

# 1. Block Diagram Representation

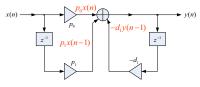
- The convolution sum description of an LTI discrete-time system can, in principle, be used to implement the system.
- For an IIR finite-dimensional system, this approach is not practical as here the impulse response is of infinite length.
- However, a direct implementation of the IIR finite-dimensional system is practical

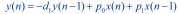
## 1. Block Diagram Representation

- In the time domain, the input-output relations of an LTI digital filter is given by the convolution sum or, by the linear constant coefficient difference equation
- For the implementation of an LTI digital filter, the input-output relationship must be described by a valid computational algorithm.

### 1. Block Diagram Representation

• To illustrate what we mean by a computational algorithm, consider the causal first-order LTI digital filter shown below





### 1. Block Diagram Representation

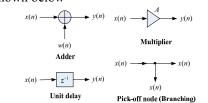
• Using the above equation we can compute y(n) for  $n \ge 0$  knowing the initial condition y(-1) and the input x(n) for  $n \ge -1$ 

 $y(0) = -d_1y(-1) + p_0x(0) + p_1x(-1)$   $y(1) = -d_1y(0) + p_0x(1) + p_1x(0)$  $y(2) = -d_1y(1) + p_0x(2) + p_1x(1)$ 

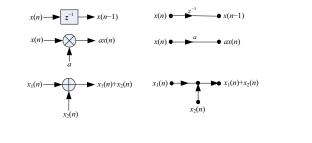
• We can continue this calculation for any value of *n* we desire (by iterative computation)

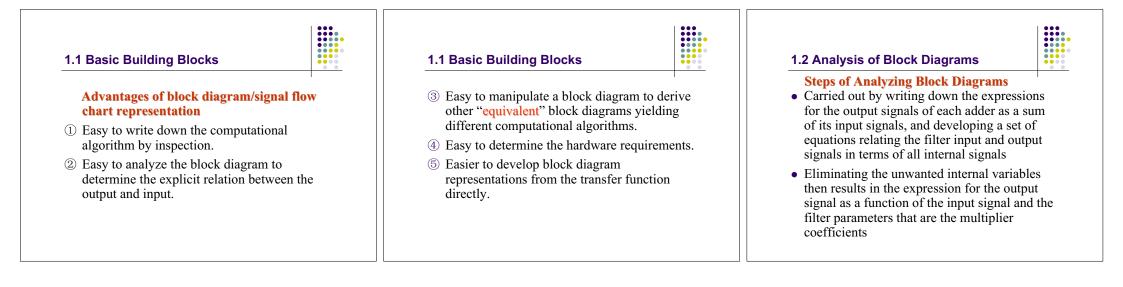
### 1.1 Basic Building Blocks

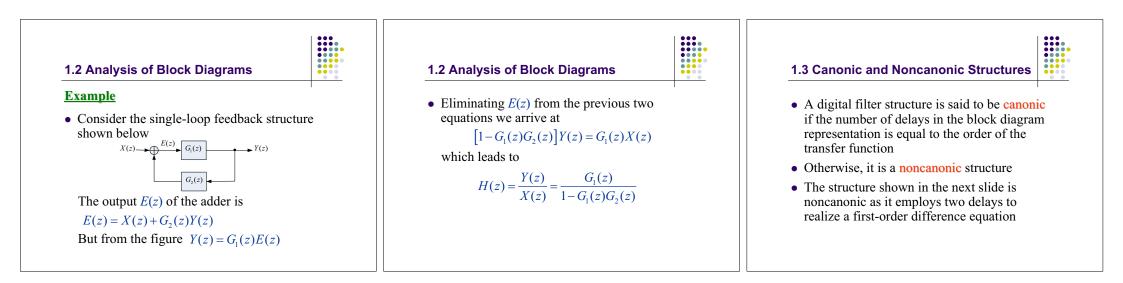
• The computational algorithm of an LTI digital filter can be conveniently represented in block diagram form using the basic building blocks shown below

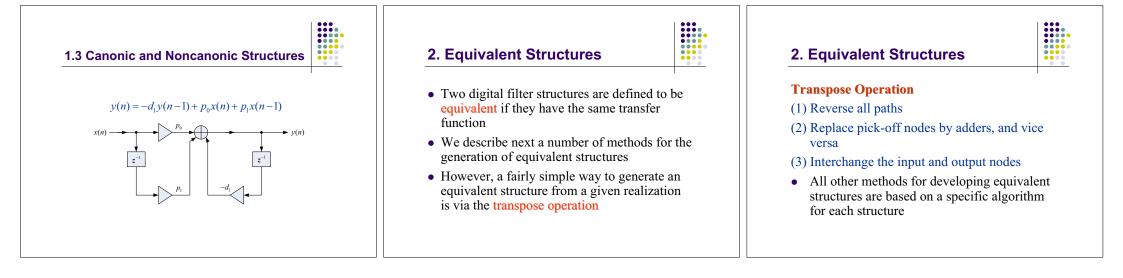


# 1.1 Basic Building Blocks The corresponding signal flow charts are shown on the right-hand side









### 2. Equivalent Structures

- There are literally an infinite number of equivalent structures realizing the same transfer function
- It is thus impossible to develop all equivalent realizations

