Chapter 6B	
z-Transform	

Part B	
Inverse z-Transform	$\because \because \because:$
and ZT Properties	$\because \because \because \%$

- Inverse z-Transform
- z-Transform Properties

1. Inverse z-Transform

1.1 General Expression

1.2 Inverse z-Transform by Partial-Fraction Expansion
1.3 Partial-Fraction Using MATLAB
1.4 Inverse z-Transform via Long Division
1.5 Inverse \mathbf{z}-Transform Using MATLAB

1.1 General Expression

- Recall that, for $z=r e^{j \omega}$, the z-transform $G(z)$ given by

$$
G(z)=G\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g(n) r^{-n} e^{-j \omega n}
$$

is merely the DTFT of the modified sequence $g(n) r^{-n}$

- Accordingly, the inverse DTFT is thus given by $g(n) r^{-n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(r e^{j \omega}\right) e^{j \omega n} d \omega$

1.1 General Expression

- By making a change of variable $z=r e^{j \omega}$, the previous equation can be converted into a contour integral given by

$$
g(n)=\mathcal{Z}^{-1}[G(z)]=\frac{1}{2 \pi j} \oint_{c} G(z) z^{n-1} d z
$$

where c is a counterclockwise contour of integration defined by $|z|=r$

- But the integral remains unchanged when c is replaced with any contour c^{\prime} encircling the point $z=0$ in the ROC of $G(z)$
- The contour integral can be evaluated using the Cauchy's residue theorem resulting in $g(n)=\sum\left[\right.$ residues of $G(z) z^{n-1}$ at the poles inside $\left.c\right]$
$=-\sum\left[\begin{array}{l}\text { residues of } G(z) z^{n-1} \text { at the poles outside } c \\ \text { only if there are any higher-order poles ins }\end{array}\right.$
- The above equation needs to be evaluated at all values of n and is not pursued here

$$
\begin{aligned}
g(n)= & -\left.(z+0.5) \frac{(z-0.5) z^{n}}{z^{2}+0.75 z+0.125}\right|_{z=-0.5} \\
& -\left.(z+0.25) \frac{(z-0.5) z^{n}}{z^{2}+0.75 z+0.125}\right|_{z=-0.25} \\
= & -4(-0.5)^{n}+3(-0.25)^{n} \quad n \leq-1
\end{aligned}
$$

Example:

$$
G(z)=\frac{1-0.5 z^{-1}}{1+0.75 z^{-1}+0.125 z^{-2}} \quad \begin{array}{ll}
\text { Zeros: } & \quad z=0 \quad z=0.5 \\
\text { Poles: } & z=-0.5 \quad z=-0.25
\end{array}
$$

Three ROCs:

$$
|z|<0.25
$$

$$
0.25<|z|<0.5
$$

$$
|z|>0.5
$$

$$
G(z) z^{n-1}=\frac{(z-0.5) z^{n}}{z^{2}+0.75 z+0.125}
$$

Case 1: $|z|<0.25$
If $n \geqslant 0$, there is no poles inside c. Thus, $g(n)=0$ when $n \geqslant 0$ If $n<0$, there is an $|n|$-order pole at $z=0$ which is inside c. In this case, we can compute the summation of the residues outside c instead of that inside

$$
g(n)=-\{\operatorname{Res}\{z=-0.5\}+\operatorname{Res}\{z=-0.25\}\}
$$

1.1 General Expression

Case 2: $0.25<|z|<0.5$
If $n \geqslant 0$, there is only one pole at $z=-0.25$ inside c

$$
\begin{aligned}
g(n) & =\left.(z+0.25) \frac{(z-0.5) z^{n}}{z^{2}+0.75 z+0.125}\right|_{z=-0.25} \\
& =-3(-0.25)^{n} \quad n \geq 0
\end{aligned}
$$

