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1.1  General Expression

� Recall that, for z= rej , the z-transform G(z)
given by

is merely the DTFT of the modified sequence 
g(n)r-n

� Accordingly, the inverse DTFT is thus given 
by
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1.1  General Expression

� By making a change of variable z= rej , the 
previous equation can be converted into a 
contour integral given by

where c is a counterclockwise contour of 
integration defined by |z|= r

� But the integral remains unchanged when c is
replaced with any contour c’ encircling the 
point z=0 in the ROC of G(z)

1 11( ) [ ( )] ( )
2

n

c

g n G z G z z dz
j�

� �� � �� �



7

1.1  General Expression

� The contour integral can be evaluated using 
the CauchyCauchy’’s residue theorems residue theorem resulting in

� The above equation needs to be evaluated at 
all values of n and is not pursued here
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1.1  General Expression

Example:Example:
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1.1  General Expression

Case 1:Case 1: 0.25z �

1
2

( 0.5)( )
0.75 0.125

n
n z zG z z

z z
� �
�

� �

If n 0, there is no poles inside c. Thus, g(n)=0 when n 0

If n <0, there is an |n|-order pole at z=0 which is inside c. In 
this case, we can compute the summation of the residues 
outside c instead of that inside
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1.1  General Expression
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1.1  General Expression

Case 2:Case 2:

If n 0, there is only one pole at z= 0.25 inside c
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1.1  General Expression

If n <0, there are one first-order pole and one |n|th-order pole 
at z= 0.25 and z=0 inside c, respectively. Thus, we can 
compute the summation of the residues outside c instead of 
that inside

Hence, we can rewrite g(n) as follows 
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1.1  General Expression

Case 3:Case 3:
If n 0, there are two first-order poles at z= 0.25 and z= 0.5
inside c

0.5z �

2
0.5

2
0.25

( 0.5)( ) ( 0.5)
0.75 0.125

( 0.5)( 0.25)
0.75 0.125

4( 0.5) 3( 0.25) 0

n

z

n

z
n n

z zg n z
z z

z zz
z z

n

��

��

�
� �

� �

�
� �

� �

� � � � �
14

1.1  General Expression

If n<0, there are two first-order poles and one |n|th-order pole 
at z= 0.25, z= 0.25 and z=0 inside c, respectively. Thus, we 
can compute the summation of the residues outside c instead
of that inside. Because there is no poles outside c. Thus, 
g(n)=0 in this case
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1.2  Inverse z-Transform by Partial-
Fraction Expansion

� A rational z-transform G(z) with a causalcausal
inverse transforminverse transform g(n) has an ROC that is 
exterior to a circle

� Here it is more convenient to express G(z) in a 
partial-fraction expansion form and then 
determine g(n) by summing the inverse 
transform of the individual simpler terms in 
the expansion
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1.2  Inverse z-Transform by Partial-
Fraction Expansion

� A rational G(z) can be expressed as

� If then G(z) can be re-expressed as
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1.2  Inverse z-Transform by Partial-
Fraction Expansion

Solutions:Solutions:
Step 1-- Converting G(z) into the form of 
proper fractions by long division
Step 2-- Summing the inverse transform of 
the individual simpler terms in the expansion
Assume that g(n) is causal
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1.2  Inverse z-Transform by Partial-
Fraction Expansion

Example:Example:
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1.2  Inverse z-Transform by Partial-
Fraction Expansion
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1.3  Partial-Fraction Expansion
Using MATLAB

� [r,p,c]= residuez(num,den) develops the 
partial-fraction expansion of a rational z-
transform with numerator and denominator 
coefficients given by vectors num and den

� Vector r contains the residues
� Vector p contains the poles
� Vector c contains the constants l�
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1.3  Partial-Fraction Expansion
Using MATLAB

� [num,den]=residuez(r,p,c) converts a z-
transform expressed in a partial-fraction 
expansion form to its rational form
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1.4  Inverse z-Transform via
Long Division

� The z-transform G(z) of a causal sequence
{g(n)} can be expanded in a power series in
z 1

� In the series expansion, the coefficient 
multiplying the term z n is then the n-th
sample g(n)

� For a rational z-transform expressed as a 
ratio of polynomials in z 1, the power series 
expansion can be obtained by long division.
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1.4  Inverse z-Transform via
Long Division

ExampleExample
� Consider

Long division of the numerator by the 
denominator yields

� Hence
{x(n)}={ 1, 1.6, 0.52, 0.4, 0.2224,…} n 0
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1.5  Inverse z-Transform Using MATLAB

� The function impz can be used to find the 
inverse of a rational z-transform G(z)

� The function computes the coefficients of the 
power series expansion of G(z)

� The number of coefficients can either be user 
specified or determined automatically
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2. z-Transform Properties

� Some useful properties of z-Transform are 
listed in Table 6.2 

� This section is devoted to the computation of 
z-Transform by means of these properties

Example 1Example 1
Consider the twotwo--sidedsided sequences
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2. z-Transform Properties

� Let

with X(z) and Y(z) denoting, respectively, their z-
transforms

� Now

� Using the linearity propertylinearity property we arrive at
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2. z-Transform Properties

� The ROC of V(z) is given by the overlap regions 
of              and

� If , then there is an overlap and the ROC 
is an annular region

� If              , then there is no overlap and V(z)
does not exist
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2. z-Transform Properties

Example 2Example 2

( ) ( 1) ( )ny n n u n�� �

y(n) can be rewritten as
where
� The z-transform of x(n) is given by 
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2. z-Transform Properties

� Using the differentiation property, we arrive at 
the z-transform of nx(n) as
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� Using the linearity property we finally obtain
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