
Chapter 10

FIR Digital Filter Design
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FIR Digital Filter Design

The transfer function is a polynomial in The transfer function is a polynomial in zz--11. . 
Basic approaches in designing FIR filtersBasic approaches in designing FIR filters

� Truncating the Fourier series representation of 
the desired frequency response => Window Window 
methodmethod

�� ComputerComputer--aided designaided design based on optimization
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1. Truncating the Impulse 
Response

� Let Hd(ej ) denote the desired frequency 
response function. Hd(ej ) is periodic 
function of with period 2 and can be 
expressed as a Fourier series

� The Fourier coefficients {hd(n)} are the 
impulse response samples
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1. Truncating the Impulse 
Response

� Thus, given Hd(ej ) we can compute hd(n)
and the corresponding Hd(z)

� Usually, Hd(ej ) is piecewise constant with 
ideal (or sharp) transitions between bands =>
{hd(n)} sequence is of infinite length and infinite length and 
noncausalnoncausal

� The objective is to find a finitefinite--durationduration
impulse response {ht(n)} of length 22MM+1+1
whose DTFT Ht(ej ) approximates the 
desired DTFT Hd(ej )
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1. Truncating the Impulse 
Response

� Minimizing the integral squared error

where

� Using the Parseval’s relation
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hhtt((nn)= )= hhdd((nn)) forfor MM nn MM,, 6

1. Truncating the Impulse 
Response

� The best finite-length approximation is 
obtained by truncating the impulse responsetruncating the impulse response

� A causalcausal impulse response h(n) can be 
obtained from ht(n) by delayingdelaying it with M
samples

� h(n) has the same magnitude response as ht(n)
but its phase response has a linear phase shiftlinear phase shift
of M radians
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1. Truncating the Impulse 
Response

� The group delay of h(n) is M samples

where the linear phase response is M
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2. Impulse Response of Ideal 
Lowpass Filters

� The ideal lowpass filter has a zerozero--phasephase
frequency response

� The corresponding impulse response 
coefficients

is doubly infinitedoubly infinite, not absolutely not absolutely summablesummable, 
and therefore unrealizableunrealizable
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2. Impulse Response of Ideal 
Lowpass Filters

�� TruncatingTruncating to range M n M and delayingdelaying
with M samples yields the causal FIR lowpass
filter

� The truncation of the impulse response 
coefficients of the ideal filters exhibit an 
oscillatory behavioroscillatory behavior in the respective 
magnitude responses
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3. Gibbs Phenomenon
�� Gibbs phenomenonGibbs phenomenon - Oscillatory behavior in 

the magnitude responses of causal FIR filters 
obtained by truncating the impulse response 
coefficients of ideal filters 

Impact of the length of the window functionImpact of the length of the window function

(1) Narrower transition band

(2) More ripples

(3) Smaller ripple width

(4) Same largest peak ripple

The performance is better.

How to reduce the highest ripple?How to reduce the highest ripple?
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3. Gibbs Phenomenon

� As can be seen, as the length of the lowpass
filter is increased, the number of ripples in 
both passband and stopband increases, with a 
corresponding decrease in the ripple widths

� Height of the largest ripples remain the same 
independent of length

� Similar oscillatory behavior observed in the 
magnitude responses of the truncated versions 
of other types of ideal filters
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3. Gibbs Phenomenon

� Truncation of hd(n) can be expressed by 
windowing operationwindowing operation, i.e., by multiplying the 
hd(n) sequence with a finite-length sequence 
w(n)

where w(n) is a window function
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3. Gibbs Phenomenon

� For a rectangular window

� The Gibbs phenomenon can be explained in 
the frequency domain by the convolution 
theorem
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3. Gibbs Phenomenon

�� Multiplication in the time domainMultiplication in the time domain corresponds 
to convolution in the frequency domainconvolution in the frequency domain

where

� Ht(ej ) is obtained by a periodic continuous a periodic continuous 
convolutionconvolution of the frequency response Hd(ej )
with the Fourier transform (ej ) of the 
window
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3. Gibbs Phenomenon
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3. Gibbs Phenomenon

� The frequency response (ej )
has a narrow mainlobemainlobe
centered at =0

� All the other ripples in the 
frequency response are called 
sidelobessidelobes

� The main lobe is characterized by its width 
4 /(2M+1) defined by the first zero crossings on 
both sides of =0

� As M increases the width of the main lobe decreases
� The area under each lobe remains constant, while the 

width of each lobe decreases with increasing M 17

3. Gibbs Phenomenon

� Rectangular window has an abrupt transition 
to zero outside the range M n M , 
which results in Gibbs phenomenon in Ht(ej )

� Gibbs phenomenon can be reduced either:
(a) Using a window that tapers smoothlytapers smoothly to 
zero at each end, or
(b) Providing a smooth transitionsmooth transition from 
passband to stopband in the magnitude 
specifications
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4. Fixed Window Functions

�� Symmetric windowSymmetric window functions are used in FIR 
filter design in order to guarantee the linear linear 
phase phase response

