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Types of Transfer Functions

e The time-domain classification of an LTI
digital transfer function sequence is based on
the length of its impulse response:

-- Finite impulse response (FIR) transfer
function

-- Infinite impulse response (IIR) transfer
function

Types of Transfer Functions

e In the case of digital transfer functions with
frequency-selective frequency responses, there
are two types of classifications

(1) Classification based on the shape of the
magnitude function |H(e/ )|

(2) Classification based on the form of the
phase function ¢( @)

1.1 Ideal Filters

e Based on the shape of the magnitude
function, four types of ideal filters are
usually defined: lowpass , highpass,
bandpass and bandstop

e A digital filter designed to pass signal
components of certain frequencies without
distortion should have a frequency response
equal to one at these frequencies, and should
have a frequency response equal to zero at all
other frequencies




1.1 Ideal Filters

e The range of frequencies where the frequency
response takes the value of one is called the
passband

1.1 Ideal Filters
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1.1 Ideal Filters

e Earlier in the course we derived the inverse
DTFT of the frequency response of the ideal
lowpass filter:

e The range of frequencies where the frequency - e ol o x = o 0 o =z h,,(n) = S o.-n , —0o<n<o
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1.1 Ideal Filters

e Also, is not causal and is of doubly infinite
length

e The remaining three ideal filters are also
characterized by doubly infinite, noncausal
impulse responses and are not absolutely
summable

e Thus, the ideal filters with the ideal “brick
wall” frequency responses cannot be realized
with finite dimensional LTI filters

1.1 Ideal Filters

e To develop stable and realizable transfer
functions, the ideal frequency response
specifications are relaxed by including a
transition band between the passband and the
stopband.

e This permits the magnitude response to decay
slowly from its maximum value in the
passband to the zero value in the stopband.

1.1 Ideal Filters
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1.2 Bounded Real Transfer Functions

e A causal stable real-coefficient transfer
function H(z) is defined as a bounded real (BR)
transfer function if

|H (e’
e Let x(n) and y(n) denote, respectively, the
input and output of a digital filter characterized

by a BR transfer function H(z) with X (e’”)
and Y(e’”)denoting their DTFTs

<1 for all values of @

1.2 Bounded Real Transfer Functions

e Then the condition |H (™)
Y[ <|x(e™)

<limplies that
2

e Integrating the above from -7 to 7, and
applying Parseval’s relation we get

0

Y o) < Y ko)

n=—o n=—on

1.2 Bounded Real Transfer Functions

e Thus, for all finite-energy inputs, the output
energy is less than or equal to the input energy
implying that a digital filter characterized by a
BR transfer function can be viewed as a
passive structure

o If ‘H (e’*)| =1, then the output energy is equal
to the input energy, and such a digital filter is
therefore a lossless system

1.2 Bounded Real Transfer Functions

e A causal stable real-coefficient transfer
function H(z) with |H (e’”)| =1 is thus called a
lossless bounded real (LBR) transfer function

e The BR and LBR transfer functions are the
keys to the realization of digital filters with
low coefficient sensitivity

1.3 Allpass Transfer Function

Definition
e AnIIR transfer function 4(z) with unity
magnitude response for all frequencies, i.e.,
(@™ =1, forallo
is called an allpass transfer function
e An M-th order causal real-coefficient allpass

transfer function is of the form
; -1 —M+1 M _-M -1
A, () =+ d,+d, z +-+dz +z z "D, (z7)

—M+1 D“[ (E)

tdz ' ++d, 2" +d, 7

1.3 Allpass Transfer Function

e Hence, 4,/z) can be written as
A, (z)=+ " DM(Zil)
D, (2)
o Note from the above that if z=zis a pole of a
real coefficient allpass transfer function, then
it has a zero at z=1/z,

e The numerator of a real-coefficient allpass
transfer function is said to be the mirror-
image polynomial of the denominator, and
vice versa
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1.3 Allpass Transfer Function

Principle Value of Phase Unwrapped Phase

1

Phase Reponse (in rads’s)
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e Note the (iiscontinuity by the amount of 277 in
the phase d(w)

e The unwrapped phase function is a continuous

function of @ ”

1.3 Allpass Transfer Function

Properties

e A causal stable real-coefficient allpass
transfer function is a lossless bounded real
(LBR) function or, equivalently, a causal
stable allpass filter is a lossless structure

e The magnitude function of a stable allpass
function A(z) satisfies:
<1 for ‘z‘ >1
|A(z)|{=1 for|7=1
>1 for ‘Z‘<1 2

1.3 Allpass Transfer Function

e Let 7(@) denote the group delay function of
an allpass filter A(z) , i.e.,

() = —%[Q ]

The unwrapped phase function of a stable allpass
function is a monotonically decreasing function of
 so that 7(w)is everywhere positive in the range
0 < w < 7 . An M-th order stable real-coefficient
allpass transfer function satisfies:

