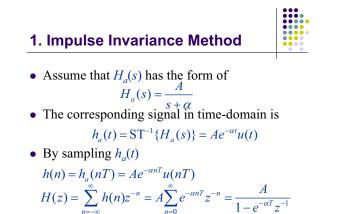


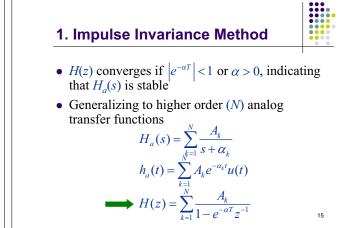
1. Impulse Invariance Method

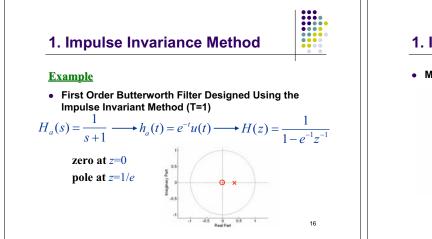
- Due to sampling the mapping is *many-to-one*
- The strips of length 2 π/T are all mapped onto the unit circle

13

- Only if $h_a(t)$ is a band-limited signal, no alias will occur
- Hence, this method is not suitable for *highpass* and *bandstop* filters design

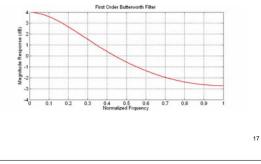






1. Impulse Invariance Method

Magnitude Response



2. Bilinear Transform Method

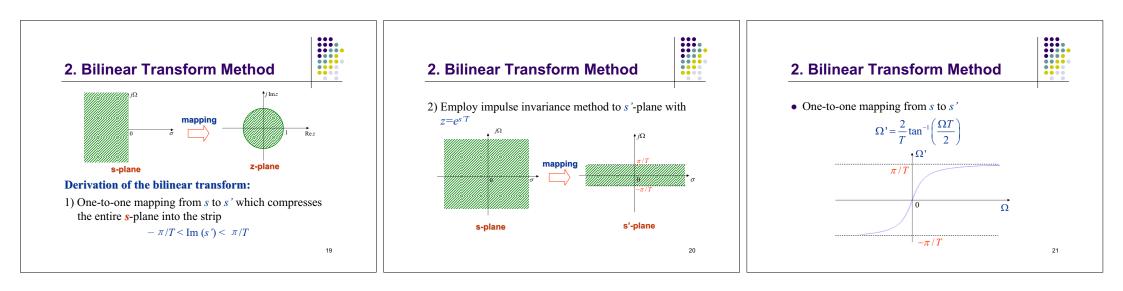
Definition -

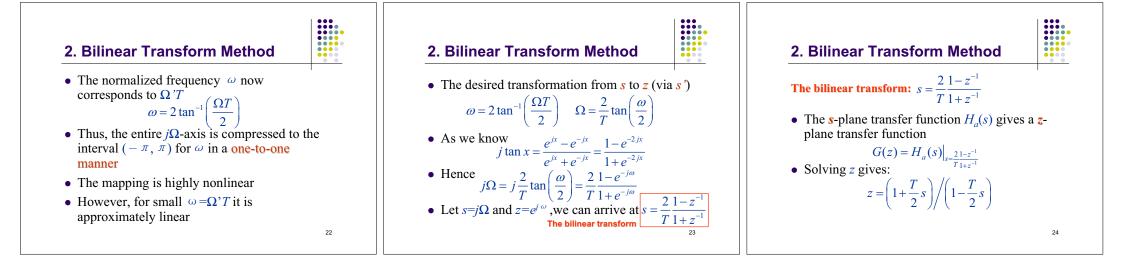
• To avoid aliasing, the mapping from *s*-plane to *z*-plane should be one-to-one, i.e., a single point in the *s*-plane should be mapped to a unique point in the *z*-plane and vice versa

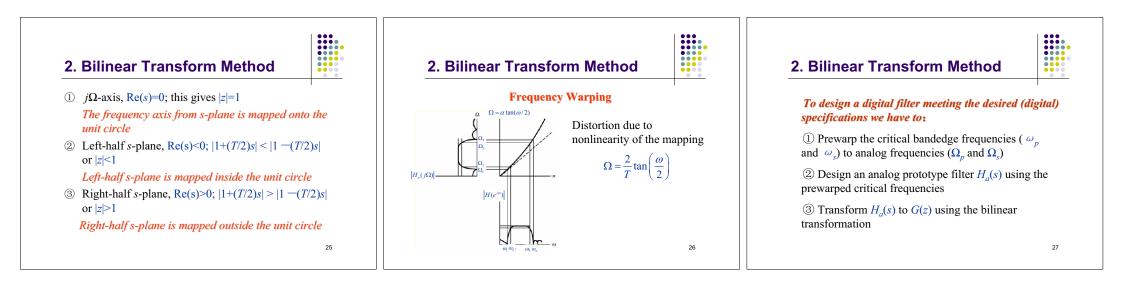
1) The entire $j\Omega$ -axis should be mapped onto the unit circle

