Chapter 5	
Finite Length Discrete Transforms	

Part A	
The Discrete Fourier Transform (DFT)	$\because \because \because: 80$

Discrete Fourier Transform

- Definition
- Matrix Relations
- DFT Computation Using MATLAB
- Relation between DTFT and DFT and their inverses

1. Definition

Definition

- The simplest relation between a length $-N$ sequence $x(n)$, defined for $0 \leq n \leq N-1$ and its DTFT $X\left(e^{i \omega}\right)$ is obtained by uniformly sampling $X\left(e^{j \omega}\right)$ on the ω-axis between $0 \leq \omega \leq$ 2π at $\omega_{k}=2 \pi k / N, 0 \leq k \leq N-1$
- DFT is obtained by sampling the DTFT over one principal value interval in the frequency domain

1. Definition

- From the definition of the DTFT we thus have

$$
\begin{aligned}
X(k) & =\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \pi k / N} \\
& =\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}, \quad 0 \leq k \leq N-1
\end{aligned}
$$

- $X(k)$ is also a length $-N$ sequence in the frequency domain
- The sequence $X(k)$ is called the discrete

Fourier transform (DFT) of the sequence $x(n)$

1. Definition

- Using the notation $W_{N}=e^{-j 2 \pi / N}$, the DFT is usually expressed as:

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad 0 \leq k \leq N-1
$$

- The inverse discrete Fourier transform (IDFT) is given by

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}, \quad 0 \leq n \leq N-1
$$

1. Definition

- $W_{N}=e^{-j 2 \pi / N}$ which is usually called twiddle factor has many useful features
- It is the first root of the $N N$-th roots of unity
- The modulus is 1 (on the unit circle)
- $W_{N}^{k}=W_{N}^{k+N} \quad W_{N}^{k+N / 2}=W_{N}^{-k} \quad \sum_{k=1}^{N-1} W_{N}^{k}=0$ $W_{N}^{0}=1 \quad W_{N}^{N / 2}=-1$

1. Definition

- To verify the validity of IFDT, we multiply both sides of the expression by $W_{N}^{l n}$ and sum the result from $n=0$ to $n=N-1$, resulting in

$$
\begin{aligned}
\sum_{n=0}^{N-1} x(n) W_{N}^{l n} & =\sum_{n=0}^{N-1}\left(\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}\right) W_{N}^{l n} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} X(k) W_{N}^{-(k-l) n} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} X(k) \sum_{n=0}^{N-1} W_{N}^{-(k-l) n}
\end{aligned}
$$

1. Definition

- Making use of the identity
$\sum_{n=0}^{N-1} W_{N}^{-(k-l) n}=\left\{\begin{array}{cc}N, & \text { for } k-l=r N, r \text { is an integer } \\ 0, & \text { otherwise }\end{array}\right.$
- Hence

$$
\sum_{n=0}^{N-1} x(n) W_{N}^{l n}=X(l)
$$

1. Definition

- Mapping Relations between time-domain and frequency-domain transforms

| (Time-domain) |
| :--- | (Frequency-domain)

$\left\{\begin{array}{l}\text { Continuous } \longleftrightarrow \text { Aperiodical } \\
\text { Discrete }\end{array} \Longleftrightarrow\right.$ Periodical
$\left\{\begin{array}{l}\text { Periodical } \longleftrightarrow \text { Discrete } \\
\text { Aperiodical } \longleftrightarrow \text { Continuous }\end{array}\right.$

1. Definition

- Type 1: Continuous-Time Fourier Transform (CTFT)

Continuous
Aperiodical \qquad
\qquad $X_{a}(j \Omega)$ Aperiodical

$$
\begin{gathered}
X_{a}(j \Omega)=\int_{-\infty}^{\infty} x_{a}(t) e^{-j \Omega t} d t \\
x_{a}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X_{a}(j \Omega) e^{j \Omega t} d \Omega
\end{gathered}
$$

1. Definition

- Type 2: Continuous-Time Fourier Series (CTFS)

$$
\underset{\substack{\text { Continuous } \\
\text { Periodical }}}{ } \quad x_{a}(t) \longleftrightarrow X_{a}\left(j k \Omega_{0}\right) \begin{gathered}
\text { Aperiodical } \\
\text { Discrete }
\end{gathered}
$$

$$
\begin{gathered}
X_{a}\left(j k \Omega_{0}\right)=\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2} x_{a}(t) e^{-j k \Omega_{0} t} d t \\
x_{a}(t)=\sum_{k=-\infty}^{\infty} X_{a}\left(j k \Omega_{0}\right) e^{j k \Omega_{0} t}
\end{gathered}
$$

1. Definition

- Type 3: Discrete-Time Fourier Transform (DTFT)