• In this course we restrict our attention to a discussion of some commonly used structures

### 2. Equivalent Structures

• Under infinite precision arithmetic any given realization of a digital filter behaves identically to any other equivalent structure

• However, in practice, due to the finite wordlength limitations, a specific realization behaves totally differently from its other equivalent realizations

### 2. Equivalent Structures



- Hence, it is important to choose a structure that has the least quantization effects when implemented using finite precision arithmetic
- One way to arrive at such a structure is to determine a large number of equivalent structures, analyze the finite wordlength effects in each case, and select the one showing the least effects

### 2. Equivalent Structures

- In certain cases, it is possible to develop a structure that by construction has the least quantization effects
- We defer the review of these structures after a discussion of the analysis of quantization effects (not included in Kuo's revised book)
- Here, we review some simple realizations that in many applications are quite adequate

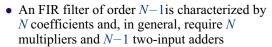
### 3. FIR Digital Filter Structures

- Direct Form
- Cascade Form
- Linear-phase Structure

# **3. FIR Digital Filter Structures** A causal FIR filter of order *N*−1 is characterized by a transfer function *H*(*z*) given by *H*(*z*) = ∑<sup>*N*-1</sup><sub>*k*=0</sub> *h*(*k*)*z<sup>-k</sup>* which is a polynomial in *z*<sup>-1</sup> In the time-domain the input-output relation of the above FIR filter is given by

 $y(n) = \sum_{k=1}^{N-1} h(k)x(n-k)$ 

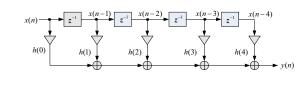
### 3.1 Direct Form FIR Digital Filter Structures



• Structures in which the multiplier coefficients are precisely the coefficients of the transfer function are called direct form structures

### 3.1 Direct Form FIR Digital Filter Structures

• A direct form realization of an FIR filter can be readily developed from the convolution sum description as indicated below for *N*=5



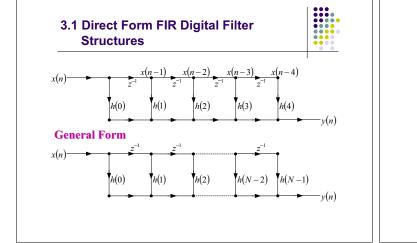
### 3.1 Direct Form FIR Digital Filter Structures



• An analysis of this structure yields y(n) = h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + h(3)x(n-3) + h(4)x(n-4)

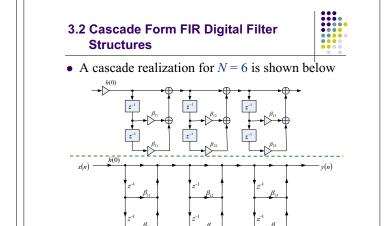
which is precisely of the form of the convolution sum description

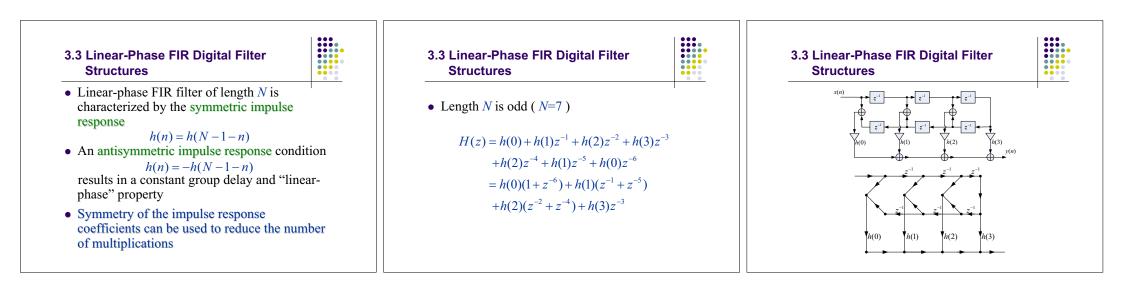
• The direct form structure shown on the previous slide is also known as a tapped delay line or a transversal filter.