1.1 General Expression

If $n<0$, there are one first-order pole and one $|n|$ th-order pole at $z=-0.25$ and $z=0$ inside c, respectively. Thus, we can compute the summation of the residues outside c instead of that inside

$$
\begin{aligned}
g(n) & =-\left.(z+0.5) \frac{(z-0.5) z^{n}}{z^{2}+0.75 z+0.125}\right|_{z=-0.5} \\
& =-4(-0.5)^{n} \quad n \leq-1
\end{aligned}
$$

Hence, we can rewrite $g(n)$ as follow

$$
g(n)=-3(-0.25)^{n} u(n)-4(-0.5)^{n} u(-n-1)
$$

1．1 General Expression

If $n<0$ ，there are two first－order poles and one $|n|$ th－order pole at $z=-0.25, z=-0.25$ and $z=0$ inside c ，respectively．Thus，we can compute the summation of the residues outside c instead of that inside．Because there is no poles outside c ．Thus， $g(n)=0$ in this case

Summary：

$g(n)=\left\{\begin{array}{crr}-4(-0.5)^{n} u(-n-1)+3(-0.25)^{n} u(-n-1), & |z|<0.25 \\ -3(-0.25)^{n} u(n)-4(-0.5)^{n} u(-n-1), & 0.25<|z|<0.5 \\ 4(-0.5)^{n} u(n)-3(-0.25)^{n} u(n), & |z|>0.5\end{array}\right.$

1．2 Inverse z－Transform by Partial－

 Fraction ExpansionCase 3：$|z|>0.5$
If $n \geqslant 0$ ，there are two first－order poles at $z=-0.25$ and $z=-0.5$ inside c

$$
\begin{aligned}
g(n)= & \left.(z+0.5) \frac{(z-0.5) z^{n}}{z^{2}+0.75 z+0.125}\right|_{z=-0.5} \\
& +\left.(z+0.25) \frac{(z-0.5) z^{n}}{z^{2}+0.75 z+0.125}\right|_{z=-0.25} \\
= & 4(-0.5)^{n}-3(-0.25)^{n} \quad n \geq 0
\end{aligned}
$$

1．2 Inverse z－Transform by Partial－ Fraction Expansion
－A rational $G(z)$ can be expressed as

$$
G(z)=\frac{P(z)}{D(z)}=\sum_{i=0}^{M} p_{i} z^{-i} / \sum_{i=0}^{N} d_{i} z^{-i}
$$

－If then $G(z)$ can be re－expressed as

$$
G(z)=\sum_{l=0}^{M-N} \eta_{l} z^{-l}+\frac{P_{1}(z)}{D(z)} \quad \begin{gathered}
\text { Proper Fraction } \\
\text { (真分数) }
\end{gathered}
$$

where the degree of $P_{1}(z)$ is less than N

1．2 Inverse z－Transform by Partial－ Fraction Expansion

Solutions：
Step 1－－Converting $G(z)$ into the form of proper fractions by long division
Step 2－－Summing the inverse transform of the individual simpler terms in the expansion
Assume that $g(n)$ is causal

1．2 Inverse z－Transform by Partial－ Fraction Expansion

Example：

$$
G(z)=\frac{2+0.8 z^{-1}+0.5 z^{-2}+0.3 z^{-3}}{1+0.8 z^{-1}+0.2 z^{-2}}
$$

By long division we arrive at

$$
\begin{aligned}
G(z) & =-3.5+1.5 z^{-1}+\frac{5.5+2.1 z^{-1}}{1+0.8 z^{-1}+0.2 z^{-2}} \\
& \uparrow \\
& -3.5 \delta(n) \\
& 1.5 \delta(n-1)
\end{aligned}
$$