Discrete
Aperiodical Aperiodical

$$
x(n) \longleftrightarrow X\left(e^{j \omega}\right) \quad \begin{gathered}
\text { Periodical } \\
\text { Continuous }
\end{gathered}
$$

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}
$$

$$
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

1. Definition

- Type 4: Discrete Fourier Transform (DFT)

Discrete
Periodica
$x(n)$
 $X(k) \quad$ Periodica

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad 0 \leq k \leq N-1
$$

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}, \quad 0 \leq n \leq N-1
$$

1. Definition

Examples

- Rectangular Pulse $R_{N}(n)$, width N
- Its N-point DFT is given by

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{N-1} x(n) W_{N}^{k n}=\sum_{n=0}^{N-1} W_{N}^{k n}=\frac{1-W_{N}^{k N}}{1-W_{N}^{k}} \\
& =\frac{W_{N}^{k N / 2}}{W_{N}^{k / 2}} \frac{W_{N}^{-k N / 2}-W_{N}^{k N / 2}}{W_{N}^{-k / 2}-W_{N}^{k / 2}} \quad \begin{array}{l}
\text { Geometric } \\
\text { Progression }
\end{array} \\
& =e^{-j \frac{N-1}{N} k \pi} \frac{\sin (k \pi)}{\sin (k \pi / N)}
\end{aligned}
$$

1. Definition

- Its $2 N$-point DFT is given by

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{2 N-1} x\left(n \sqrt{W_{2 N}^{k n}}\right)=\sum_{n=0}^{N-1} W_{2 N}^{k n} \\
& =\frac{1-W_{2 N}^{k N}}{1-W_{2 N}^{k}}=e^{-j \frac{N-1}{2 N} k \pi} \frac{\sin (k \pi / 2)}{\sin (k \pi / 2 N)}
\end{aligned}
$$

- So the length of DFT plays a very important role in DFT

1. Definition

2. Matrix Relations

- This part is introduced for the purpose of computation using MATLAB
- Since MATLAB stands for MAtrix LABoratory, we represent DFT definition in terms of matrix form

$$
\begin{gathered}
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad 0 \leq k \leq N-1 \\
\mathbf{X}=\mathbf{D}_{N} \mathbf{X}
\end{gathered}
$$

2. Matrix Relations

- where $\mathbf{X}=\left[\begin{array}{llll}X(0) & X(1) & \cdots & X(N-1)\end{array}\right]^{T}$ $\mathbf{x}=\left[\begin{array}{llll}x(0) & x(1) & \cdots & x(N-1)\end{array}\right]^{T}$

$$
\mathbf{D}_{N}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & W_{N}^{1} & W_{N}^{2} & \cdots & W_{N}^{N-1} \\
1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)}
\end{array}\right]_{N \times N}
$$

2. Matrix Relations

- Likewise, the IDFT relations can be expressed in $\mathbf{x}=\mathbf{D}_{N}^{-1} \mathbf{X}$
$\mathbf{D}_{N}^{-1}=\frac{1}{N}\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N}^{-1} & W_{N}^{-2} & \cdots & W_{N}^{-(N-1)} \\ 1 & W_{N}^{-2} & W_{N}^{-4} & \cdots & W_{N}^{-2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{-(N-1)} & W_{N}^{-2(N-1)} & \cdots & W_{N}^{-(N-1)(N-1)}\end{array}\right]_{20}$

2. Matrix Relations

- Obviously, the relation between the two coefficient matrices can be expressed as follows

$$
\mathbf{D}_{N}^{-1}=\frac{1}{N} \mathbf{D}_{N}^{*}
$$

- Therefore, the algorithms designed for DFT are applicable to IDFT

3. DFT Computation Using MATLAB

- The functions to compute the DFT and the IDFT are fft and ifft
- These functions make use of FFT algorithms which are computationally highly efficient compared with the direct computation
- Figure in the next slide shows the DFT and DTFT of the sequence

$$
\cos (6 \pi n / 16) \quad 0 \leq n \leq 15
$$

3. DFT Computation

 Using MATLAB
4. Relations between DTFT and DFT and their inverses

- DTFT from DFT by interpolation
- Sampling the DTFT
- Numerical computation of the DTFT using DFT

$$
X(k) \underset{\text { sampling }}{\stackrel{\text { interpolation }}{\rightleftarrows}} X\left(e^{j \omega}\right)
$$

- We use the IFDT relation and the definition of DTFT to study the relation between DFT
and DTFT
$\left.X\left(e^{j \omega}\right)=\sum_{n=0}^{N-1} x(n) e^{-j o n}=\frac{1}{N} \sum_{n=0}^{N-1}\left[\sum_{k=0}^{N-1} X(k) W_{N}^{-k n}\right)\right] e^{-j o n}$

$$
=\frac{1}{N} \sum_{k=0}^{N-1} X(k) \sum_{n=0}^{N-1} e^{-j[\omega-(2 \pi k / N)] n} \|_{x(n)} \text { IDFT }
$$