'f: t(w)dw=Mrn

24




1.3 Allpass Transfer Function

A Simple Application

e A simple but often used application of an
allpass filter is as a delay equalizer

e Let G(z) be the transfer function of a digital
filter designed to meet a prescribed magnitude
response

e The nonlinear phase response of G(z) can be
corrected by cascading it with an allpass filter
A(z) so that the overall cascade has a constant

1.3 Allpass Transfer Function
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o Since‘A(e""’)2 =1, we have
G(e’)A(e™)|=|G(e™)
e Overall group delay is the given by the sum of
the group delays of G(z) and A(z)

Part A Types of Transfer Functions

2. Based on Phase Characteristics
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2.1 Zero-Phase Transfer Functions
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e A second classification of a transfer function
is with respect to its phase characteristics

e In many applications, it is necessary that the
digital filter designed does not distort the
phase of the input signal components with
frequencies in the passband

e One way to avoid any phase distortion is to
make the frequency response of the filter real
and nonnegative, i.e., to design the filter with

a zero phase characteristic 2

2.1 Zero-Phase Transfer Functions

e However, it is not possible to design a causal
digital filter with a zero phase (pp. 287-288)

e For non-real-time processing of real-valued
input signals of finite length, zero-phase
filtering can be very simply implemented by
relaxing the causality requirement

29

e One zero-phase filtering scheme is sketched
below

x(n) H(z) }L")»{Foldmgw H(z) }Mﬂzlding}—’ (n)
) )

X(e™ 4G U(e’™) W(e'™) Y(e™)

e From the figure, we can arrive at
Y(™)Y=W ()= H (e/")U" (/) =
=H (e/")H(e’") X (')

H (e’ )W (e

Real and
Zero-Phase




2.2 Linear-Phase Transfer Functions

2.2 Linear-Phase Transfer Functions

2.2 Linear-Phase Transfer Functions

e Linear-Phase  H(¢/”) = ¢ /"

|[H(e')|=1 r(@)=D

e The output y(n) of this filter to an input
x(n) = Ae’*" is then given by

y(n) — Ae—ijejrun — Aejm(n—D)

o Ifx (¢) and y () represent the continuous time
signals whose sampled versions, sampled at 7 =
nT, are x(n) and y(n) given above, then the delay
between x (7) and y (f) is precisely the group

e If D is an integer, then y(n) is identical to x(n),
but delayed by D samples

e If D is not an integer, y(n) , being delayed by a
fractional part, is not identical to x(»)

e In the latter case, the waveform of the
underlying continuous-time output is identical
to the waveform of the underlying continuous-
time input and delayed D units of time

e If it is desired to pass input signal components
in a certain frequency range undistorted in
both magnitude and phase, then the transfer
function should exhibit a unity magnitude
response and a linear-phase response in the
band of interest

e Figure in the next slide shows the frequency
response if a lowpass filter with a linear-phase
characteristic in the passband
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2.2 Linear-Phase Transfer Functions

2.2 Linear-Phase Transfer Functions

2.2 Linear-Phase Transfer Functions
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e Since the signal components in the stopband
are blocked, the phase response in the
stopband can be of any shape
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\
o It is nearly impossible to design a linear-phase
IIR transfer function
e It is always possible to design an FIR transfer
function with an exact linear-phase response

e Consider a causal FIR transfer function H(z)
of length N, i.e., of order N—1

H(z)= f h(n)z™"

n=0
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e The above transfer function has a linear-phase, if
its impulse response /(n) is either symmetric, i.e.,
h(n)=h(N—-1-n), 0<n<N-1
or is antisymmetric, i.e.,
h(n)=—h(N-1-n), 0<n<N-1
e There are two types linear phase
-7, 6% =0 C{f?((a)
O(w)=0,-to=3 r T do =

I tw, 6=-Z
2 36
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Proof . . . N-1
e [f this transfer function has a linear phase, such ) Z h(n)sin on
) N-I N-1 N-1 as O(w) =-10 tan zw = ST fi?
Joy _ —jon __ . H S
H(e™) = zoh(”)e = zoh(”) coson=j: Zoh(”) s on e We obtain the following relationship coste h(n)cos wn
e = = o ie., port
e If /i(n) is a real sequence, we have z h(n)sin on NI v-l
- . 0(w) = arg tan d — Ci? - ”Z:[;h(n) cos wnsin 7w — ; h(n)sin wncostw =0
oo Z(;h(n) sin wn Z h(n)cos wn or
) =argtany —4= =0 Nl .
. . . . h(n)sin|(r —n)w|=0 *
h(n)cos on e Taking tan(.) on both sides of the above equation ,,2:;‘ (msinf(r=me]
n=0
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2.2 Linear-Phase Transfer Functions

