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LTI Discrete-Time Systems 
in the Transform Domain
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Types of Transfer Functions

� The time-domain classification of an LTI 
digital transfer function sequence is based on 
the length of its impulse response:
-- Finite impulse response (FIR) transfer 
function
-- Infinite impulse response (IIR) transfer 
function
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Types of Transfer Functions

� In the case of digital transfer functions with 
frequency-selective frequency responses, there 
are two types of classifications

(1) Classification based on the shape of the 
magnitude function |H(ej )|

(2) Classification based on the form of the 
phase function ( )
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1.1 Ideal Filters

� Based on the shape of the magnitude 
function four types of ideal filters are 
usually defined lowpasslowpass ,, highpasshighpass,,
bandpassbandpass and bandstopbandstop

� A digital filter designed to pass signal 
components of certain frequencies without
distortion should have a frequency response 
equal to oneone at these frequencies, and should 
have a frequency response equal to zerozero at all 
other frequencies
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1.1 Ideal Filters

� The range of frequencies where the frequency 
response takes the value of one is called the 
passbandpassband

� The range of frequencies where the frequency 
response takes the value of zero is called the 
stopbandstopband

� Frequency responses of the four popular types 
of ideal digital filters with real impulse 
response coefficients are shown in the next 
slide 8

1.1 Ideal Filters
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1.1 Ideal Filters

� Earlier in the course we derived the inverse 
DTFT of the frequency response of the ideal 
lowpass filter:

� We have also shown that the above impulse 
response is not absolutely not absolutely summablesummable, and 
hence, the corresponding transfer function is 
not BIBO stablenot BIBO stable
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1.1 Ideal Filters

� Also, is not causalnot causal and is of doubly infinite 
length

� The remaining three ideal filters are also 
characterized by doubly infinite, doubly infinite, noncausalnoncausal
impulse responses and are not absolutely not absolutely 
summablesummable

� Thus, the ideal filters with the ideal “brickbrick
wallwall” frequency responses cannot be realized 
with finite dimensional LTI filters
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1.1 Ideal Filters

� To develop stable and realizable transfer 
functions, the ideal frequency response 
specifications are relaxed by including a 
transition bandtransition band between the passband and the 
stopband.

� This permits the magnitude response to decay 
slowly from its maximum value in the 
passband to the zero value in the stopband.
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1.1 Ideal Filters

� Moreover, the 
magnitude response is
allowed to vary by a 
small amount both in 
the passband and the 
stopband.

� Typical magnitude 
response specifications 
of a lowpass filter are 
shown in the figure.

( )j
LPH e �

�0 s�p� �

1 p�	

1 p��

s�

c�

pass
band

stop
band

Transition
band



13

1.2 Bounded Real Transfer Functions

� A causal stable real-coefficient transfer 
function H(z) is defined as a bounded real (BR) bounded real (BR) 
transfer functiontransfer function if

� Let x(n) and y(n) denote, respectively, the 
input and output of a digital filter characterized 
by a BR transfer function H(z) with
and            denoting their DTFTs
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1.2 Bounded Real Transfer Functions

� Then the condition                    implies that

� Integrating the above from        to     , and 
applying Parseval’s relation we get
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1.2 Bounded Real Transfer Functions

� Thus, for all finite-energy inputs, the output 
energy is less than or equal to the input energy 
implying that a digital filter characterized by a 
BR transfer function can be viewed as a 
passive structurepassive structure

� If                   , then the output energy is equal 
to the input energy, and such a digital filter is 
therefore a lossless systemlossless system

( ) 1jH e � �
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1.2 Bounded Real Transfer Functions

� A causal stable real-coefficient transfer 
function H(z) with                    is thus called a 
lossless bounded real (LBR) transfer functionlossless bounded real (LBR) transfer function

� The BR and LBR transfer functions are the 
keys to the realization of digital filters with 
low coefficient sensitivity

( ) 1jH e � �
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1.3 Allpass Transfer Function

DefinitionDefinition
� An IIR transfer function A(z) with unity 

magnitude response for all frequencies, i.e.,

is called an allpassallpass transfer functiontransfer function
� An M-th order causal real-coefficient allpass

transfer function is of the form

2
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1.3 Allpass Transfer Function

� Hence, AM(z) can be written as

� Note from the above that if z=z0 is a pole of a 
real coefficient allpass transfer function, then 
it has a zero at z=1/z0

� The numerator of a real-coefficient allpass
transfer function is said to be the mirrormirror--
image polynomialimage polynomial of the denominator, and 
vice versa
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1.3 Allpass Transfer Function

� The expression

implies that the poles and zeros of a real 
coefficient allpass function exhibit mirrormirror--
image symmetryimage symmetry in the z-plane

An exampleAn example
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1.3 Allpass Transfer Function

� To show that                    , we observe that

� Therefore,

� Hence,
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1.3 Allpass Transfer Function

� Now, the poles of a causal stable transfer 
function must lie inside the unit circle in the 
z-plane

