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IIR Digital Filter Design
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IIR Digital Filter Design oo

lIR Digital Filter Design

» Impulse Invariance Method
» Bilinear Transform Method

» Spectral Transformations of IIR Filters

» Lowpass-to-Lowpass Transformation

1. Impulse Invariance Method

Definition —

The impulse response of the digital filter is
identical to the impulse response of an analog

prototype filter at sampling instants

e Analog transfer function: H (s)
h,(6)=ST ™ {H(5)}

e The impulse response of the digital filter is:

h(n)=h (nT), t=0,1,2,...

1. Impulse Invariance Method

The relation between ZT and ST
H (s)= j* h (t)edt

h()=>" h,(nT)3(t—nT)

n=—0m

H (s)= ji h(t)e™dt = jz i h,(nT)5(t —nT)e™ dt
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1. Impulse Invariance Method

The relation between ZT and ST
H(z)=Y h(n)z" = [ (s)=> hnT)e""

®©
n=-o n=-w

h(n)=h (nT), t=0,1,2,...

H()|_.. =H(e")=H,(s)

1
z=¢", s=—Inz
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1. Impulse Invariance Method :

The relation between ZT and ST
H,(Q) = H,(5)|_
5=jQ
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1. Impulse Invariance Method

e The digital filter transfer function H(z) is:
H(z) = ZT(h(n)) = ZT(h,(nT))

:l H S_j27zk
T .=, T

s=—Inz
T

e The frequency responses are obtained by
substituting z=¢/ “and s=/Q :

. 2k
He) =~ H | jo- j=
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1. Impulse Invariance Method

According to the sampling theorem H(e/ ©) is
a periodic version of H ( jQ)

T

Transformation from s-plane to z-plane: z = ¢°

_ A . ’ T_jQyT
e Fors= 0 +Q): z=re/” =7 ™, |z|=r:e

oo T

Mapping relations

1 or=e" =0, +2kx

11 el = eJﬂoT >
= T{QU +2k7[}
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1. Impulse Invariance Method :

e Mapping I: 7 = ¢”" means

A point on the frequency axis in the s-plane ( 0 =0)
is mapped to a point on the unit circle in the z-plane

A point on the left-half s-plane with ¢ ;<0 is mapped
to z-plane with |z|<I, i.e., the left-half s-plane is
mapped inside the unit circle

Similarly, A point on the right-half s-plane with

0 >0 is mapped to z-plane with |z>1, i.e., the right-
half s-plane is mapped outside the unit circle

1. Impulse Invariance Method

e Thus, the impulse invariance mapping has the

desired properties:
o Frequency axis jQ corresponds to unit circle
o Stability is preserved

1. Impulse Invariance Method

2
e Mapping II: a)—QT+2k7z'_T{Q+I;ﬂ-}




1. Impulse Invariance Method

\

e Due to sampling the mapping is many-to-one

e The strips of length 2 77/T are all mapped onto
the unit circle

e Only if i, (7) is a band-limited signal, no alias
will occur

e Hence, this method is not suitable for
highpass and bandstop filters design

1. Impulse Invariance Method

e Assume that H (s) has the form of
H,(s)=—-
. L Sta . .
e The corresponding signal in time-domain is
h,(t)=ST'{H (s)} = Ae “u(t)
e By sampling /,(7)
h(n)=h,(nT)= Ae " u(nT)
0 0 A

H(Z) — Z h(}’l)Zin — Azefalﬂ"zfn — W
n=—o0 n=0 -
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1. Impulse Invariance Method

e H(z) converges if |e”” <1 or a > 0, indicating

that H (s) is stable

e Generalizing to higher order (V) analog
transfer functions

N A
H,(s)=) —*
sty
h, (1) = ZA,(e’a*'u(l)
el 4
) /(z)=
(@) ,(z:; | 15
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1. Impulse Invariance Method :
I
Example
e First Order Butterworth Filter Designed Using the
Impulse Invariant Method (T=1)
1
H,(s)=— —h()=€¢u(t) — H(z) =———
s+1 1—e'z7!
zero at z=0 N
pole at z=1/e ‘ 1 Ot