2.2 Linear-Phase Transfer Functions

e sin[(r —n)o] is odd-symmetry on 7=n

o Let 7 =(N—1)/2 , thus equation * holds if A(n)
is even-symmetry on n= (N —1)/2

e In other words, #(n)=h(N—-1-n), 0<n<N-1
e Similarly, if 6(w)=-7/2—-17® ,we can arrive at

h(n)=—-h(N-1-n), 0<n<N-1
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e Since the length of the impulse response can
be either even or odd, we can define four
types of linear-phase FIR transfer functions

e For an antisymmetric FIR filter of odd length,
ie,Nodd: A{(N—1)/2)}=0

o We examine next the each of the 4 cases

4“1

2.2 Linear-Phase Transfer Functions

I
h(n) Type 1 Center of h(n) Type 2 Center of

N=9 even-symmetry N=8 , even-symmetry
! 1
[ v
! 2
1
1
2 6 T n 2 N n
of 1 3 4 s 7 8 0[1l3'4l57
h(n) Type 3 , Center of h(n) Ty| _e 4 Center of
N=9 7 odd-symmetry N=8 ,/ odd-symmetry

’

HT .
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2.2 Linear-Phase Transfer Functions

\

e Consider first an FIR filter with a symmetric
impulse response: i(n) = h(N —1—n)

e Its transfer function can be written as

H(z)= f h(n)z™" = f (N -1-n)z™"

n=0 n=0
e By making a change of variable m=N—1—
7 ,We can write

N-1 N-1
H(z)= h(m)z "™ = 27" h(m)z"
0

2.2 Linear-Phase Transfer Functions

e A real-coefficient polynomial H(z) satisfying
the above condition is called a mirror-image
polynomial (MIP)

e In the case of anti-symmetric impulse
response, the corresponding expression is
H(z)=—z""H(z™")

which is called an antimirror-image
polynomial (AIP)

2.2 Linear-Phase Transfer Functions

e It follows the relation H(z)=+z Y H(z™")
that if z=z, is a zero of H(z), so is z=1/z,

e Moreover, for an FIR filter with a real impulse
response, the zeros of H(z) occur in complex
conjugate pairs

e Hence, a zero at z=z, is associated with a zero
at z=z;*

m= m=0
—(N-1 -1

=z ( )H(Z ) 43 44 45
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2.2 Linear-Phase Transfer Functions

jimz

2
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2.2 Linear-Phase Transfer Functions

\
e Since a zero at z== 1 is its own reciprocal, it
can appear only singly
e Now a Type 2 FIR filter satisfies
H(z)= z’(‘v’”H(z’])
with degree N—1 odd
e Hence, H(—-1)=(-1)""" " H(-1)=-H(-1)
implying H(—1)=0 ,i.e., H(z) must have a

zero at z=—1
47

2.2 Linear-Phase Transfer Functions

e Likewise, for a Type 3 or 4 filter,
H()=-H()
implying H(z) must have a zero at z=1

e On the other hand, only the Type 3 FIR filter
is restricted to have a zero at z=—1 since here
the degree N—1 is even and hence,

H(-D)=~(-)""H(-D)=-H(-1)

48




2.2 Linear-Phase Transfer Functions

Typical zero locations shown below
jim z jim z
Type 1 Type 2

o (¢}
/N N odd [Ox N even
©
Rez Rez
e}

1

jimz 2
Type 3 Type 4

° N odd N even
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Rez Res
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2.2 Linear-Phase Transfer Functions

Summary

o A Type 2 FIR filter cannot be used to design a
highpass filter since it always has a zero z=—1

e A Type 3 FIR filter has zeros at both z= 1 and z=—1,
and hence cannot be used to design either a lowpass
or a highpass or a bandstop filter

e A Type 4 FIR filter is not appropriate to design a
lowpass filter due to the presence of a zero atz =1

e Type 1 FIR filter has no such restrictions and can be
used to design almost any type of filter
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2.3 Minimum-Phase and Maximum-
Phase Transfer Functions

e A causal stable transfer function with all
zeros outside the unit circle has an excess
phase compared to a causal transfer function
with identical magnitude but having all zeros
inside the unit circle Jjimz

2z

A arg :Ler? or ploe T/ecfor =2
= |inside the unit circle
[}

©
zero or ploe vector _
unit circle

-5 {outside the unit circle
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2.3 Minimum-Phase and Maximum-
Phase Transfer Functions

e [t assumed that a causal stable transfer
function has M zeros (with m; inside the UC
and m,, outside the UC) and N poles (with #,
inside the UC and »,, outside the UC)

Aarg[H(ef“)]r” = 27m —27n, + 22(N — M)
h,'_‘ 0

@

=27 (n,—m,)
e Since N=n, and i.e., n,=0, we have
Aarg[ H(e™)]"=-27m,
0
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2.3 Minimum-Phase and Maximum-
Phase Transfer Functions

e A causal stable transfer function with all
zeros inside the unit circle (72,=0) is called a
minimum-phase transfer function

e A causal stable transfer function with all
zeros outside the unit circle (m =M) is called
a maximum-phase transfer function

e A transfer function with zeros inside and
outside the unit circle is called a mixed-phase
transfer function
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2.3 Minimum-Phase and Maximum-
Phase Transfer Functions

e Questions

o An LTI system is said to be minimum-phase if the
system and its inverse are causal and stable.
(A@B@)=1)

o Is a causal stable allpass filter minimum or
maximum phase?

o What is case for a linear phase FIR filter?
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