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DFT Properties

� Like the DTFT, the DFT also satisfies a 
number of properties that are useful in signal 
processing applications

� Some of these properties are essentially 
identical to those of the DTFT, while some 
others are somewhat different

� A summary of the DFT properties are given in 
table 5.3 on page 200
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1. Circular Shift of a Sequence

� This property is analogous to the time-shifting 
property of the DTFT, but with a subtle 
difference

� Consider length-N sequences defined
0 n N 1

� The sample values of such sequences are 
equal to zero for values of n < 0 and n N

6

1. Circular Shift of a Sequence

� If x(n) is such a sequence, then for any non-
zero arbitrary integer, the shifted sequence

x1(n)=x1(n n0)
is no longer defined for the range 0 n N 1

� We thus need to define another type of a shift 
that will always keep the shifted sequence in 
the range 0 n N 1
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1. Circular Shift of a Sequence

� The desired shift, called the circular shiftcircular shift, is 
defined using a modulo operation:

� For n0>0 (right circular shiftright circular shift), the above 
equation implies

� �0( )c N
x n x n n� �

0 0

0 0

( ), for 1
( )

( ), for 0c

x n n n n N
x n

x N n n n n
� � � ��

� � 	 � � 
�
8

1. Circular Shift of a Sequence

Illustration of the concept of a circular shiftIllustration of the concept of a circular shift

x(n) � � � �6 6
1 5x n x n� � 	 � � � �6 6

4 2x n x n� � 	
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1. Circular Shift of a Sequence

� As can be seen from the previous figure, a 
right circular shift by n0 is equivalent to a left 
circular shift by N n0 sample periods.

� A circular shift by an integer number n0
greater than N is equivalent to a circular shift 
by 0 N

n
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1. Circular Shift of a Sequence

�� DFT of the circular shift sequenceDFT of the circular shift sequence
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1. Circular Shift of a Sequence
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2. Circular Convolution

�� Circular convolutionCircular convolution is analogous to linear 
convolution, but with a subtle difference

� Comparison of linear convolution with circular 
convolution

� Consider two length-N sequences, g(n) and h(n)
respectively
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2. Circular Convolution

?Condition of 
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2. Circular Convolution

� To develop a convolution-like operation 
resulting in a length-N sequence yC(n), we 
need to define a circular timecircular time--reversalreversal, and 
then apply a circular timea circular time--shiftshift.

� Resulting operation, called a circularcircular
convolutionconvolution, is defined by
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2. Circular Convolution

� Since the operation defined involves two 
length-N sequences, it is often referred to as an 
N-point circular convolution, denoted as

yC(n)=g(n) h(n)
� The circular convolution is commutative, i.e.

g(n) h(n)=h(n) g(n)

N

N N

16

2. Circular Convolution

Example 1Example 1 Length of Circular Convolution is 4

g(n) h(n)

Step 1:  Perform Circular time-reversal operation on
h(m) (or g(m))

4
( )h m�

These seven samples are enough to calculate the 
circular convolution because of the periodicity of DFT 17

2. Circular Convolution

Step 2:  Perform Circular time-shift operation

Red               {2  1  1  2}44
( ) ( )h m R m�

Blue                {2  2  1  1}44
( 1 ) ( )h m R m�

Green              {1  2  2  1} 44
( 2 ) ( )h m R m�

Purple               {1  1  2  2}44
( 3 ) ( )h m R m�
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2. Circular Convolution

Step 3:  Perform multiplication and summation of 
sequences over the region of 0 m 3 for n=0,n=1,n=2
and n=3 respectively

y(0)=

1  2  0  1
2  1  1  2
2+2+0+2= 6 y(1)=

1  2  0  1
2  2  1  1
2+4+0+1= 7

y(2)=

1  2  0  1
1  2  2  1
1+4+0+1= 6 y(3)=

1  2  0  1
1  1  2  2
1+2+0+2= 5
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2. Circular Convolution

Example 2Example 2 Length of Circular Convolution is 7
� In order to develop the 7-point circular convolution 

on the sequences in the former example, we 
extended these two sequences to length 7 by
appending each with 3 zero-valued samples, i.e.