1.2 Inverse z-Transform by Partial-

 Fraction Expansion
Let

$$
\begin{aligned}
& H(z)=\frac{5.5+2.1 z^{-1}}{1+0.8 z^{-1}+0.2 z^{-2}} \\
&=\frac{2.75+0.25 i}{1-(-0.4+0.2 i) z^{-1}}+\frac{2.75-0.25 i}{1-(-0.4-0.2 i) z^{-1}} \\
& \uparrow \\
&(2.75+0.25 i)(-0.4+0.2 i)^{n} u(n) \underset{(2.75-0.25 i)(-0.4-0.2 i)^{n} u(n)}{\downarrow}
\end{aligned}
$$

1.3 Partial-Fraction Expansion

 Using MATLAB- $[\mathbf{r}, \mathbf{p}, \mathbf{c}]=$ residuez(num,den) develops the partial-fraction expansion of a rational ztransform with numerator and denominator coefficients given by vectors num and den
- Vector r contains the residues
- Vector \mathbf{p} contains the poles
- Vector \mathbf{c} contains the constants η

1.3 Partial-Fraction Expansion

 Using MATLAB- [num,den]=residuez(r,p,c) converts a ztransform expressed in a partial-fraction expansion form to its rational form
1.4 Inverse z-Transform via Long Division
- The z-transform $G(z)$ of a causal sequence $\{g(n)\}$ can be expanded in a power series in z^{-1}
- In the series expansion, the coefficient multiplying the term z^{-n} is then the n-th sample $g(n)$
- For a rational z-transform expressed as a ratio of polynomials in z^{-1}, the power series expansion can be obtained by long division.

1.4 Inverse z-Transform via

 Long Division
Example

- Consider $X(z)=\frac{1+2 z^{-1}}{1+0.4 z^{-1}-0.12 z^{-2}}$

Long division of the numerator by the denominator yields
$X(z)=1+1.6 z^{-1}-0.52 z^{-2}+0.4 z^{-3}-0.224 z^{-4}+\cdots$

- Hence
$\{x(n)\}=\{1,1.6,-0.52,0.4,-0.2224, \ldots\} n \geqslant 0$ ${ }_{n=0}^{1}$
- The function impz can be used to find the inverse of a rational z-transform $G(z)$
- The function computes the coefficients of the power series expansion of $G(z)$
- The number of coefficients can either be user specified or determined automatically

2. z-Transform Properties

- Some useful properties of z-Transform are listed in Table 6.2
- This section is devoted to the computation of z-Transform by means of these properties
Example 1
Consider the two-sided sequences

$$
v(n)=\alpha^{n} u(n)-\beta^{n} u(-n-1)
$$

2. z-Transform Properties

- Let $\quad x(n)=\alpha^{n} u(n) \quad y(n)=\beta^{n} u(-n-1)$
with $X(z)$ and $Y(z)$ denoting, respectively, their ztransforms
- Now

$$
\begin{array}{ll}
X(z)=\frac{1}{1-\alpha z^{-1}} & |z|>|\alpha| \\
Y(z) & =\frac{1}{1-\beta z^{-1}}
\end{array}|z|<|\beta|
$$

- Using the linearity property we arrive at

2. z-Transform Properties

$$
V(z)=X(z)+Y(z)=\frac{1}{1-\alpha z^{-1}}+\frac{1}{1-\beta z^{-1}}
$$

- The ROC of $V(z)$ is given by the overlap regions of $|z|>|\alpha|$ and $|z|<|\beta|$
- If $|\alpha|<|\beta|$, then there is an overlap and the ROC is an annular region $\alpha|<|z|<|\beta|$
- If $|\alpha|>|\beta|$, then there is no overlap and $V(z)$ does not exist

2. z-Transform Properties

Example 2

$$
y(n)=(n+1) \alpha^{n} u(n)
$$

$y(n)$ can be rewritten as $y(n)=n x(n)+x(n)$
where $x(n)=\alpha^{n} u(n)$

- The z-transform of $x(n)$ is given by

$$
X(z)=\frac{1}{1-\alpha z^{-1}}|z|>|\alpha|
$$