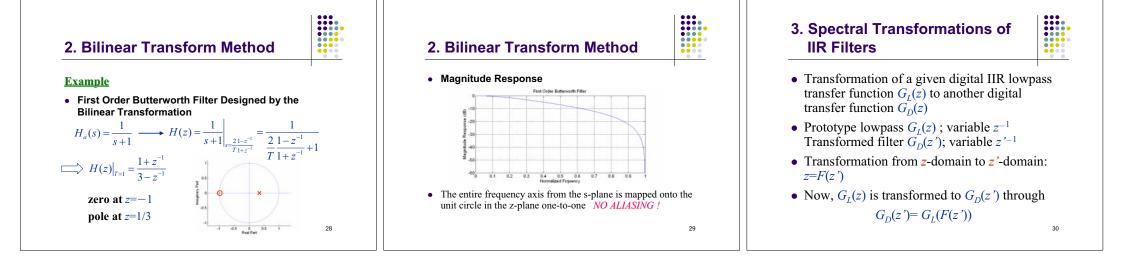
2) The entire left-half s-plane should be mapped inside the unit circle

18



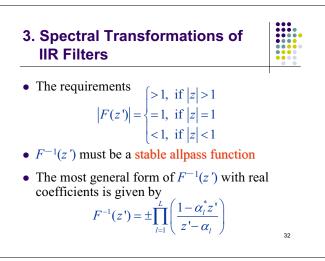






3. Spectral Transformations of IIR Filters

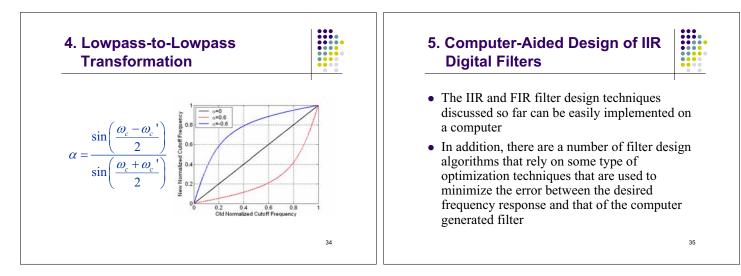
- To transform a rational $G_L(z)$ into a rational $G_D(z')$, F(z') must be a rational function in z'
- The inside of the *z*-plane should be mapped into the inside of *z*'-plane
- In order to map a lowpass magnitude response to one of the four basic types of magnitude responses, points on the unit circle in *z*-plane should be mapped onto the unit circle in *z*'plane



4. Lowpass-to-Lowpass Transformation • $G_L(z)$ with cutoff frequency ω_c is transformed to another lowpass filter $G_D(z')$ with ω'_c $z^{-1} = F^{-1}(z') = \frac{1 - \alpha z'}{z' - \alpha}$

 $\tan\left(\frac{\omega}{2}\right) = \frac{1+\alpha}{1-\alpha} \tan\left(\frac{\omega'}{2}\right)$

with α real $e^{-j\omega} = \frac{e^{-j\omega'} - \alpha}{1 - \alpha e^{-j\omega'}}$



31

5. Computer-Aided Design of IIR Digital Filters

- Basic idea behind the computer-based is iterative technique
- Let $H(e^{j\omega})$ denote the frequency response of the digital filter H(z) to be designed approximating the desired frequency response $D(e^{j\omega})$, given as a piecewise linear function of ω , in some sense

36

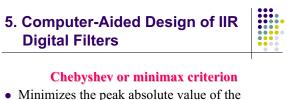
33

Objective -- Determine iteratively the coefficients of H(z) so that the difference between $D(e^{j\omega})$ and $H(e^{j\omega})$ over closed subintervals of $0 \le \omega \le \pi$ is minimized

• This difference usually specified as a weighted error function

 $E(\omega) = W(e^{j\omega}) \left[H(e^{j\omega}) - D(e^{j\omega}) \right]$

where $W(e^{j\omega})$ is some user-specified weighting function



weighted error: $\varepsilon = \max_{\omega \in \mathbf{R}} \left| E(\omega) \right|$

where R is the set of disjoint frequency bands in the range $0 \le \omega \le \pi$, on which $D(e^{j\omega})$ is defined

38

• For example, for a lowpass filter design, R is the disjoint union of $(0, \omega_n)$ and (ω_s, π)

Least-p Criterion

• Minimizes

$$\varepsilon = \int_{\omega \in \mathbf{R}} \left| W(e^{j\omega}) \left[H(e^{j\omega}) - D(e^{j\omega}) \right] \right|^{P} d\omega$$

over the specified frequency range R with p a positive integer

- *p*=2 yields the least-squares criterion
- As $p \rightarrow \infty$, the least *p*-th solution approaches the minimax solution

39

5. Computer-Aided Design of IIR **Digital Filters**

• In practice, the *p*-th power error measure is approximated as

 $\varepsilon = \sum_{i=1}^{K} \left\{ W(e^{j\omega_i}) \left[H(e^{j\omega_i}) - D(e^{j\omega_i}) \right] \right\}^{P}$

where $\omega_i^{(-)}, 1 \le i \le K$, is a suitably chosen dense grid of digital angular frequencies

- For linear-phase FIR filter design, $H(e^{j\omega})$ and $D(e^{j\omega})$ are zero-phase frequency responses
- For IIR filter design, $H(e^{j\omega})$ and $D(e^{j\omega})$ are magnitude functions

37

40