition
band
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5. Adjustable Window Functions

e Kaiser Window -

10{ﬂ«/17(n/M)2}

wn)=——= —-M<n<M

1,(P)

where 4 is an adjustable parameter and /,(«) is
the modified zeroth-order Bessel function of
the first kind:

o Note /,(u)>0 for u being real
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5. Adjustable Window Functions

\
e In practice

r!
e /S controls the minimum stopband
attenuation of the windowed filter response

e [ is estimated using

0.1102(ex, —8.7), for ¢, > 50
B=10.5824(cr, —21)** +0.07886(cx, —21), for 21< ez, <50
0, for o, <21
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5. Adjustable Window Functions

\
e Filter order is estimated using
__ -8
2.285(Aw)

where Ao is the normalized transition
bandwidth

36




6. Impulse Responses of FIR Filters
with a Smooth Transition

e First-order spline passband-to-stopband
transition H, ()

: 0 =(o+0,)/2
Ao =0, -0, !
— = Ao=0-0,
| | Lo
- —O, -, 0 ®, o T o
o, n=0

hyp(n) =14 2sin(Awn/2) sin(w,n) |
=

n‘ >0
Awn Vi
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6. Impulse Responses of FIR Filters
with a Smooth Transition

6. Impulse Responses of FIR Filters
with a Smooth Transition

e Pth-order spline passband-to-stopband
transition

o/, n=0
hyp(n) = [ZSin(Awn/zP)jP sin(aw,n) ‘n‘>0
Awn oan
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Example- ©,=0357 @, =0457
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