Exchange of the order of summations

4.1 DTFT from DFT by interpolation

- Let $S=\sum^{N-1} e^{-j[\omega-(2 \pi k / N)] n}$ and $r=e^{-j[\omega-(2 \pi k / N)]}$
- Thus

$$
\begin{aligned}
S= & \sum_{n=0}^{N-1} r^{n}=\frac{1-r^{N}}{1-r}=\frac{1-e^{-j(\omega N-2 \pi k)}}{1-e^{-j[\omega-(2 \pi k / N)]}} \\
& =\frac{\sin \left(\frac{\omega N-2 \pi k}{2}\right)}{\sin \left(\frac{\omega N-2 \pi k}{2 N}\right)} \cdot e^{-j[\omega-(2 \pi k / N)][(N-1) / 2]}
\end{aligned}
$$

4.2 Sampling the DTFT

- Consider a sequence $x(n)$ with a DTFT $X\left(e^{j \omega}\right)$
- We sample $X\left(e^{j \omega}\right)$ at N equally spaced points $\omega_{k}=2 \pi k / N, \quad 0 \leq k \leq N-1$ developing the N frequency samples $\left\{X\left(e^{j \omega_{k}}\right)\right\}$
- These N frequency samples can be considered as an N-point DFT $Y(k)$ whose N-point IDFT is a length $-N$ sequence $y(n)$
4.2 Sampling the DTFT
- Now

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}
$$

- Thus

$$
\begin{aligned}
Y(k) & =X\left(e^{j \omega_{k}}\right)=X\left(e^{j(2 \pi k / N)}\right) \\
& =\sum_{l=-\infty}^{\infty} x(l) W_{N}^{k l}
\end{aligned}
$$

- An IDFT of $Y(k)$ yields $y(n)=\frac{1}{N} \sum_{k=0}^{N-1} Y(k) W_{N}^{-k n}$

We arrive at the desired relation

$$
y(n)=\sum_{m=-\infty}^{\infty} x(n+m N), \quad 0 \leq n \leq N-1
$$

- Thus $y(n)$ is obtained from $x(n)$ by adding an infinite number of shifted replicas of $x(n)$, with each replica shifted by an integer multiple of N sampling instants, and observing the sum only for the interval $0 \leq n \leq N-1$
- To apply

$$
y(n)=\sum_{m=-\infty}^{\infty} x(n+m N), \quad 0 \leq n \leq N-1
$$

to finite-length sequences, we assume that the samples outside the specified range are zeros

- Thus if $x(n)$ is a length- M sequence with $M \leq N$, then $y(n)=x(n)$ for $0 \leq n \leq N-1$

$$
\frac{1}{N} \sum_{k=0}^{N-1} W_{N}^{-k(n-l)}= \begin{cases}1, & \text { for } l=n+m N \\ 0, & \text { otherwise }\end{cases}
$$

- If $M>N$, there is a time-domain aliasing of samples of $x(n)$ in generating $y(n)$, and $x(n)$ cannot be recovered from $y(n)$
- This is called Sampling Theorem in Frequency-Domain ($N \geq M$)
- Recall that the condition of Sampling Theorem in Time-Domain is $f_{s} \geq 2 f_{c}$
Example Let $x(n)=\left\{\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}\right\}$

4.3 Numerical Computation of the

 DTFT using DFT- A practical approach to the numerical computation of the DTFT of a finite-length sequence
- Let $X\left(e^{j \omega}\right)$ be the DTFT of a length- N sequence $x(n)$
- We wish to evaluate $X\left(e^{j \omega}\right)$ at a dense grid of frequencies, where $M \gg N$:

$$
\omega_{k}=\frac{2 \pi k}{M}, \quad 0 \leq k \leq M-1
$$

4.3 Numerical Computation of the DTFT using DFT

$$
X\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{N-1} x(n) e^{-j \omega_{k} n}=\sum_{n=0}^{N-1} x(n) e^{-\frac{j 2 \pi k n}{M}}
$$

- Define a new sequence

$$
x_{e}(n)= \begin{cases}x(n) & 0 \leq n \leq N-1 \\ 0 & N \leq n \leq M-1\end{cases}
$$

- Then

$$
X\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{M-1} x_{e}(n) e^{-\frac{j 2 \pi k n}{M}}
$$

4.3 Numerical Computation of the DTFT using DFT

- Thus $X\left(e^{j \omega_{k}}\right)$ is essentially an M-point DFT $X_{e}(k)$ of the length- M sequence $x_{e}(n)$
- The DFT $X_{e}(k)$ can be computed very efficiently using the FFT algorithm if M is an integer power of 2
- The function freqz employs this approach to evaluate the frequency response at a prescribed set of frequencies of a DTFT expressed as a rational function in $e^{-j \omega}$

