

2. Butterworth Approximation

• The magnitude-square response of an *N*-th order analog lowpass Butterworth Filter is given by

 $\left|H_{a}(j\Omega)\right|^{2} = \frac{1}{1 + \left(\Omega/\Omega_{c}\right)^{2N}}$

- First 2*N*-1 derivatives of $|H_a(j\Omega)|^2$ at $\Omega = 0$ are equal to zero
- The Butterworth lowpass filter thus is said to have a maximally-flat magnitude at $\Omega = 0$

....

2. Butterworth Approximation

- Two parameters completely characterizing a Butterworth lowpass filter are Ω_{a} and N
- They are determined from the specified bandedges Ω_{a} and Ω_{s} , and minimum passband magnitude $|H_a(j\Omega_p)|$, and maximum stopband magnitude $|H_{z}(i\Omega_{z})|$
- Ω_{c} and N are thus determined from

$$\left|H_{a}(j\Omega_{p})\right|^{2} = \frac{1}{1 + (\Omega_{p}/\Omega_{c})^{2N}} \qquad \left|H_{a}(j\Omega_{s})\right|^{2} = \frac{1}{1 + (\Omega_{s}/\Omega_{c})^{2N}}$$

- 2. Butterworth Approximation
- According to the definition of the loss function $\alpha = 10 \log_{10} \frac{1}{\left| H(j\Omega) \right|^2}$

• We know that
$$\frac{1}{|H(i\Omega)|^2} = 1 + \left(\frac{\Omega}{\Omega_1}\right)^2$$

$$1 + \left(\frac{\Omega_p}{\Omega_c}\right)^{2N} = 10^{\frac{\alpha_p}{10}} \quad 1 + \left(\frac{\Omega_s}{\Omega_c}\right)^{2N} = 10^{\frac{\alpha_s}{10}}$$

2. Butterworth Approximation

• Since order *N* must be an integer, value obtained is rounded up to the next highest integer

- This value of *N* is used next to determine by satisfying either the stopband edge or the passband edge specification exactly
- If the stopband edge specification is satisfied, then the passband edge specification is exceeded providing a safety margin

2. Butterworth Approximation

• Since $H_a(s)H_a(-s)$ evaluated at $s = j\Omega$ is simply equal to $|H_a(j\Omega)|^2$, it follows that $H_a(s)H_a(-s) = \frac{1}{1-s}$

$$S)H_{a}(-S) = \frac{1}{1 + (-s^{2}/\Omega_{c}^{2})}$$

- The poles of this expression occur on a circle of radius Ω at equally spaced points
- Because of the stability and causality, the transfer function itself will be specified by just the poles in the negative real half-plane of *s*

2. Butterworth Approximation

• Hence, the transfer function of an analog Butterworth lowpass filter has the form of

$$H_{a}(s) = \frac{C}{D_{N}(s)} = \frac{\Omega_{c}^{*}}{s^{N} + \sum_{l=0}^{N-1} d_{l} s^{l}} = \frac{\Omega_{c}^{*}}{\prod_{l=1}^{N} (s - p_{l})}$$

Where
$$p_{l} = \Omega_{c} e^{i[\pi(N+2l-1)/2N]}, \ l = 1, 2, ..., N$$

• Denominator $D_N(s)$ is known as the Butterworth polynomial of order N

2. Butterworth Approximation

Example -

• Determine the lowest order of a Butterworth lowpass filter with a 1 dB cutoff frequency at 1 kHz and a minimum attenuation of 40 dB at 5 kHz

$$10 \log_{10} \left[\frac{1}{1 + (2000\pi / \Omega_c)^{2N}} \right] = -1$$

$$10 \log_{10} \left[\frac{1}{1 + (10000\pi / \Omega_c)^{2N}} \right] = -40$$

$$N = \log_{10} \left\{ \frac{10^{0.1} - 1}{10^4 - 1} \right\} / \log_{10} \frac{1}{5} = 3.2811$$

3. Design of Other Types of Analog Filters

Highpass Filter

- *Step* 1 Develop of specifications of a prototype analog lowpass filter $H_{LP}(s)$ from specifications of desired analog filter $H_D(s)$ using a frequency (spectrum) transformation.
- *Step* 2 Design the prototype analog lowpass filter
- *Step* 3 Determine the transfer function $H_D(s)$ of desired analog filter by applying the inverse frequency transformation to $H_{LP}(s)$

3. Design of Other Types of Analog Filters

- Let *s* denote the Laplace transform variable of prototype analog lowpass filter $H_{LP}(s)$ and \hat{s} denote the Laplace transform variable of desired analog filter $H_D(\hat{s})$
- The mapping from *s* -domain to \hat{s} -domain is given by the invertible transformation $s = F(\hat{s})$

Then $H_D(\hat{s}) = H_{LP}(s)\Big|_{s=F(\hat{s})}$

 $H_{LP}(s) = H_D(\hat{s})\Big|_{\hat{s}=F^{-1}(s)}$