1. Impulse Invariance Method

o Magnitude Response
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2. Bilinear Transform Method

Definition —

e To avoid aliasing, the mapping from s-plane
to z-plane should be one-to-one, i.e., a single
point in the s-plane should be mapped to a
unique point in the z-plane and vice versa

1) The entire jQ-axis should be mapped onto
the unit circle

2) The entire left-half s-plane should be
mapped inside the unit circle




2. Bilinear Transform Method

2. Bilinear Transform Method :

2) Employ impulse invariance method to s -plane with

z=esT
jQ

2. Bilinear Transform Method

e One-to-one mapping from s to s’

Q' =£tan” (gj
T

W 2
_ o
s-plane z-plane % w T -
Derivation of the bilinear transform: 7 7
1) One-to-one mapping from s to s * which compresses % 0 o
the entire s-plane into the strip ’
—T<Im(s)< /T splane plene
/T
19 20 21
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2. Bilinear Transform Method e 2. Bilinear Transform Method e 2. Bilinear Transform Method e

\
e The normalized frequency @ now
corresponds to QT
®=2tan"'| ——
. . 2
e Thus, the entire jQ-axis is compressed to the
interval (— 77, 7) for @ in a one-to-one
manner
e The mapping is highly nonlinear

e However, for small @ =Q’T it is
approximately linear
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e The desired transformation from s to z (via s”)

®=2tan"’' Qr ngtan @
2 T 2

As we know
jtanx =

j2 — 2 ja
e/"_e Jx _l_e Jx

jx

e’ e
w 21-¢7”

Clte

Hence

2
jQ:j—tan(—j———jm
T 2 Tl+e _21_271

Let s=/Q and z=¢/ “ ,we can arrive at|s = —
-1
The bilinear transform Tl+z
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I

-1

The bilinear transform: s = z -z 1
Tl+z

o The s-plane transfer function  (s) gives a z-

plane transfer function
G(2)=H,(s)] 21"
e Solving z gives: T

Tt

1+z-

24
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2. Bilinear Transform Method : 2. Bilinear Transform Method : 2. Bilinear Transform Method :
I I I
@ jQ-axis, Re(s)=0; this gives |1 Frequency Warping To design a digital filter meeting the desired (digital)
The frequency axis from s-plane is mapped onto the o Q=atn@/2) specifications we have to:
unit circle Distortion due to
_ ~ . _ N ".~" nonlinearity of the mapping (© Prewarp the critical bandedge frequencies ( @ »
@ i‘:gg?lfs plane, Re(s)<0; [1H(7/2)s| < |1 —~(7/2)s| ' / ) o and @) to analog frequencies (€2, and Q)
p—— Q="tan (—) . .
Left-half s-plane is mapped inside the unit circle lF, i) ‘ T 2 @ Design an e.lnalog prototype filter /7,(s) using the
® Right-half s-plane, Re(s)>0; [1+(772)s| > |1 —(T12)s| e prewarped critical frequencies
or [z[>1 ® Transform H,(s) to G(z) using the bilinear
Right-half s-plane is mapped outside the unit circle transformation
[~ o
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2. Bilinear Transform Method : 2. Bilinear Transform Method : :

Example

e First Order Butterworth Filter Designed by the
Bilinear Transformation

1 1 1
H =—— —— H(z)=— =
(5) s+1 ) s+l 2t 21-z7"
Tl — 71+l
142" ) T1+z
= 1—1(2)‘77':3—27I L
zero at z=—1 ‘ ¢ *

pole at z=1/3
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e Magnitude Response

