
Chapter 8

Digital Filter Structures

Digital Filter Structures

�� Block Diagram RepresentationBlock Diagram Representation
�� Equivalent StructuresEquivalent Structures
�� Basic FIR Digital Filter StructuresBasic FIR Digital Filter Structures
�� Basic IIR Digital Filter StructuresBasic IIR Digital Filter Structures

1. Block Diagram Representation

� Input-output relation of an LTI system can be 
realized using different computational 
algorithms

� Basic realization forms of FIR and IIR digital 
filters are considered

� Mitra’s book covers also various more 
sophisticated realizations of digital filters, e.g. 
lattice structures, allpass sections, and state 
space structures, not discussed in this course

1. Block Diagram Representation

� The convolution sumconvolution sum description of an LTI 
discrete-time system can, in principle, be used 
to implement the system.

� For an IIR finite-dimensional system, this 
approach is not practical as here the impulse impulse 
response is of infinite lengthresponse is of infinite length.

� However, a direct implementation of the IIR 
finite-dimensional system is practical

1. Block Diagram Representation

� In the time domain, the input-output relations 
of an LTI digital filter is given by the 
convolution sum or, by the linear constant linear constant 
coefficient difference equationcoefficient difference equation

� For the implementation of an LTI digital filter, 
the input-output relationship must be 
described by a validvalid computational algorithm.

1. Block Diagram Representation

� To illustrate what we mean by a 
computational algorithm, consider the causal causal 
firstfirst--order LTI digital filterorder LTI digital filter shown below
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1. Block Diagram Representation

� Using the above equation we can compute y(n)
for n 0 knowing the initial condition y( 1)
and the input x(n) for n 1

� We can continue this calculation for any value 
of n we desire (by iterative computationby iterative computation)
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1.1 Basic Building Blocks

� The computational algorithm of an LTI digital 
filter can be conveniently represented in block block 
diagramdiagram form using the basic building blocksbasic building blocks
shown below
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� The corresponding signal flow chartssignal flow charts are 
shown on the right-hand side
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1.1 Basic Building Blocks

Advantages of block diagram/signal flow Advantages of block diagram/signal flow 
chart representationchart representation
Easy to write down the computational 
algorithm by inspection.
Easy to analyze the block diagram to 
determine the explicit relation between the 
output and input.

1.1 Basic Building Blocks 1.1 Basic Building Blocks

Easy to manipulate a block diagram to derive 
other “equivalentequivalent” block diagrams yielding 
different computational algorithms.
Easy to determine the hardware requirements.
Easier to develop block diagram 
representations from the transfer function 
directly.

1.2 Analysis of Block Diagrams

Steps of Analyzing Block DiagramsSteps of Analyzing Block Diagrams
� Carried out by writing down the expressions 

for the output signals of each adder as a sum 
of its input signals, and developing a set of 
equations relating the filter input and output 
signals in terms of all internal signals

� Eliminating the unwanted internal variables 
then results in the expression for the output 
signal as a function of the input signal and the 
filter parameters that are the multiplier 
coefficients



1.2 Analysis of Block Diagrams

ExampleExample

� Consider the single-loop feedback structure 
shown below

The output E(z) of the adder is

But from the figure
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1.2 Analysis of Block Diagrams

� Eliminating E(z) from the previous two 
equations we arrive at

which leads to
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1.3 Canonic and Noncanonic Structures

� A digital filter structure is said to be canoniccanonic
if the number of delays in the block diagram 
representation is equal to the order of the 
transfer function

� Otherwise, it is a noncanonicnoncanonic structure
� The structure shown in the next slide is 

noncanonic as it employs two delays to 
realize a first-order difference equation

1.3 Canonic and Noncanonic Structures
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2. Equivalent Structures

� Two digital filter structures are defined to be 
equivalentequivalent if they have the same transfer 
function

� We describe next a number of methods for the 
generation of equivalent structures

� However, a fairly simple way to generate an 
equivalent structure from a given realization 
is via the transpose operationtranspose operation