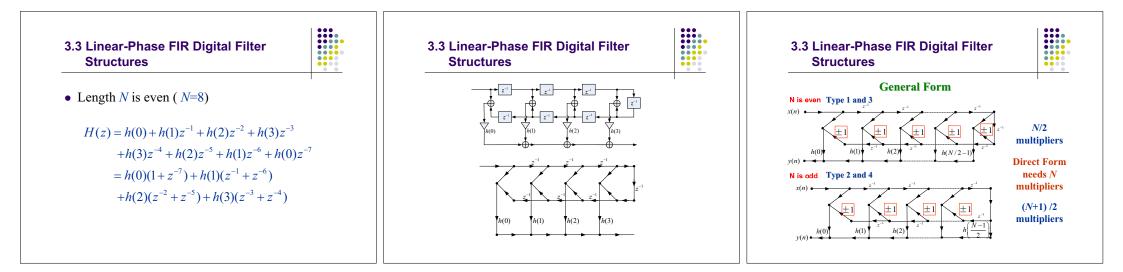


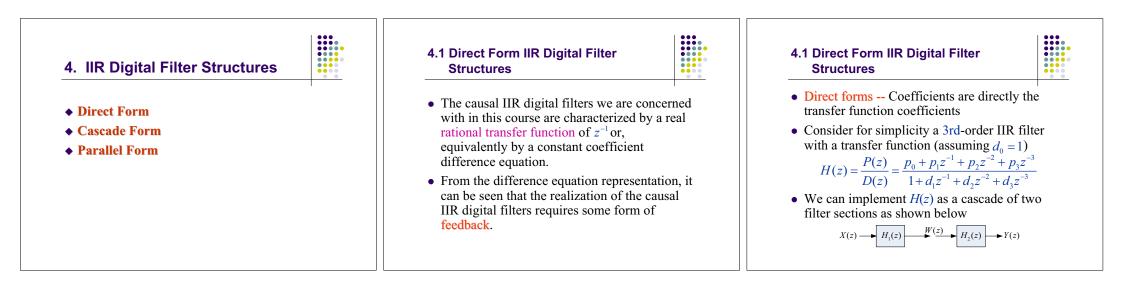
- 3.2 Cascade Form FIR Digital Filter Structures
- A higher-order FIR transfer function can also be realized as a cascade of second order FIR sections and possibly a first-order section
- To this end we express H(z) as

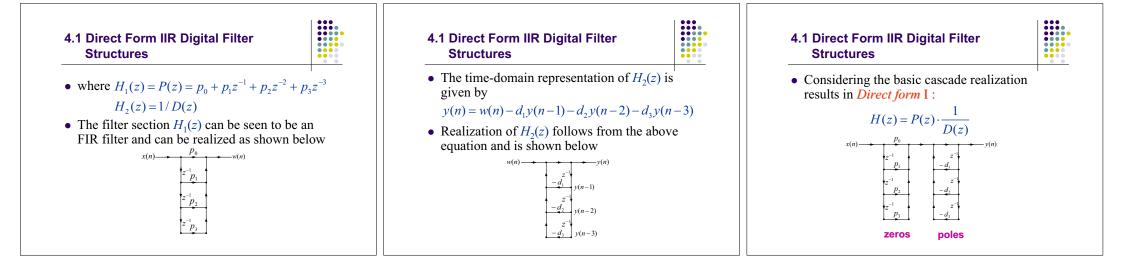
$$H(z) = h(0) \prod_{k=1} \left( 1 + \beta_{1k} z^{-1} + \beta_{2k} z^{-2} \right)$$
  
where  $k = N/2$  if N is even, and  $k = (N+1)/2$   
if N is odd, with  $\beta_{2k} = 0$ 

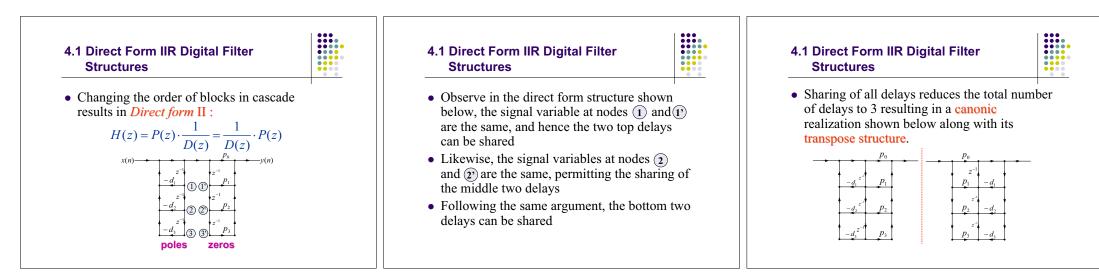














• By expressing the numerator and the denominator polynomials of the transfer function as a product of polynomials of lower degree, a digital filter can be realized as a cascade of low-order filter sections (often sos)

• Consider, for example, H(z) = P(z)/D(z)expressed as

```
H(z) = \frac{P(z)}{D(z)} = \frac{P_1(z)P_2(z)P_3(z)}{D_1(z)D_2(z)D_3(z)}
```