� Hence, all zeros of a causal stable allpass
transfer function must lie outside the unit 
circle in a mirrormirror--image symmetryimage symmetry with its 
poles situated inside the unit circle

� Figure in the next slide shows the principal 
value of the phase of the former example
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1.3 Allpass Transfer Function

� Note the discontinuity by the amount of      in 
the phase

� The unwrapped phase function is a continuous 
function of
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1.3 Allpass Transfer Function
PropertiesProperties
� A causal stable real-coefficient allpass

transfer function is a lossless bounded real 
(LBR) function or, equivalently, a causal 
stable allpass filter is a lossless structure

� The magnitude function of a stable allpass
function A(z) satisfies:
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1.3 Allpass Transfer Function

� Let t(w) denote the group delay function of 
an allpass filter A(z) , i.e.,

The unwrapped phase function of a stable allpass
function is a monotonically decreasing function of 
w so that t(w) is everywhere positive in the range 

. An M-th order stable real-coefficient 
allpass transfer function satisfies:
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1.3 Allpass Transfer Function

A Simple ApplicationA Simple Application
� A simple but often used application of an 

allpass filter is as a delay equalizerdelay equalizer
� Let G(z) be the transfer function of a digital 

filter designed to meet a prescribed magnitude 
response

� The nonlinear phase response of G(z) can be 
corrected by cascading it with an allpass filter 
A(z) so that the overall cascade has a constant 
group delay in the band of interest 26

1.3 Allpass Transfer Function

� Since                    , we have

� Overall group delay is the given by the sum of 
the group delays of G(z) and A(z)

G(z) A(z)

2
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( ) ( ) ( )j j jG e A e G e� � ��
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2.1 Zero-Phase Transfer Functions

� A second classification of a transfer function 
is with respect to its phase characteristics

� In many applications, it is necessary that the 
digital filter designed does not distort the 
phase of the input signal components with 
frequencies in the passband

� One way to avoid any phase distortion is to 
make the frequency response of the filter real 
and nonnegative, i.e., to design the filter with 
a zero phasezero phase characteristic 29

2.1 Zero-Phase Transfer Functions

� However, it is not possible to design a causal 
digital filter with a zero phase (pp. 287-288)

� For non-real-time processing of real-valued 
input signals of finite length, zero-phase 
filtering can be very simply implemented by 
relaxing the causality requirement
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2.1 Zero-Phase Transfer Functions

� One zerozero--phasephase filtering scheme is sketched 
below

� From the figure, we can arrive at

H(z) Folding H(z) Foldingx(n) v(n) u(n) w(n) y(n)
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2.2 Linear-Phase Transfer Functions

�� LinearLinear--PhasePhase

� The output y(n) of this filter to an input
is then given by

� If xa(t) and ya(t) represent the continuous time 
signals whose sampled versions, sampled at t =
nT, are x(n) and y(n) given above, then the delay 
between xa(t) and ya(t) is precisely the group 
delay of amount D

( )j j DH e e� ���
( ) 1jH e � � ( ) D� � �

( ) j nx n Ae ��
( )( ) j D j n j n Dy n Ae e Ae� � �� �� �
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2.2 Linear-Phase Transfer Functions

� If D is an integer, then y(n) is identical to x(n),
but delayed by D samples

� If D is not an integer, y(n) , being delayed by a 
fractional part, is not identical to x(n)

� In the latter case, the waveform of the 
underlying continuous-time output is identical 
to the waveform of the underlying continuous-
time input and delayed D units of time
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2.2 Linear-Phase Transfer Functions

� If it is desired to pass input signal components 
in a certain frequency range undistorted in undistorted in 
both magnitude and phaseboth magnitude and phase, then the transfer 
function should exhibit a unity magnitudeunity magnitude
response and a linearlinear--phasephase response in the 
band of interest

� Figure in the next slide shows the frequency 
response if a lowpass filter with a linear-phase 
characteristic in the passband
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2.2 Linear-Phase Transfer Functions
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� Since the signal components in the stopband
are blocked, the phase response in the 
stopband can be of any shape
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2.2 Linear-Phase Transfer Functions

� It is nearly impossible to design a linear-phase 
IIR transfer function

� It is always possible to design an FIR transfer 
function with an exact linear-phase response

� Consider a causal FIR transfer function H(z)
of length N, i.e., of order N 1

1

0
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2.2 Linear-Phase Transfer Functions

� The above transfer function has a linear-phase, if 
its impulse response h(n) is either symmetricsymmetric, i.e., 

or is antisymmetricantisymmetric, i.e.,

� There are two types linear phase
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2.2 Linear-Phase Transfer Functions

ProofProof

� If h(n) is a real sequence, we have
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2.2 Linear-Phase Transfer Functions

� If this transfer function has a linear phase, such 
as

� We obtain the following relationship

� Taking tan(.) on both sides of the above equation
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2.2 Linear-Phase Transfer Functions

i.e.,

or
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2.2 Linear-Phase Transfer Functions