( ), 0 3
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0, 4 6e

g n n
g n

n
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( )
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h n
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2. Circular Convolution

ge(n) he(n)

Perform Circular time-reversal operation on he(m)

7
( )eh m�

ge(m)

These three 
samples are 
not involved in 
the circular 
convolution
operation
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2. Circular Convolution

In this case, hence, the procedure of circular 
convolution is equivalent to that of linear convolution 
over the region of principle value
Obviously, this conclusion always holds when the 
length of Circular Convolution is not less than 7

Summary

Provided that the length of Circular Convolution is 
not less than N+M 1 where N and M are the lengths 
of the two sequences involved, the procedure of 
circular convolution is equivalent to that of linear 
convolution
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3. Classification of Finite-Length 
Sequences

� Based on Conjugate Symmetry
It has been discussed in Ch.2

� Based on Geometric Symmetry
A length-N symmetrysymmetry sequence x(n) satisfies
the condition 
A length-N antisymmetryantisymmetry sequence x(n)
satisfies the condition 

( ) ( 1 )x n x N n� � �

( ) ( 1 )x n x N n� � � �
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3. Classification of Finite-Length 
Sequences
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4. Computation of the
DFT of Real Sequences

� In most practical applications, sequences of 
interest are real

� In such cases, the symmetry properties of the 
DFT given in Table 5.2 can be exploited to 
make the DFT computations more efficient
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4. Computation of the 
DFT of Real Sequences

�� NN--PointPoint DFTsDFTs of Two Real Sequences Using of Two Real Sequences Using 
a Single a Single NN--Point DFTPoint DFT

�� 22NN--PointPoint DFTsDFTs of a Real Sequence Using a of a Real Sequence Using a 
SingleSingle NN--Point DFTPoint DFT
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4.1 N-Point DFTs of Two Real  
Sequences Using a Single N-Point DFT

� Let g(n) and h(n) be two length-N real
sequences with G(k) and H(k) denoting their 
respective N-point DFTs

� These two N-point DFTs can be computed 
efficiently using a single N-point DFT

� Define a complex length-N sequence
x(n) g(n) j h(n)

� Hence, g(n)=Re{x(n)} and h(n)=Im{x(n)}
27

4.1 N-Point DFTs of Two Real 
Sequences Using a Single N-Point DFT

� Let X(k) denote the N-point DFT of x(n)
� Then, from Table 5.1 we arrive at

� Note that

� �
� �
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4.1 N-Point DFTs of Two Real 
Sequences Using a Single N-Point DFT

ExampleExample
� We compute the 4-point DFTs of  the two real 

sequences g(n) and h(n) given below
{g(n)}={1  2  0  1}, {h(n)}={2  2  1  1}

� Then {x(n)} {g(n)} j{h(n)} is given by
{x(n)}={1+j2  2+j2 j 1+j}
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4.1 N-Point DFTs of Two Real 
Sequences Using a Single N-Point DFT

� We can work out the 4-point DFT of x(n)

{X(k)}={4+j6  2  –2 j2}

� From the above

{X*(k)}={4–j6  2  –2 –j2}

� Hence
*{ ( )} {4 6 2 2 2}

N
X N k j j� � � � �
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4.1 N-Point DFTs of Two Real 
Sequences Using a Single N-Point DFT

� Therefore

{G(k)}={4  1–j –2 1+j}

{H(k)}={6  1–j 0  1+j}
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4.2  2N-Point DFT of 
a Real Sequence Using an N-Point DFT

� Let v(n) be a length-2N real sequence with an
2N-point DFT V(k)

� Define two length-N real sequences g(n) and
h(n) as follows:

g(n)=v(2n), h(n)=v(2n+1)  0 n N 1
� Let G(k) and H(k) denote their respective N

point DFTs
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4.2  2N-Point DFT of 
a Real Sequence Using an N-Point DFT
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4.2  2N-Point DFT of 
a Real Sequence Using an N-Point DFT

2( ) ( ) ( ) 0 2 1k
NN N

V k G k W H k k N� 	 � � �

1 1

2
0 0
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i.e.

where the DFTs of G(k) and H(k) can be 
computed by means of the method discussed in 
4.1
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5. Linear Convolution
Using the DFT

� Linear convolution is a key operation in many 
signal processing applications.

