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1. Definition s 1. Definition : 1. Definition :

Definition

e The simplest relation between a length-N
sequence x(n), defined for 0<n<N-1 and its
DTFT X(&/®) is obtained by uniformly
sampling X(&) on the w-axis between 0<w<
27 at w,= 27m k/N, 0<k< N-1

e DFT is obtained by sampling the DTFT over
one principal value interval in the frequency
domain

e From the definition of the DTFT we thus have
X(k)=X("")
-1

w=27k/N
N
_ zx(n)e—jann/N’ 0 < k < N—l
n=0
e X(k) is also a length-N sequence in the
frequency domain

e The sequence X(k) is called the discrete
Fourier transform (DFT) of the sequence x(n)

o Using the notation W, =e727/V, the DFT is
usually express&l as:
X(ky=Y x(mWy, 0<k<N-1
e The inverse dig(::(%ete Fourier transform (IDFT)
is given by o
x(n) = FZX(k)W;"”, 0<n<N-1

k=0




1. Definition : 1. Definition : 1. Definition :
\ \
_ e To verify the validity of IFDT, we multiply
o W, =e7>*/N which is usually called twiddle both sides of the expression by 77/ and sum e Making use of the identity
factor has many useful features the result from » = 0 to ~=N—1, resulting in fo( ki {N , fork—1=rN,risan integer
o Itis the first root of the N N-th roots of unity Nl NolOq N2l N - ;
) " S xm =Y > xow |wl 0. othenvise
o The modulus is 1 (on the unit circle) - —~ ! “\N= ! ! e Hence -
° ka _ W\/;i»]\r‘ W\/;Hv/z _ VVA_I{ ZVV; =0 _ Li N-1 X(k)W\:(kfl)n Zx(n)WAi” = X(])
k=1 N — ! n=0
Wi =1 W' =—1 L
=2 X W
7 k=0 n=0 8 9
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\
e Mapping Relations between time-domain and
frequency-domain transforms
(Time-domain) (Frequency-domain)
Continuous <"~ Aperiodical

Discrete <. Periodical

—

—

{Periodical ~——- Discrete
Aperiodical <— > Continuous

—

e Type 1: Continuous-Time Fourier Transform
(CTFT)

Continuous A . Aperiodical
Aperiodical Xa (t) S v Xa (]Q) Continuous

X, =[x, (e "di

5 0= ] X,(jed0
2 o

e Type 2: Continuous-Time Fourier Series
(CTFS)

Continuous P . Aperiodical
Periodical X (t) S Xa (]kQO) Discrete

. 1o kO
X, (k) =[x, (el
P

X, (=Y X, (jkQ,)e" ™
k

=—0
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e Type 3: Discrete-Time Fourier Transform e Type 4: Discrete Fourier Transform (DFT) e ]
(DTFT) e Rectangular Pulse R,(n), width N
Discrole (N s y(ploy  Perodca e - x(n) <——> X(k) Flonodeal ® Its N-point EIFT 1s given 3 Y o
Aperiodical > X(e™)  Continuous . X(k) = Z x(n)Wk" _ Z W‘:{" 1= VVNk
X(e)= i x(n)e ™" X (k)= Zx(n)W(,‘", Osk<N-I Y w2 N =W
—t 7= 0 WN Wy =Wy .
= k/2 P k/2 eometric
1 ¢n o o x(n) = /Y(k)VV_Im , 0<n<N-1 Wy Wy =Wy Progression
x(l’l) = E-[—ﬂ' X(e/ )e’ dw Z N _ e*j%lm Sln(k;z’) '
13 14 sin(kz/ N) 15
1. Definition : 1. Definition : 2. Matrix Relations :
[ DTFT of R,(n) _Rolation betwoen DFT and DTFT I !
® Iis 2-point DFT i given by I " * This part i introduced for the purpose of
g =1 SR a— £ computation using MATLAB
X(k)= s x(n. ZWZN ,,,,,,,,,,,,,,,,,,,,,,,,,,, / ,,,,,, e Since MATLAB stands for MAtrix
A ’Tvk” sin(kz/2) " LABoratory, we represent DFT definition in
1 Wk =e m 4-Point DFT of R (n) 8-point of R,(n) terms Of matriX form
2N

e So the length of DFT plays a very important
role in DFT

IX (k)
IX(k)l

N-1

X(k)y=>Y x(mWy", 0<k<N-1
n=0
X=D,x




2. Matrix Relations H

o where X=[X(0) X() - X(N-DJ
x=[x(0) x()) - x(N-DJ

2. Matrix Relations

e Likewise, the IDFT relations can be
expressed in x=D,'X

2. Matrix Relations H

e Obviously, the relation between the two
coefficient matrices can be expressed as
follows

11 | 1 1 1 1 p-lp
LWy wy oyt | 1wy W - v = Dw
N— -1 -2 -4 “2(N-1)

D, =1 Wy Wy eyt Dy = N 1 W" WV Wy o Therefore, the algorithms designed for DFT

: : : - : : : are applicable to IDFT

1 W\;\«—l W\%(N—l) W\(}N—l)(x\/—l) -, 1 W\’,w’” WA,TZ(MI) W;(A—l)(N—l) .
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3. DFT Computation seis 3. DFT Computation seis 4. Relations between DTFT and | $::¢