Fant Orar Busermorth Filter
e S 2 . B =

WMagneude Raspsnse (d6)
£ 8 3

&

oy 0z o3 04 08 08 07 08 0% 1
Normatized Frausncy

e The entire frequency axis from the s-plane is mapped onto the
unit circle in the z-plane one-to-one  NO ALIASING !
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IIR Filters

\
e Transformation of a given digital IIR lowpass
transfer function G,(z) to another digital
transfer function G(z)

e Prototype lowpass G,(z) ; variable z~!
Transformed filter G,(z"); variable z !

e Transformation from z-domain to z -domain:

z=F(z")

e Now, G,(z) is transformed to G (z") through

Gp(z)= G (F(2)

30




3. Spectral Transformations of
lIR Filters

3. Spectral Transformations of
lIR Filters

4. Lowpass-to-Lowpass
Transformation

e To transform a rational G,(z) into a rational
G,(z"), F(z’) must be a rational function in z’

e The inside of the z-plane should be mapped
into the inside of z -plane

e In order to map a lowpass magnitude response
to one of the four basic types of magnitude
responses, points on the unit circle in z-plane
should be mapped onto the unit circle in z -
plane
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e The requirements -1, if\z\ o1

={=1, if |z =1
<1, if |z]<1

[F(z)

e F!(z’) must be a stable allpass function

e The most general form of F~!(z’) with real
coefficients is given by
L At
F(z") = +H(1 %2 ]

'
1=1 z = C(,
32

o (G,(z) with cutoff frequency @, is transformed
to another lowpass filter G(z’) with @,
z'=F'(z") = 71_'062
) z'-«a
with a real e

—Jjo _

—-a

—jo'

1—ae
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4. Lowpass-to-Lowpass
Transformation

5. Computer-Aided Design of IIR
Digital Filters

5. Computer-Aided Design of IIR
Digital Filters

08}

(] 0.2 04 06 08 1
Old Nommalized Cutolf Frequency
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e The IIR and FIR filter design techniques
discussed so far can be easily implemented on
a computer

e In addition, there are a number of filter design
algorithms that rely on some type of
optimization techniques that are used to
minimize the error between the desired
frequency response and that of the computer
generated filter

35

e Basic idea behind the computer-based is
iterative technique

e Let [ (e’”) denote the frequency response of
the digital filter H(z) to be designed
approximating the desired frequency
response D(e’”), given as a piecewise linear
function of @ , in some sense

36




5. Computer-Aided Design of IR | $3:¢ 5. Computer-Aided Design of IR | $3:¢ 5. Computer-Aided Design of IR | $3:¢
Digital Filters H Digital Filters H Digital Filters H
\ \ \
Objective - Determine iteratively the Chebyshev or minimax criterion Least-p Criterion
coefficients of //(z) so th%t the difference e Minimizes the peak absolute value of the e Minimizes
between D(e’”)and H(e’”) over closed weighted error: o o PR
subintervals of 0 <@ < 7 is minimized & = max |E()| &= I wer|V (€ )[H(e )—D(e )J‘ do
weR
e This difference usually specified as a where R is the set of disjoint frequency bands over j[he §peciﬁed frequency range R with p a
weighted error function in the range 0 < w <z , on which D(e’”)is positive integer
E(w)=W(e W)[H (e"”)—D(e W)] defined e p=2 yields the least-squares criterion
where W (e’”) is some user-specified e For example, for a lowpass filter design, R is e As p— <o, the least p-th solution approaches
weighting function the disjoint union of (0, ®,) and (@,,7) the minimax solution
37 38 39
5. Computer-Aided Design of IR | $3:¢

Digital Filters

. N
e In practice, the p-th power error measure is

approximated as

£= ZK: {w(e")[ H(e"™)-D(e" )]}P

where a),.’ ,1<i< K , is a suitably chosen
dense grid of digital angular frequencies

e For linear-phase FIR filter design, H(e’”)and
D(e’”) are zero-phase frequency responses

e For IIR filter design, H (') and D(e’”) are

magnitude functions o




