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1. Simple FIR Digital Filters

� Later in the course we shall review various 
methods of designing frequency-selective 
filters satisfying prescribed specifications

� We now describe several lowlow--orderorder FIR and 
IIR digital filters with reasonable selective 
frequency responses that often are satisfactory 
in a number of applications
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1. Simple FIR Digital Filters

� FIR digital filters considered here have 
integer-valued impulse response coefficients 
(quantifiedquantified)

� These filters are employed in a number of 
practical applications, primarily because of 
their simplicitysimplicity, which makes them amenable 
to inexpensiveinexpensive hardwarehardware implementations
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1.1 Lowpass FIR Digital Filters

� The simplest lowpass FIR digital filter is the 
2-point movingmoving--averageaverage filter given by

� The above transfer function has a zero at z=
1 and a pole at z = 0

� Note that here the pole vector has a unity 
magnitude for all values of     , thus
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1.1 Lowpass FIR Digital Filters
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� As      increases from 0 
to     , the magnitude of 
the zero vector 
decreases from a value 
of 2, the diameter of the 
unit circle, to 0

� We can work out the 
frequency response
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1.1 Lowpass FIR Digital Filters
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1.1 Lowpass FIR Digital Filters

A cascade of 3 sectionsA cascade of 3 sections——an improved schemean improved scheme

1/ 2

Notice:

The cascade of first-
order sections yields 
a sharper magnitude 
response but at the 
expense of a 
decrease in the width 
of the passband
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1.1 Lowpass FIR Digital Filters

MM--order FIR order FIR LowpassLowpass (M(M--order movingorder moving--average) Filteraverage) Filter
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1.2 Highpass FIR Digital Filters

� The simplest highpass FIR filter is obtained 
from the simplest lowpass FIR filter by 
replacing z with z

� This results in
� Corresponding frequency response is given by
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1.2 Highpass FIR Digital Filters

� Improved highpass magnitude response can 
again be obtained by cascadingcascading several
sections of the first-order highpass filter

� Alternately, a higherhigher--orderorder highpass filter of 
the form

is obtained by replacing z with z in the 
transfer function of a moving average filter
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1.2 Highpass FIR Digital Filters

1/ 2
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2. Simple IIR Digital Filters

�� LowpassLowpass IIR Digital FiltersIIR Digital Filters

�� HighpassHighpass IIR Digital FiltersIIR Digital Filters

�� BandpassBandpass IIR Digital FiltersIIR Digital Filters

�� BandstopBandstop IIR Digital FiltersIIR Digital Filters

�� HigherHigher--order IIR Digital Filtersorder IIR Digital Filters
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2.1 Lowpass IIR Digital Filters

� A first-order causal lowpass IIR digital filter 
has a transfer function given by

where |a| < 1 for stability
� The above transfer function has a zero at z=

1 i.e., at            which is in the stopband
� has a real pole at
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2.1 Lowpass IIR Digital Filters

� As w increases from 0 to p, the magnitude 
of the zero vector decreases from a value of 2
to 0, whereas, for a positive value of a , the 
magnitude of the pole vector increases from a
value of          to

� The maximum value of the magnitude 
function is 1 at w = 0, and the minimum value 
is 0 at w = p
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2.2 Highpass IIR Digital Filters

� A first-order causal highpass IIR digital filter 
has a transfer function given by 

where |a| < 1 for stability
� The above transfer function has a zero at z=1

i.e., at w = 0 which is in the stopband
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2.2 Highpass IIR Digital Filters

� Magnitude and gain responses of            are 
shown below
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2.3 Bandpass IIR Digital Filters

� A 2nd-order bandpass digital transfer function 
is given by

� Its squared magnitude function is
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2.3 Bandpass IIR Digital Filters

� goes to zero at           and
� It assumes a maximum value of 1 at            , 

called the center frequencycenter frequency of the bandpass
filter, where

� The frequencies      and      where the squared 
magnitude becomes 1/2 are called the 33--dBdB
cutoff frequenciescutoff frequencies

� The difference between the two cutoff 
frequencies, is called the 33--dB bandwidthdB bandwidth
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2.3 Bandpass IIR Digital Filters

� The transfer function is a BR function if
and
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2.4 Bandstop IIR Digital Filters

� A 2nd-order bandstop digital filter has a 
transfer function given by

� The transfer function is a BR function if
and

� Its magnitude response is plotted in the next 
slide
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2.4 Bandstop IIR Digital Filters

� Here, the magnitude function takes the 
maximum value of 1 at w = 0 and w = p

� It goes to 0 at            , where     , called the 
notch frequencynotch frequency, is given by

� The digital transfer function is more 
commonly called a notch filternotch filter

� The difference between the two cutoff 
frequencies is called the 33--dB notch bandwidthdB notch bandwidth
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2.4 Bandstop IIR Digital Filters
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2.5 Higher-Order IIR Digital Filters

� By cascading the simple digital filters 
discussed so far, we can implement digital 
filters with sharper magnitude responses

� Consider a cascade of K first-order lowpass
sections characterized by the transfer function
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2.5 Higher-Order IIR Digital Filters

� The corresponding squared-magnitude 
function is given by

� To determine the relation between its 3-dB 
cutoff frequency     and the parameter    ,we set
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2.5 Higher-Order IIR Digital Filters

which when solved for a, yields for a 
stable            :

where
� It should be noted that the expression for a

given earlier reduces to
for K=1
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3. Comb Filters

� The simple filters discussed so far are 
characterized either by a singlesingle passbandpassband
and/or a singlesingle stopbandstopband

� There are applications where filters with 
multiplemultiple passbands and stopbands are required

� The comb filtercomb filter is an example of such filters
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3. Comb Filters

� In its most general form, a comb filter has a 
frequency response that is a periodic function 
of w with a period 2p/L , where L is a 
positive integer

� If H(z) is a filter with a single passband and/or 
a single stopband, a comb filter can be easily 
generated from it by replacing each delay in its 
realization with L delays resulting in a 
structure with a transfer function given by 
G(z)=H(zL)

� 2 / L�
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3. Comb Filters

� If               exhibits a peak at       , then
will exhibit L peaks at            ,                      in 
the frequency range

� Likewise, if              has a notch at     ,then
will have L notches at            ,                     in 
the frequency range

� A comb filter can be generated from either an 
FIR or an IIR prototype filter
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� has L notches at
and L

peaks at                   ,
, in the 

frequency range

3. Comb Filters

� For example, the comb filter generated from 
the prototype lowpass FIR filter                                
has a transfer function
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� has L peaks at
and L

notches at
, in the 

frequency range

3. Comb Filters

� For example, the comb filter generated from 
the prototype highpass FIR filter                               
has a transfer function
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3. Comb Filters

� Depending on applications, comb filters with 
other types of periodic magnitude responses 
can be easily generated by appropriately 
choosing the prototype filter

� For example, the M-point moving average 
filter

has been used as a prototype
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3. Comb Filters

� This filter has a peak magnitude at w = 0, and
M 1 notches at                     ,

� The corresponding comb filter has a transfer 
function

whose magnitude has L peaks at                   ,
and L(M 1 ) notches at
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3. Comb Filters
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