Using MATLAB H Using MATLAB H DFT and their inverses H

e The functions to compute the DFT and the
IDFT are £ft and ifft

e These functions make use of FFT algorithms
which are computationally highly efficient
compared with the direct computation

e Figure in the next slide shows the DFT and
DTFT of the sequence

cos(6zn/16) 0<n<l15
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o DFT
—— DTFT

s 0 o N ®

Magnitude

-~ N o
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o DTFT from DFT by interpolation
o Sampling the DTFT

e Numerical computation of the DTFT using
DFT

X(k) interpolation X(ejw)
sampling

24




4.1 DTFT from DFT by interpolation H

e The N-point DFT X(k) of a length-N sequence
x(n) is simply the frequency samples of its
DTFT X(e®) evaluated at N uniformly spaced

4.1 DTFT from DFT by interpolation H

e We use the IFDT relation and the definition
of DTFT to study the relation between DFT

4.1 DTFT from DFT by interpolation H

o Let$= fe*/{(a—(h{k M and = e*/’[(u—(erk/N)]
e Thus "

! and DTE}-‘ 1 N-l N-1 1 _ rN 1 _ efj(n)Nszrk)
frequency points X (&™) = Z x(n)e " = — z }zmm S= Z r'= . iy P
w,=2n kIN, 0<k< N—1 el - NEUS =0 e
. ) 1 Y Neto oN -2k

e Given the N-point DFT X(k) of a length-N = —ZX(k)Ze flo-@rk/N)n || IDFT sm( 2 ] o (2m W v-1y2

sequence x(7), its DTFT X(¢/®) can be uniquely NS n=0 () ST oN 22k € Ao-GrmN-b12

determined from X(k) ; ( oN —2rx j

Exchange of the order of summations 2N
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4.1 DTFT from DFT by interpolation H 4.2 Sampling the DTFT H 4.2 Sampling the DTFT H
\

e There, DTFT can be determined by the
following interpolation formula

X(e™)

. (a)N—Z;rkj
N sin| =— 7%
= ! ZX(k)—Z.e’f[(U*(Zﬂ/\HN):'[(N—])/z]
N3 . (a)N_Zﬁkj
siIn| ——
2N
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e Consider a sequence x(n) with a DTFT X(e/®)

e We sample X(¢) at N equally spaced points
@, =21 k/N, 0<k< N—1 developing the N
frequency samples {X(¢/®)}

e These N frequency samples can be considered
as an N-point DFT Y(k) whose N-point IDFT
is a length-N sequence y(n)

29

©

e Now  X(™)= z x(n)e /"

e Thus Vl:-o.x; | |
Y(k)=X(e")=X(e/*™M)
= Z x(Z)VVA//J
- N-1
e An IDFT of ¥(k) yields y(n)= %Z Yl
k=0

30




4.2 Sampling the DTFT

N-1 o

. 1 —Kn
sic. ym=—=2 2 xOWW!
k=0 /=—c0
N

:iuﬂliwwﬂ
f— Ni=

e Making use of the identity

INZ:inkw”_ 1, for!/=n+mN
N& Y |0, otherwise
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4.2 Sampling the DTFT .

We arrive at the desired relation

o

y(n) = Z x(n+mN), 0<n<N-1

e Thus y(n) is obtained from x(#) by adding an
infinite number of shifted replicas of x(n) ,
with each replica shifted by an integer
multiple of N sampling instants, and observing
the sum only for the interval 0<n<N-1
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4.2 Sampling the DTFT .

e To apply "
y(n)= Z x(n+mN), 0<n<N-1

to ﬁnite—lenﬁ:ﬁ?equences, we assume that the
samples outside the specified range are zeros

e Thus if x(n) is a length-M sequence with M<N,
then y(n)=x(n) for 0<n<N-1
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4.2 Sampling the DTFT .

e If M > N, there is a time-domain aliasing of
samples of x(#) in generating y(n) , and x(n)
cannot be recovered from y(n)

e This is called Sampling Theorem in
Frequency-Domain (N>M)

e Recall that the condition of Sampling Theorem
in Time-Domain is [>2f.

Example Let x(n)={0 1 2 3 4 5}

T 34

4.2 Sampling the DTFT .

e By sampling its DTFT X(¢/*) at w,=2n k/4,
0<k<3, and then applying a 4-point IDFT to
these samples, we arrive at the sequence y(n)
given by

y(n)=x(n) + x(n+4) + x(n—4) , 0<k<3
ie. ym=1{4 6 2 3}
mm) {x(n) }Tcannot be recovered from {y(n)}
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4.3 Numerical Computation of the oo
DTFT using DFT :

e A practical approach to the numerical
computation of the DTFT of a finite-length
sequence

e Let X(¢/®) be the DTFT of a length-N
sequence x(n)

e We wish to evaluate X(¢/*) at a dense grid of
frequencies , where M >> N :

a)k:%, 0<k<M-1

36




4.3 Numerical Computation of the
DTFT using DFT

\
) N-1 ) N-1 _J2xkn
X(e””" ) =Y x(n)e’™ = x(n)e M
n=0 n=0
e Define a new sequence
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4.3 Numerical Computation of the oo
DTFT using DFT :

e Thus X (e’*) is essentially an M-point DFT
X, (k) of the length-M sequence x,(n)

e The DFT X (k) can be computed very
efficiently using the FFT algorithm if M is an
integer power of 2

e The function freqgz employs this approach
to evaluate the frequency response at a
prescribed set of frequencies of a DTFT

expressed as a rational function in e /*
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