2. Equivalent Structures

Transpose OperationTranspose Operation
(1) Reverse all paths
(2) Replace pick-off nodes by adders, and vice 

versa
(3) Interchange the input and output nodes
� All other methods for developing equivalent 

structures are based on a specific algorithm 
for each structure



2. Equivalent Structures

� There are literally an infinite number of 
equivalent structures realizing the same 
transfer function

� It is thus impossible to develop all equivalent 
realizations

� In this course we restrict our attention to a 
discussion of some commonly used structures

2. Equivalent Structures

� Under infiniteinfinite precisionprecision arithmetic any given 
realization of a digital filter behaves 
identically to any other equivalent structure

� However, in practice, due to the finite finite 
wordlengthwordlength limitationslimitations, a specific realization 
behaves totally differently from its other 
equivalent realizations

2. Equivalent Structures

� Hence, it is important to choose a structure 
that has the least quantization effectsleast quantization effects when 
implemented using finite precision arithmeticfinite precision arithmetic

� One way to arrive at such a structure is to 
determine a large number of equivalent 
structures, analyze the finite finite wordlengthwordlength
effectseffects in each case, and select the one 
showing the least effects

2. Equivalent Structures

� In certain cases, it is possible to develop a 
structure that by construction has the least 
quantization effects

� We defer the review of these structures after a 
discussion of the analysis of quantization 
effects (not included in Kuo’s revised book)

� Here, we review some simple realizations that 
in many applications are quite adequate

3. FIR Digital Filter Structures

�� Direct FormDirect Form
�� Cascade FormCascade Form
�� LinearLinear--phase Structurephase Structure

3. FIR Digital Filter Structures

� A causal FIR filter of order N 1 is 
characterized by a transfer function H(z)
given by

which is a polynomial in
� In the time-domain the input-output relation 

of the above FIR filter is given by
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3.1 Direct Form FIR Digital Filter 
Structures

� An FIR filter of order N 1is characterized by 
N coefficients and, in general, require N
multipliers and N 1 two-input adders

� Structures in which the multiplier coefficients 
are precisely the coefficients of the transfer 
function are called direct formdirect form structures

3.1 Direct Form FIR Digital Filter 
Structures

� A direct form realization of an FIR filter can 
be readily developed from the convolution 
sum description as indicated below for N =5
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3.1 Direct Form FIR Digital Filter 
Structures

� An analysis of this structure yields

which is precisely of the form of the 
convolution sum description

� The direct form structure shown on the 
previous slide is also known as a tapped delay tapped delay 
lineline or a transversaltransversal filterfilter.
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3.1 Direct Form FIR Digital Filter 
Structures
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General FormGeneral Form

3.2 Cascade Form FIR Digital Filter 
Structures

� A higher-order FIR transfer function can also 
be realized as a cascade of second order FIR cascade of second order FIR 
sectionssections and possibly a firstfirst--order sectionorder section

� To this end we express H(z) as

where if N is even, and
if N is odd, with
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3.2 Cascade Form FIR Digital Filter 
Structures

� A cascade realization for N = 6 is shown below
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3.3 Linear-Phase FIR Digital Filter 
Structures

� Linear-phase FIR filter of length N is 
characterized by the symmetric impulse symmetric impulse 
responseresponse

� An antisymmetricantisymmetric impulse responseimpulse response condition 

results in a constant group delay and “linear-
phase” property

�� Symmetry of the impulse response Symmetry of the impulse response 
coefficients can be used to reduce the number coefficients can be used to reduce the number 
of multiplicationsof multiplications
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3.3 Linear-Phase FIR Digital Filter 
Structures

� Length N is odd ( N=7 )
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3.3 Linear-Phase FIR Digital Filter 
Structures
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3.3 Linear-Phase FIR Digital Filter 
Structures

� Length N is even ( N=8)
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3.3 Linear-Phase FIR Digital Filter 
Structures
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3.3 Linear-Phase FIR Digital Filter 
Structures
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4.  IIR Digital Filter Structures

�� Direct FormDirect Form
�� Cascade FormCascade Form
�� Parallel FormParallel Form

4.1 Direct Form IIR Digital Filter 
Structures

� The causal IIR digital filters we are concerned 
with in this course are characterized by a real 
rational transfer function of      or, 
equivalently by a constant coefficient 
difference equation.

