Chapter 5B	
Finite-Length Discrete Transforms	

Part B	
Discrete Fourier Transform Properties	

- Circular Shift of a Sequence
- Circular Convolution
- Computation of the DFT of Real Sequences
- Linear Convolution Using the DFT
- Like the DTFT, the DFT also satisfies a number of properties that are useful in signal processing applications
- Some of these properties are essentially identical to those of the DTFT, while some others are somewhat different
- A summary of the DFT properties are given in table 5.3 on page 200

1. Circular Shift of a Sequence

- This property is analogous to the time-shifting property of the DTFT, but with a subtle difference
- Consider length $-N$ sequences defined

$$
0 \leqslant n \leqslant N-1
$$

- The sample values of such sequences are equal to zero for values of $n<0$ and $n \geqslant N$

1. Circular Shift of a Sequence

- If $x(n)$ is such a sequence, then for any nonzero arbitrary integer, the shifted sequence

$$
x_{1}(n)=x_{1}\left(n-n_{0}\right)
$$

is no longer defined for the range $0 \leqslant n \leqslant N-1$

- We thus need to define another type of a shift that will always keep the shifted sequence in the range $0 \leqslant n \leqslant N-1$

1. Circular Shift of a Sequence

- The desired shift, called the circular shift, is defined using a modulo operation:

$$
x_{c}(n)=x\left(\left\langle n-n_{0}\right\rangle_{N}\right)
$$

- For $n_{0}>0$ (right circular shift), the above equation implies

$$
x_{c}(n)=\left\{\begin{array}{l}
x\left(n-n_{0}\right), \text { for } n_{0} \leq n \leq N-1 \\
x\left(N+n-n_{0}\right), \text { for } 0 \leq n<n_{0}
\end{array}\right.
$$

Illustration of the concept of a circular shift

1. Circular Shift of a Sequence

- As can be seen from the previous figure, a right circular shift by n_{0} is equivalent to a left circular shift by $N-n_{0}$ sample periods.
- A circular shift by an integer number n_{0} greater than N is equivalent to a circular shift by $\left\langle n_{0}\right\rangle_{N}$

1. Circular Shift of a Sequence

- DFT of the circular shift sequence

$$
\begin{aligned}
y(n) & =x\left(\langle n+m\rangle_{N}\right) R_{N}\left(\langle n+m\rangle_{N}\right) \\
Y(k) & =D F T[y(n)] \\
& =\sum_{n=0}^{N-1} x\left(\langle n+m\rangle_{N}\right) R_{N}(n) W_{N}^{k n} \\
& =\sum_{n=0}^{N-1} x\left(\langle n+m\rangle_{N}\right) W_{N}^{k n}
\end{aligned}
$$

1. Circular Shift of a Sequence

$$
\begin{aligned}
Y(k) & =\sum_{n^{\prime}=m}^{N-1+m} x\left(\left\langle n^{\prime}\right\rangle_{N}\right) W_{N}^{k\left(n^{\prime}-m\right)} \\
& =W_{N}^{-k m} \sum_{n^{\prime}=m}^{N-1+m} x\left(\left\langle n^{\prime}\right\rangle_{N}\right) W_{N}^{k n^{\prime}} \\
& =W_{N}^{-k m}\left(\sum_{n^{\prime}=0}^{N-1}(.)-\sum_{n^{\prime}=0}^{m-1}(.)+\sum_{n^{\prime}=N}^{N-1+m}(.)\right) \\
& =W_{N}^{-k m} \sum_{n^{\prime}=0}^{N-1} x\left(\left\langle n^{\prime}\right\rangle_{N}\right) W_{N}^{k n^{\prime}} \\
& =W_{N}^{-k m} \sum_{n^{N}=0}^{N-1} x\left(n^{\prime}\right) W_{N}^{k n^{\prime}}=W_{N}^{-k m} X(k)
\end{aligned}
$$

2. Circular Convolution

- Circular convolution is analogous to linear convolution, but with a subtle difference
- Comparison of linear convolution with circular convolution
- Consider two length- N sequences, $g(n)$ and $h(n)$ respectively

2. Circular Convolution

	linear convolution	circular convolution
Length of convolution	$2 N-1$	to be specified
Convolution Formulas	$y_{L}(n)=\sum_{m=0}^{N-1} g(m) h(n-m)$	$y_{C}(n)=\sum_{m=0}^{N-1} g(m) h\left(\langle n-m\rangle_{N}\right)$
Convolution Signs	\circledast or $*$	\otimes
Condition of equivalence	$?$	

