

- Thus, given $H_d(e^{j\omega})$ we can compute $h_d(n)$ and the corresponding $H_d(z)$
- Usually, H_d(e^{jω}) is piecewise constant with ideal (or sharp) transitions between bands => {h_d(n)} sequence is of infinite length and noncausal

4

• The objective is to find a finite-duration impulse response $\{h_t(n)\}$ of length 2M+1whose DTFT $H_t(e^{j\omega})$ approximates the desired DTFT $H_d(e^{j\omega})$

1. Truncating the Impulse Response

6

- The best finite-length approximation is obtained by truncating the impulse response
- A causal impulse response *h*(*n*) can be obtained from *h*_t(*n*) by delaying it with *M* samples

```
h(n) = h_t(n - M)
```

h(n) has the same magnitude response as h_t(n) but its phase response has a linear phase shift of ωM radians

• Main lobe width - Δ_{ML} given by the distance between zero crossings on both sides of main lobe

22

• Relative sidelobe level - A_{sl} given by the difference in dB between amplitudes of largest sidelobe and main lobe