� is odd-symmetry on

� Let                       , thus equation      holds if h(n)
is even-symmetry on 

� In other words,

� Similarly, if                                ,we can arrive at
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2.2 Linear-Phase Transfer Functions

� Since the length of the impulse response can 
be either even or odd, we can define four 
types of linear-phase FIR transfer functions

� For an antisymmetric FIR filter of odd length, 
i.e., N odd : h{(N 1)/2)}= 0

� We examine next the each of the 4 cases
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2.2 Linear-Phase Transfer Functions
( )h n

n
0 1

2

74 5

6

83

Center of 
even-symmetry

( )h n

n
0 1

2 7

4

5
6

8
3

Center of 
odd-symmetry

( )h n

n
0 1

2
74

5
63

Center of 
even-symmetry

( )h n

n
0 1

2 74
5

6
3

Center of 
odd-symmetry

Type 1Type 1
N=9N=9

Type 4Type 4
N=8N=8

Type 3Type 3
N=9N=9

Type 2Type 2
N=8N=8



43

2.2 Linear-Phase Transfer Functions

� Consider first an FIR filter with a symmetric 
impulse response:

� Its transfer function can be written as

� By making a change of variable m=N 1
n ,we can write
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2.2 Linear-Phase Transfer Functions

� A real-coefficient polynomial H(z) satisfying
the above condition is called a mirrormirror--imageimage
polynomialpolynomial (MIP)

� In the case of anti-symmetric impulse 
response, the corresponding expression is

which is called an antimirrorantimirror--imageimage
polynomialpolynomial (AIP)

( 1) 1( ) ( )NH z z H z� � �� �
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2.2 Linear-Phase Transfer Functions

� It follows the relation
that if z=zi is a zero of H(z), so is z=1/zi

� Moreover, for an FIR filter with a real impulse 
response, the zeros of H(z) occur in complex 
conjugate pairs

� Hence, a zero at z=zi is associated with a zero 
at z=zi*

( 1) 1( ) ( )NH z z H z� � �� �
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2.2 Linear-Phase Transfer Functions
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� Since a zero at z= 1 is its own reciprocal, it 
can appear only singly

� Now a Type 2 FIR filter satisfies

with degree N 1 odd

� Hence,
implying H( 1)=0 ,i.e., H(z) must have a 
zero at z= 1

2.2 Linear-Phase Transfer Functions
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� Likewise, for a Type 3 or 4 filter,

implying H(z) must have a zero at z=1
� On the other hand, only the Type 3 FIR filter 

is restricted to have a zero at z= 1 since here 
the degree N 1 is even and hence,

2.2 Linear-Phase Transfer Functions

(1) (1)H H� �

( 1)( 1) ( 1) ( 1) ( 1)NH H H� �� � � � � � � �



49

Typical zero locations shown belowTypical zero locations shown below

2.2 Linear-Phase Transfer Functions
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SummarySummary
� A Type 2Type 2 FIR filter cannot be used to design a 

highpasshighpass filter since it always has a zero z= 1
� A Type 3Type 3 FIR filter has zeros at both z = 1 and z= 1,

and hence cannot be used to design either a lowpasslowpass
or a highpasshighpass or a bandstopbandstop filter

� A Type 4Type 4 FIR filter is not appropriate to design a 
lowpasslowpass filter due to the presence of a zero at z = 1

�� Type 1Type 1 FIR filter has no such restrictions and can be 
used to design almost any type of filter

2.2 Linear-Phase Transfer Functions
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2.3 Minimum-Phase and Maximum-
Phase Transfer Functions

� A causal stable transfer function with all 
zeros outsideoutside the unit circle has an excess 
phase compared to a causal transfer function 
with identical magnitude but having all zeros 
insideinside the unit circle jIm z
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2.3 Minimum-Phase and Maximum-
Phase Transfer Functions

� It assumed that a causal stable transfer 
function has M zeros (with mi inside the UC 
and m0 outside the UC) and N poles (with ni
inside the UC and n0 outside the UC) 

� Since N= ni and i.e., n0=0 , we have
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2.3 Minimum-Phase and Maximum-
Phase Transfer Functions

� A causal stable transfer function with all 
zeros inside the unit circle (mo=0) is called a 
minimumminimum--phase transfer functionphase transfer function

� A causal stable transfer function with all 
zeros outside the unit circle (mo=M) is called 
a maximummaximum--phase transfer functionphase transfer function

� A transfer function with zeros inside and 
outside the unit circle is called a mixedmixed--phasephase
transfertransfer function
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2.3 Minimum-Phase and Maximum-
Phase Transfer Functions

� Questions
� An LTI system is said to be minimum-phase if the 

system and its inverseinverse are causalcausal and stablestable..
(A(z)B(z)=1)

� Is a causal stable allpass filter minimum or 
maximum phase? 

� What is case for a linear phase FIR filter? 