� From the difference equation representation, it 
can be seen that the realization of the causal 
IIR digital filters requires some form of 
feedbackfeedback.

1z�

4.1 Direct Form IIR Digital Filter 
Structures

�� Direct formsDirect forms ---- Coefficients are directly the
transfer function coefficients

� Consider for simplicity a 3rd-order IIR filter 
with a transfer function (assuming          )

� We can implement H(z) as a cascade of two 
filter sections as shown below
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4.1 Direct Form IIR Digital Filter 
Structures

� where

� The filter section H1(z) can be seen to be an 
FIR filter and can be realized as shown below
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4.1 Direct Form IIR Digital Filter 
Structures

� The time-domain representation of H2(z) is 
given by

� Realization of H2(z) follows from the above 
equation and is shown below
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4.1 Direct Form IIR Digital Filter 
Structures

� Considering the basic cascade realization 
results in Direct form Direct form II ::
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4.1 Direct Form IIR Digital Filter 
Structures

� Changing the order of blocks in cascade 
results in Direct form Direct form IIII ::

1 1( ) ( ) ( )
( ) ( )

H z P z P z
D z D z

� � � �

zeroszerospolespoles

0p
( )x n

1d�
1�z

2d�
1�z

3d�
1�z

1p
1�z

2p
1�z

3p
1�z

1

( )y n

1'

2

3

2'

3'

4.1 Direct Form IIR Digital Filter 
Structures

� Observe in the direct form structure shown 
below, the signal variable at nodes       and       
are the same, and hence the two top delays 
can be shared

� Likewise, the signal variables at nodes       
and      are the same, permitting the sharing of 
the middle two delays

� Following the same argument, the bottom two 
delays can be shared
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4.1 Direct Form IIR Digital Filter 
Structures

� Sharing of all delays reduces the total number 
of delays to 3 resulting in a canoniccanonic
realization shown below along with its 
transposetranspose structurestructure.
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4.2 Cascade Realizations

� By expressing the numerator and the 
denominator polynomials of the transfer 
function as a product of polynomials of lower 
degree, a digital filter can be realized as a 
cascade of low-order filter sections (often often sossos)

� Consider, for example, H(z)=P(z)/D(z)
expressed as

1 2 3

1 2 3

( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

P z P z P zP zH z
D z D z D z D z

� �

4.2 Cascade Realizations

� Examples of cascade realizations obtained by 
different pole-zero pairings are shown below
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4.2 Cascade Realizations

� There are altogether a total of 36           
different cascade realizations of

based on pole-zero-pairings and ordering

� Due to finite wordlength effects, each such 
cascade realization behaves differently from 
Others
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4.2 Cascade Realizations
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4.2 Cascade Realizations
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� Usually, the polynomials are factored into a 
product of 1st-order and 2nd-order (sos) 
polynomials:

for a first-order factor
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4.2 Cascade Realizations

� Realizing complex conjugate poles and zeros 
with second order blocks results in real 
coefficients

ExampleExample
� Third order transfer function
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4.2 Cascade Realizations

� One possible realization is shown below

� General structure:
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4.3 Parallel Realizations

� Parallel realizations are obtained by making 
use of the partial fraction expansionpartial fraction expansion of the 
transfer function
Parallel formParallel form I:I:

Parallel formParallel form II:II:
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4.3 Parallel Realizations

� The two basic parallel realizations of a 3rd 
order IIR transfer function are shown below
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4.3 Parallel Realizations

� General structure:

� Easy to realize:
No choices in section ordering and
No choices in pole and zero pairing
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HN/2(z)
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4.3 Parallel Realizations

ExampleExample

� A partial-fraction expansion of

in      yields

� Likewise, a partial-fraction expansion of H(z)
in z yields
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4.3 Parallel Realizations

� Their realizations are shown below
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