� Since a DFT can be efficiently implemented
using FFT algorithms, it is of interest to
develop methods for the implementation of
linear convolution using the DFT.
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5.1 Linear Convolution of Two Finite-
Length Sequences

� Let g(n) and h(n) be two finite-length
sequences of length N and M, respectively

� Denote L=N+M 1
� Define two length-L sequences

( ), 0 1
( )

0, 1e

g n n N
g n

N n L
� � ��

� � � � ��
( ), 0 1

( )
0, 1e

h n n M
h n

M n L
� � ��

� � � � �� 36

5.1 Linear Convolution of Two Finite-
Length Sequences

� Then
yL(n)=g(n) h(n)=g(n) h(n)

� The corresponding implementation scheme is 
illustrated below

N�

(N+M 1) -
point IDFT

g(n)
Length N

h(n)
Length M

(N+M 1) -
point DFT

Zero-padding
with M 1 Zeros

ge(n)
yL(n)

(N+M 1) -
point DFT

Zero-padding
with N 1 Zeros

he(n)
Length-(N+M 1)
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5.2 Linear Convolution of a Finite-Length 
Sequence with an Infinite-Length Sequence

� We next consider the DFT-based 
implementation of

where h(n) is a finite-length sequence of 
length M and x(n) is an infinite length (or a 
finite length sequence whose length is much 
greater than M)

1

0
( ) ( ) ( )

M

l
y n h l x n l

�

�

� �� = �h(n) x(n)
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5.2   Overlap-Add Method

� We first segment x(n), assumed to be a causal 
sequence here without (any) loss of generality, 
into a set of contiguous finite-length 
subsequences of length N each:

where 0
( ) ( )m

m
x n x n mN

�

�

� ��
( ), 0 1

( )
0, otherwisem

x n mN n N
x n

	 � � ��
� �

�
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5.2   Overlap-Add Method

� Thus we can write

where

� Since h(n) is of length M and xm(n) is of length 
N, the linear convolution
is of length N+M 1

0
( )m

m
y n mN

�

�

� ��y(n)= �h(n) x(n)

ym(n)= �h(n) xm (n)

ym(n)= �h(n) xm(n)
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5.2   Overlap-Add Method

� As a result, the desired linear convolution
has been broken up into a

sum of infinite number of short-length linear 
convolutions of length N+M 1 each:

� Each of these short convolutions can be
implemented using the DFT-based method
discussed earlier, where the DFTs (and the 
IDFT) are computed on the basis of (N+M 1)
points

y(n)= �h(n) x(n)

ym(n)= �h(n) xm (n)
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5.2   Overlap-Add Method

� There is one more subtlety to take care of
before we can implement

using the DFT-based approach
� Now the first convolution in the above sum, 

is of length N+M 1 and is 
defined for 0 n N+M 2

0
( ) ( )m

m
y n y n mN

�

�

� ��

y0(n)= �h(n) x0(n)
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5.2   Overlap-Add Method

� The second short convolution
is also of length N+M 1 but is defined for 
N n 2N+M 2

� There is an overlap of M 1 samples
between these two short linear convolutions

� Likewise, the third short convolution
, is also of length N+M 1

but is defined for 2N n 3N+M 2

y1(n)= �h(n) x1(n)

y2(n)= �h(n) x2(n)
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5.2   Overlap-Add Method

� Thus there is an overlap of M 1 samples
between                     and

� In general, there will be an overlap of M 1
samples between the samples of the short 
convolutions                     and

� This process is illustrated in the figure on the 
next slide for M = 5 and N = 7.

�h(n) x1(n) �h(n) x2(n)

�h(n) xr-1(n) �h(n) xr(n)
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5.2   Overlap-Add Method

45

5.2   Overlap-Add Method

y0(n)

y0(n)+y1(n-7)

y1(n-7)

y1(n-7)+y2(n-14)
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5.2   Overlap-Add Method

� The above procedure is called the overlap add overlap add 
methodmethod since the results of the short linear 
convolutions overlap and the overlapped 
portions are added to get the correct final 
result.

� The function fftfiltfftfilt can be used to 
implement the above method.

� Program 5_5 illustrates the use of fftfiltfftfilt in
the filtering of a noise-corrupted signal using a 
length-3 moving average filtermoving average filter