2. Circular Convolution

- To develop a convolution-like operation resulting in a length $-N$ sequence $y_{C}(n)$, we need to define a circular time-reversal, and then apply a circular time-shift.
- Resulting operation, called a circular convolution, is defined by

$$
y_{C}(n)=\sum_{m=0}^{N-1} g(m) h\left(\langle n-m\rangle_{N}\right), \quad 0 \leq n \leq N-1
$$

2. Circular Convolution

- Since the operation defined involves two length $-N$ sequences, it is often referred to as an N-point circular convolution, denoted as

$$
y_{C}(n)=g(n) \otimes h(n)
$$

- The circular convolution is commutative, i.e.

$$
g(n) \otimes h(n)=h(n) \otimes g(n)
$$

2. Circular Convolution

Example 1 Length of Circular Convolution is 4

Step 1: Perform Circular time-reversal operation on $h(m)($ or $g(m))$

These seven samples are enough to calculate the These seven samples are enough to calculate the
circular convolution because of the periodicity of DFT

2. Circular Convolution

Step 2: Perform Circular time-shift operation

2. Circular Convolution

Step 3: Perform multiplication and summation of sequences over the region of $0 \leqslant m \leqslant 3$ for $n=0, n=1, n=2$ and $n=3$ respectively

$$
\begin{aligned}
& y(0)=\begin{array}{lllll}
1 & 2 & 0 & 1 \\
2 & 1 & 1 & 2
\end{array} \quad 2+2+0+2=6 \quad y(1)=\frac{\begin{array}{lllll}
1 & 2 & 0 & 1 \\
2 & 2 & 1 & 1
\end{array}}{2+4+0+1}=7 \\
& y(2)=\begin{array}{lllll}
1 & 2 & 0 & 1 \\
1 & 2 & 2 & 1 \\
1+4+0+1
\end{array}=6 \\
& y(3)=\begin{array}{llll}
1 & 2 & 0 & 1 \\
1 & 1 & 2 & 2 \\
\hline 1+2+0+2
\end{array}
\end{aligned}
$$

2. Circular Convolution

Example 2 Length of Circular Convolution is 7

- In order to develop the 7-point circular convolution on the sequences in the former example, we extended these two sequences to length 7 by appending each with 3 zero-valued samples, i.e.

$$
\begin{aligned}
& g_{e}(n)=\left\{\begin{array}{cc}
g(n), & 0 \leq n \leq 3 \\
0, & 4 \leq n \leq 6
\end{array}\right. \\
& h_{e}(n)=\left\{\begin{array}{cc}
h(n), & 0 \leq n \leq 3 \\
0, & 4 \leq n \leq 6
\end{array}\right.
\end{aligned}
$$

2. Circular Convolution

Perform Circular time-reversal operation on $h_{e}(m)$

2. Circular Convolution

In this case, hence, the procedure of circular convolution is equivalent to that of linear convolution over the region of principle value
Obviously, this conclusion always holds when the length of Circular Convolution is not less than 7

Summary
Provided that the length of Circular Convolution is not less than $N+M-1$ where N and M are the lengths of the two sequences involved, the procedure of circular convolution is equivalent to that of linear convolution

3. Classification of Finite-Length

 Sequences- Based on Conjugate Symmetry

It has been discussed in Ch. 2

- Based on Geometric Symmetry

A length- N symmetry sequence $x(n)$ satisfies the condition $x(n)=x(N-1-n)$
A length- N antisymmetry sequence $x(n)$ satisfies the condition

$$
x(n)=-x(N-1-n)
$$

3. Classification of Finite-Length Sequences

$h(n) \uparrow \quad \begin{gathered}\text { Type } \\ N=8\end{gathered}$
$h(n) \underset{\substack{\text { Type } \\ \mathrm{N}=8},}{\substack{\text { Center of } \\ \text { symmetry }}}$

4. Computation of the DFT of Real Sequences

- In most practical applications, sequences of interest are real
- In such cases, the symmetry properties of the DFT given in Table 5.2 can be exploited to make the DFT computations more efficient

4. Computation of the

 DFT of Real SequencesN-Point DFTs of Two Real Sequences Using a Single N-Point DFT

- $2 N$-Point DFTs of a Real Sequence Using a Single N-Point DFT

4.1 N-Point DFTs of Two Real

 Sequences Using a Single N-Point DFT- Let $g(n)$ and $h(n)$ be two length $-N$ real sequences with $G(k)$ and $H(k)$ denoting their respective N-point DFTs
- These two N-point DFTs can be computed efficiently using a single N-point DFT
- Define a complex length $-N$ sequence

$$
x(n)=g(n)+j h(n)
$$

- Hence, $g(n)=\operatorname{Re}\{x(n)\}$ and $h(n)=\operatorname{Im}\{x(n)\}$

4.1 N-Point DFTs of Two Real

 Sequences Using a Single N-Point DFT- Let $X(k)$ denote the N-point DFT of $x(n)$
- Then, from Table 5.1 we arrive at

$$
\begin{aligned}
& G(k)=\frac{1}{2}\left\{X(k)+X^{*}\left(\langle-k\rangle_{N}\right)\right\} \\
& H(k)=\frac{1}{2 j}\left\{X(k)-X^{*}\left(\langle-k\rangle_{N}\right)\right\}
\end{aligned}
$$

- Note that

$$
X^{*}\left(\langle-k\rangle_{N}\right)=X^{*}\left(\langle N-k\rangle_{N}\right)
$$

4.1 N-Point DFTs of Two Real

 Sequences Using a Single N-Point DFT
Example

- We compute the 4-point DFTs of the two real sequences $g(n)$ and $h(n)$ given below

$$
\{g(n)\}=\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\},\{h(n)\}=\left\{\begin{array}{llll}
2 & 2 & 1 & 1
\end{array}\right\}
$$

- Then $\{x(n)\}=\{g(n)\}+j\{h(n)\}$ is given by $\{x(n)\}=\{1+j 22+j 2 j 1+j\}$

4.1 N-Point DFTs of Two Real

 Sequences Using a Single N-Point DFT- We can work out the 4-point DFT of $x(n)$

$$
\{X(k)\}=\left\{\begin{array}{llll}
4+j 6 & 2 & -2 & j 2
\end{array}\right\}
$$

- From the above

$$
\left\{X^{*}(k)\right\}=\left\{\begin{array}{lll}
4-j 6 & 2 & -2-j 2
\end{array}\right\}
$$

- Hence

$$
\left\{X^{*}\left(\langle N-k\rangle_{N}\right)\right\}=\{4-j 6-2 j-22\}
$$

4.1 N-Point DFTs of Two Real

 Sequences Using a Single N-Point DFT- Therefore

$$
\begin{aligned}
& \{G(k)\}=\left\{\begin{array}{llll}
4 & 1-j & -2 & 1+j
\end{array}\right\} \\
& \{H(k)\}=\left\{\begin{array}{llll}
6 & 1-j & 0 & 1+j
\end{array}\right\}
\end{aligned}
$$

4.2 2 N -Point DFT of

 a Real Sequence Using an N-Point DFT- Let $v(n)$ be a length $-2 N$ real sequence with an $2 N$-point DFT $V(k)$
- Define two length- N real sequences $g(n)$ and $h(n)$ as follows:
$g(n)=v(2 n), h(n)=v(2 n+1) \quad 0 \leqslant n \leqslant N-1$
- Let $G(k)$ and $H(k)$ denote their respective N point DFTs

4.2 2N-Point DFT of a Real Sequence Using an N-Point DFT

$$
\begin{aligned}
V(k) & =\sum_{n=0}^{2 N-1} v(n) W_{2 N}^{n k} \\
& =\sum_{n=0}^{N-1} v(2 n) W_{2 N}^{2 n k}+\sum_{n=0}^{N-1} v(2 n+1) W_{2 N}^{(2 n+1) k} \\
& =\sum_{n=0}^{N-1} g(n) W_{N}^{n k}+\sum_{n=0}^{N-1} h(n) W_{N}^{n k} W_{2 N}^{k} \\
& =\sum_{n=0}^{N-1} g(n) W_{N}^{n k}+W_{2 N}^{k} \sum_{n=0}^{N-1} h(n) W_{N}^{n k}, 0 \leq k \leq 2 N-1
\end{aligned}
$$

4.2 2N-Point DFT of a Real Sequence Using an N-Point DFT

$V(k)=\sum_{n=0}^{N-1} g(n) W_{N}^{n k}+W_{2 N}^{k} \sum_{n=0}^{N-1} h(n) W_{N}^{n k}, 0 \leq k \leq 2 N-1$ i.e.
$V(k)=G\left(\langle k\rangle_{N}\right)+W_{2 N}^{k} H\left(\langle k\rangle_{N}\right) \quad 0 \leq k \leq 2 N-1$
where the DFTs of $G(k)$ and $H(k)$ can be computed by means of the method discussed in 4.1

5. Linear Convolution Using the DFT

- Linear convolution is a key operation in many signal processing applications.
- Since a DFT can be efficiently implemented using FFT algorithms, it is of interest to develop methods for the implementation of linear convolution using the DFT.
5.1 Linear Convolution of Two FiniteLength Sequences
- Let $g(n)$ and $h(n)$ be two finite-length sequences of length N and M, respectively
- Denote $L=N+M-1$
- Define two length $-L$ sequences

$$
\begin{aligned}
& g_{e}(n)= \begin{cases}g(n), & 0 \leq n \leq N-1 \\
0, & N \leq n \leq L-1\end{cases} \\
& h_{e}(n)=\left\{\begin{array}{cc}
h(n), & 0 \leq n \leq M-1 \\
0, & M \leq n \leq L-1
\end{array}\right.
\end{aligned}
$$

5.1 Linear Convolution of Two FiniteLength Sequences

- Then

$$
y_{L}(n)=g(n) \circledast h(n)=g(n) \otimes h(n)
$$

- The corresponding implementation scheme is illustrated below

5.2 Linear Convolution of a Finite-Length Sequence with an Infinite-Length Sequence
- We next consider the DFT-based implementation of

$$
y(n)=\sum_{l=0}^{M-1} h(l) x(n-l)=h(n) \circledast x(n)
$$

where $h(n)$ is a finite-length sequence of length M and $x(n)$ is an infinite length (or a finite length sequence whose length is much greater than M)

- We first segment $x(n)$, assumed to be a causal sequence here without (any) loss of generality, into a set of contiguous finite-length subsequences of length N each:
where

$$
x(n)=\sum_{m=0}^{\infty} x_{m}(n-m N)
$$

$$
x_{m}(n)=\left\{\begin{array}{cl}
x(n+m N), & 0 \leq n \leq N-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Thus we can write
where $y(n)=h(n) \circledast x(n)=\sum_{m=0} y_{m}(n-m N)$

$$
y_{m}(n)=h(n) \circledast x_{m}(n)
$$

- Since $h(n)$ is of length M and $x_{m}(n)$ is of length N, the linear convolution $y_{m}(n)=h(n) \circledast x_{m}(n)$ is of length $N+M-1$

5.2 Overlap-Add Method

- As a result, the desired linear convolution $y(n)=h(n) \circledast x(n)$ has been broken up into a sum of infinite number of short-length linear convolutions of length $N+M-1$ each:

$$
y_{m}(n)=h(n) \circledast x_{m}(n)
$$

- Each of these short convolutions can be implemented using the DFT-based method discussed earlier, where the DFTs (and the IDFT) are computed on the basis of $(N+M-1)$ points

5.2 Overlap-Add Method

- There is one more subtlety to take care of before we can implement

$$
y(n)=\sum_{m=0}^{\infty} y_{m}(n-m N)
$$

using the DFT-based approach

- Now the first convolution in the above sum, $y_{0}(n)=h(n) \circledast x_{0}(n)$ is of length $N+M-1$ and is defined for $0 \leqslant n \leqslant N+M-2$

5.2 Overlap-Add Method

- The second short convolution $y_{1}(n)=h(n) \circledast x_{1}(n)$ is also of length $N+M-1$ but is defined for $N \leqslant n \leqslant 2 N+M-2$
- \longrightarrow There is an overlap of $M-1$ samples between these two short linear convolutions
- Likewise, the third short convolution $y_{2}(n)=h(n) \circledast x_{2}(n)$, is also of length $N+M-1$ but is defined for $2 N \leqslant n \leqslant 3 N+M-2$

- Thus there is an overlap of $M-1$ sample between $h(n) \circledast x_{1}(n)$ and $h(n) \circledast x_{2}(n)$
- In general, there will be an overlap of $M-1$ samples between the samples of the short convolutions $h(n) \circledast x_{r-1}(n)$ and $h(n) \circledast x_{r}(n)$
- This process is illustrated in the figure on the next slide for $M=5$ and $N=7$.

5.2 Overlap-Add Method

- The above procedure is called the overlap add method since the results of the short linear convolutions overlap and the overlapped portions are added to get the correct final result.
- The function fftfilt can be used to implement the above method.
- Program 5_5 illustrates the use of fftfilt in the filtering of a noise-corrupted signal using a length-3 moving average filter

