

- z-Transform
- Region of Convergence (ROC) of a Rational z-Transform

1. z-Transform

- The DTFT provides a frequency-domain representation of discrete-time signals and LTI discrete-time systems.
- Because of the convergence condition, in many cases, the DTFT of a sequence may not exist.
- As a result, it is not possible to make use of such frequency-domain characterization in these cases.

1. z-Transform

- In general, ZT can be thought of as a generalization of the DTFT. ZT is more complex than DTFT (both literally and figuratively), but provides a great deal of insight into system design and behavior. For discrete-time systems, ZT plays the similar role of Laplace-transform does in continuous-time systems. ZT characterizes signals or LTI systems in complex frequency domain.
- Recall that the definition of DTFT of a sequence $g(n)$ can be expressed by

$$
G\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g(n) e^{-j \omega n}
$$

where $G\left(e^{j \omega}\right)$ can be viewed as a Fourier series and $g(n)$ is the coefficients of this series. The basic building block in DTFT is $e^{j \omega}$.

- $e^{j \omega}$ is a one dimensional (single-variable) function which can be expressed in onedimensional plane. In order to extend the DTFT to ZT, it is possible to replace the basic building block $e^{j \omega}$ by a two dimensional (twovariable) function. Hence, the new basic building block can described in a twodimensional plane
- Define a new two dimensional variable $\mathrm{z}=$ $r e^{j \omega}$, we obtain the expression of z -transform
- A generalization of the DTFT defined by leads

$$
G\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g(n) e^{-j \omega n}
$$

to the z-transform

- z-transform may exist for many sequences for which the DTFT does not exist
- Moreover, use of z-transform techniques permits simple algebraic manipulations

1. 1 Definition of z-Transform

- Consequently, z-transform has become an important tool in the analysis and design of digital filters
- For a given sequence $g(n)$, its z-transform $G(z)$
is defined as

$$
G(z)=\sum_{n=-\infty}^{\infty} g(n) z^{-n}
$$

where $z=\operatorname{Re}(z)+j \operatorname{Im}(z)$ is a complex variable.

1. 1 Definition of z-Transform

- If we let $z=r e^{j \omega}$, then the z-transform reduces to

$$
G\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g(n) r^{-n} e^{-j \omega n}
$$

- The above can be interpreted as the DTFT of the modified sequence $\left\{g(n) r^{-n}\right\}$
- For $r=1$ (i.e., $|z|=1$), z-transform reduces to its DTFT, provided the latter exists

1.1 Definition of z-Transform

- The contour $|z|=1$ is a circle in the z-plane of unity radius and is called the unit circle.
- Like the DTFT, there are conditions on the convergence of the infinite series

$$
\sum^{\infty} g(n) z^{-n}
$$

- For a given sequence, the set \mathcal{R} of values of z for which its z-transform converges is called the region of convergence (ROC).
- From our earlier discussion on the uniform convergence of the DTFT, it follows that the series

$$
G\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g(n) r^{-n} e^{-j \omega n}
$$

converges if $g(n) z^{-n}$ is absolutely summable, i.e., if

$$
\sum_{n=-\infty}^{\infty}\left|g(n) r^{-n}\right|<\infty
$$

- In general, the ROC \mathcal{R} of a z-transform of a sequence $g(n)$ is an annular region of the z plane:

$$
R_{g^{-}}<|z|<R_{g^{+}}
$$

where $0 \leq R_{g^{-}}<R_{g^{+}} \leq \infty$

- Note: The z-transform is a form of a Laurent series and is an analytic function at every point in the ROC.

1. 1 Definition of z-Transform

1. 1 Definition of z-Transform

(3) If $R_{g^{+}}<R_{g^{-}}$, then the ROC is a null space and the $\mathrm{ZT}^{\mathrm{g}^{\circ}}$ does not exist.
(4) The function $r=1$ (or $z=e^{j \omega}$) is a circle of unit radius in the z-plane and is called the unit circle. If the ROC contains the unit circle, then we can evaluate $G(z)$ on the unit circle.

$$
\left.G(z)\right|_{z=e^{j \omega}}=G\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} g(n) e^{-j \omega n}
$$

1. 1 Definition of z-Transform

Therefore the discrete-time Fourier transform $G\left(e^{j \omega}\right)$ may be viewed as a special case of the z-transform $G(z)$.
(5) If $g(n)=h(n)$ is the impulse response of some system, its z-transform $G(z)=H(z)$ is called as System Function or Transfer Function of this system.

1. 1 Definition of $\mathbf{z - T r a n s f o r m ~}$

Example 1:

Calculate the ZT of $\quad x(n)=a^{n} u(n)$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x(n) z^{-n}=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \\
& =\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
\end{aligned}
$$

Note that the above equation holds only for $\left|a z^{-1}\right|<1$, i.e. $|z|>|a|$
_ Region of convergence

1. 1 Definition of z-Transform

Example 2:

Calculate the ZT of $\quad x(n)=-a^{n} u(-n-1)$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{-1}-a^{n} z^{-n}=\sum_{n=-\infty}^{-1}\left(a z^{-1}\right)^{n} \\
& =\sum_{n=1}^{n}\left(a z^{-1}\right)^{-n}=\sum_{n=1}^{\infty}\left(a^{-1} z\right)^{n}=\frac{z}{z-a}
\end{aligned}
$$

Note that the above equation holds only for $\left|a^{-1} z\right|<1$, i.e. $|z|<|a|$

Region of convergence

1. 1 Definition of z-Transform

From the above two examples, we find that

- Very different time functions can have the same z-transform. Because ROC plays an important role in computing the z-transform or inverse z-transform.
- So we must specify not only the z-transform corresponding to a time function, but its ROC as well.

1. 2 Rational $z-T r a n s f o r m ~$

- In the case of LTI discrete-time systems we are concerned with in this course, all involved z-transforms are rational functions of z^{-1}
- That is, they are ratios of two polynomials in z^{-1} :
$G(z)=\frac{P(z)}{D(z)}=\frac{p_{0}+p_{1} z^{-1}+\cdots+p_{M-1} z^{-(M-1)}+p_{M} z^{-M}}{d_{0}+d_{1} z^{-1}+\cdots d_{N-1} z^{-(N-1)}+d_{N-1} z^{-N}}$

1. 2 Rational z-Transform

- The degree of the numerator polynomial $P(z)$ is M and the degree of the denominator polynomial $D(z)$ is N
- An alternate representation of a rational z transform is as a ratio of two polynomials in z :
$G(z)=z^{(N-M)} \frac{p_{0} z^{M}+p_{1} z^{M-1}+\cdots+p_{M-1} z+p_{M}}{d_{0} z^{N}+d_{1} z^{N-1}+\cdots d_{N-1} z+d_{N-1}}$

1. 2 Rational z-Transform

- A rational z-transform can be alternatively written in factored form as

$$
\begin{aligned}
G(z) & =\frac{p_{0}}{d_{0}} \frac{\prod_{l=1}^{M}\left(1-\xi_{l} z^{-1}\right)}{\prod_{l=1}^{N}\left(1-\lambda_{l} z^{-1}\right)} \\
& =z^{(N-M)} \frac{p_{0}}{d_{0}} \frac{\prod_{l=1}^{M}\left(z-\xi_{l}\right)}{\prod_{l=1}^{N}\left(z-\lambda_{l}\right)}
\end{aligned}
$$

- At a root $z=\xi_{l}$ of the numerator polynomial, $G\left(\xi_{l}\right)=0$, and as a result, these values of z are known as the zeros of $G(z)$
- At a root $z=\lambda_{l}$ of the denominator polynomial, $G\left(z_{l}\right)=0$, and as a result, these values of z are known as the poles of $G(z)$

1. 2 Rational z-Transform

Consider: $G(z)=z^{(N-M)} \frac{p_{0}}{d_{0}} \frac{\prod_{l=1}^{M}\left(z-\xi_{l}\right)}{\prod_{l=1}^{N}\left(z-\lambda_{l}\right)}$

- Note $G(z)$ has M finite zeros and N finite poles
- If $N>M$ there are additional $N-M$ zeros at z $=0$ (the origin in the z-plane)
- If $N<M$ there are additional $M-N$ poles at z $=0$
- A physical interpretation of the concepts of poles and zeros can be given by plotting the log-magnitude $20 \log _{10}|G(z)|$ as shown on next slide for

$$
G(z)=\frac{1-2.4 z^{-1}+2.88 z^{-2}}{1-0.8 z^{-1}+0.64 z^{-2}}
$$

1. 2 Rational z-Transform

2. Region of Convergence of a Rational z-Transform

- ROC of a z-transform is an important concept.
- Without the knowledge of the ROC, there is no unique relationship between a sequence and its z-transform.
- Hence, the z-transform must always be specified with its ROC.

2. Region of Convergence of a Rational z-Transform

- Moreover, if the ROC of a z-transform includes the unit circle, the DTFT of the sequence is obtained by simply evaluating the z-transform on the unit circle.
- There is a relationship between the ROC of the z-transform of the impulse response of a causal LTI discrete-time system and its BIBO stability.

2. Region of Convergence of a

 Rational z-Transform- The ROC of a rational z-transform is bounded by the locations of its poles
- To understand the relationship between the poles and the ROC, it is instructive to examine the pole-zero plot of a z-transform
- In general, there are four types of ROCs for z transforms, and they depend on the type of the corresponding time functions.
- Finite-length sequence
- Right-sided sequence
- Left-sided sequence
- Two-sided (infinite duration) sequence
2.1 General Form of ROC
- Finite-length Sequence

A finite-length sequence $g(n)$ is defined for $-M \leqslant n \leqslant N$ with M and N positive, and $|g(n)|<\infty$.

In general, its ROC includes the entire z-plane except possible $z=0$ or/and $z=\infty$

For finite duration sequences, the condition of convergence is that every term in the ZT is convergent. Except the $z=0$ and $\mathrm{z}=\infty$, the ZT of a finite sequence is convergent in the entir z-plane.

2.1 General Form of ROC

If $M \geqslant 0, R_{g_{-}}<|z| \leq \infty \quad R_{g^{+}}=\infty$
If $M<0, \quad R_{g_{-}}<|z|<\infty \quad R_{g^{+}}<\infty$
If $M=0, u(n)$ is called a causal sequence

Comment

All causal sequences (or the impulse responses of LTI systems) are right-sided, while not all right-sided sequences correspond to causal systems.

2.1 General Form of ROC

- Left-sided Sequence

A left-sided sequence $v(\mathrm{n})$ with nonzero sample values only for $n \leqslant N$

2.1 General Form of ROC

If $N>0, \quad 0<|z|<R_{g+} \quad R_{g-}>0$
If $N \leqslant 0,0 \leq|z|<R_{g+} \quad R_{g-}=0$
If $N=0, v(n)$ is called a anticausal sequence
2.1 General Form of ROC

- Two-sided Sequence

The z-Transform of a two-sided sequence $w(n)$ can be expressed as

$$
\begin{gathered}
W(z)=\sum_{n=-\infty}^{\infty} w(n) z^{-n}=\sum_{n=0}^{\infty} w(n) z^{-n}+\sum_{n=-\infty}^{-1} w(n) z^{-n} \\
\begin{array}{c}
\text { A right-sided } \\
\text { sequence }
\end{array}+\begin{array}{c}
\text { A left-sided } \\
\text { sequence }
\end{array} \\
|z|>R_{g-}
\end{gathered}
$$

2.1 General Form of ROC

Obviously, the ROC of $W(z)$ is the intersection of $|z|>R_{g_{-}}$and $|z|<R_{g+}$. If $R_{g+}>R_{g-}$, its ROC has the following form

But, if $R_{g+}<R_{g-}$, its ROC is a null space, i.e., the transform does not exist

Summary

- In general, if the rational z-transform has N poles with R distinct magnitudes, then it has $R+1$ ROCs
- Thus, there are $R+1$ distinct sequences with the same z-transform
- Hence, a rational z-transform with a specified ROC has a unique sequence as its inverse z-transform.
- The ROC of a rational z-transform can be easily determined using MATLAB
$[\mathbf{z}, \mathbf{p}, \mathbf{k}]=\operatorname{tf} 2 \mathrm{zp}($ num,den $)$
determines the zeros, poles, and the gain constant of a rational z-transform with the numerator coefficients specified by the vector num and the denominator coefficients specified by the vector den.
- [num,den] $=\mathbf{z p} 2 t f(\mathbf{z}, \mathbf{p}, \mathbf{k})$ implements the reverse process
- The factored form of the z-transform can be obtained using sos $=\mathbf{z p} 2 \operatorname{sos}(\mathbf{z}, \mathbf{p}, \mathbf{k})$ where sos stands for second-order section
- The above statement computes the coefficients of each second-order factor given as an $L \times 6$ matrix sos

$$
\boldsymbol{\operatorname { s o s }}=\left[\begin{array}{cccccc}
b_{01} & b_{11} & b_{21} & a_{01} & a_{11} & a_{12} \\
b_{02} & b_{12} & b_{22} & a_{02} & a_{12} & a_{22} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
b_{0 L} & b_{1 L} & b_{2 L} & a_{0 L} & a_{1 L} & a_{2 L}
\end{array}\right]
$$

where

$$
G(z)=\prod_{k=1}^{L} \frac{b_{0 k}+b_{1 k} z^{-1}+b_{2 k} z^{-2}}{a_{0 k}+a_{1 k} z^{-1}+a_{2 k} z^{-2}}
$$

- The pole-zero plot is determined using the function zplane
- The z-transform can be either described in terms of its zeros and poles:
zplane(zeros, poles)
or, it can be described in terms of its numerator and denominator coefficients: zplane(num,den)