� Smoother behavior 
cutoff frequency is 
obtained by using 
different cosinecosine--type type 
functions instead of 
the rectangular 
window 0 5 10 15 20 25
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4. Fixed Window Functions

� Various window functions: (risedrised cosinecosine)

HannHann::

Hamming:Hamming:

Blackman:Blackman:
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4. Fixed Window Functions
� Plots of magnitudes of the DTFTs of these 

windows for M = 25 are shown below:

0 0.5 1 1.5 2 2.5 3
-100

-80

-60

-40

-20

0

Normalized Frequency

G
ai

n 
in

 d
B

Rectangular Window

0 0.5 1 1.5 2 2.5 3
-100

-80

-60

-40

-20

0

Normalized Frequency

G
ai

n 
in

 d
B

Hann Window

0 0.5 1 1.5 2 2.5 3
-100

-80

-60

-40

-20

0

Normalized Frequency

G
ai

n 
in

 d
B

Blackman Window

0 0.5 1 1.5 2 2.5 3
-100

-80

-60

-40

-20

0

Normalized Frequency

G
ai

n 
in

 d
B

Hamming Window

21

4. Fixed Window Functions

� Magnitude spectrum of each window 
characterized by a main lobe centered at =0
followed by a series of sidelobes with 
decreasing amplitudes

� Parameters predicting the performance of a 
window in filter design are:

1) Main lobe width1) Main lobe width
2) Relative 2) Relative sidelobesidelobe levellevel
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4. Fixed Window Functions

�� Main lobe width Main lobe width -- �ML given by the distance 
between zero crossings on both sides of main 
lobe

�� Relative Relative sidelobesidelobe level level -- Asl given by the 
difference in dB between amplitudes of largest 
sidelobe and main lobe
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4. Fixed Window Functions

LowpassLowpass Filter Design by WindowingFilter Design by Windowing
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4. Fixed Window Functions

� Observe
� Thus 
� Passband and stopband ripples are the same
� Distance between the locations of the 

maximum passband deviation and minimum 
stopband value �ML

� Width of transition band  � = s p<�ML
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4. Fixed Window Functions

� To ensure a fast transitionfast transition from passband to 
stopband, window should have a very small small 
mainmain--lobe widthlobe width

� To reduce the passband and stopband rippleripple , 
the area under the the area under the sidelobessidelobes should be very 
small

� Unfortunately, these two requirements are 
contradictorycontradictory
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4. Fixed Window Functions

� In the case of rectangular, Hann, Hamming, 
and Blackman windows, the value of ripplevalue of ripple
does not depend on filter length or cutoff 
frequency c, and is essentially constantis essentially constant

� In addition,   � c/M
where c is a constant for most practical 
purposes
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4. Fixed Window Functions

Table 10.2: Properties of fixed window functions 
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4. Fixed Window Functions

Filter Design Steps Filter Design Steps --

Set   

Choose window based on specified

Estimate M using    � c/M

( ) / 2c p s� � �� �

s)
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4. Fixed Window Functions

� Lowpass filter of length 51 and / 2c� ��

�� An increase in the main lobe width is associated with an An increase in the main lobe width is associated with an 
increase in the width of the transition bandincrease in the width of the transition band

�� A decrease in the A decrease in the sidelobesidelobe amplitude results in an increase in amplitude results in an increase in 
thethe stopbandstopband attenuationattenuation
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5. Adjustable Window Functions

�� DolphDolph--ChebyshevChebyshev Window Window ––

where

and
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5. Adjustable Window Functions

� Dolph-Chebyshev window can be designed 
with any specified relative sidelobe level 
while the main lobe width adjusted by 
choosing length appropriately

� Filter order is estimated using 
where       is the normalized transition 
bandwidth, e.g, for a lowpass filter
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5. Adjustable Window Functions

� Gain response of a Dolph-Chebyshev window 
of length 51 and relative sidelobe level of 50 
dB is shown below
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5. Adjustable Window Functions

Properties of Properties of DolphDolph--ChebyshevChebyshev window:window:

� All sidelobessidelobes are of equal height

� Stopband approximation error of filters 
designed have essentially equirippleequiripple behavior

� For a given window length, it has the smallest smallest 
main lobemain lobe width compared to other windows 
resulting in filters with the smallest transition smallest transition 
bandband
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5. Adjustable Window Functions

�� Kaiser Window Kaiser Window --

where    is an adjustable parameter and I0(u) is 
the modified zeroth-order Bessel function of 
the first kind:

� Note I0(u)>0 for u being real
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5. Adjustable Window Functions

� In practice

� controls the minimum stopband
attenuation of the windowed filter response

� is estimated using
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5. Adjustable Window Functions

� Filter order is estimated using

where       is the normalized transition 
bandwidth
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6. Impulse Responses of FIR Filters 
with a Smooth Transition

� First-order splinespline passband-to-stopband
transition
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6. Impulse Responses of FIR Filters 
with a Smooth Transition

� Pth-order spline passband-to-stopband
transition
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6. Impulse Responses of FIR Filters 
with a Smooth Transition

ExampleExample-- 0.45s� ��0.35p� ��


