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2.1 Functions of a Complex Variable

Introduction

� Ch. 1 is focused on the algebraic operation of a complex
number z

� From this chapter, we shall study function f(z) defined on
these complex variables

� Our objective is to mimic the concepts, theorems, and
mathematical structure of calculus; such as differentiating
and integrating the function f(z)

� The notation of a derivative is far more subtle in the complex
case because of the intrinsically two-dimensional nature of the
complex variables
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2.1 Functions of a Complex Variable

Review of Functions of a Real Variable

� If f assigns the value y to the element x in A, we write

y = f(x)

and call y the image of x under f

� The set A is the domain of definition of f , and the set of all
images f(x) is the range of f

� Sometimes we refer to f as a mapping of A into B
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2.1 Functions of a Complex Variable

Functions of a Complex Variable

� Now we consider the complex-valued functions of a complex
variable

� The domains of definition and the ranges are subset of the
complex numbers

� See an example:

f(z) =
z2 − 1

z2 + 1
We take the domain of f to be the set of all z for which the
formula is well defined (hence, ±i are excluded)
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2.1 Functions of a Complex Variable

Functions of a Complex Variable (cont’d)

� Denote w as the value of the function f(z) at point z. Then
we write w = f(z)

� Just as z decomposes into real and imaginary parts as
z = x+ iy, the real and imaginary parts of w are each (real)
functions of z or, equivalently, of x and y, and so we
customarily write

w = u(x, y) + iv(x, y)

where u and v denoting the real and imaginary parts,
respectively, of w

� Thus a complex valued function of a complex variable is a pair
functions of two real variables (Example 1 on page 54)
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2.1 Functions of a Complex Variable

Functions of a Complex Variable (cont’d)

� Unfortunately, it is generally impossible to draw the graph of a
complex function; to display two real functions of two real
variables graphically would require four dimensions

� Instead, we can visualize some of the properties of a complex
function w = f(z) by sketching of domain of definition in the
z-plane and its range in the w-plane (Examples 2 and 3)

� The function f(z) = 1/z is called the inversion mapping. It is
an example of a one-to-one function because it maps distinct
points to distinct points, i.e., if z1 �= z2, then f(zz) �= f(z2)
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2.2 Limits and Continuity

Limit of a Sequence of Complex Numbers

� The definition of absolute value can be used to designate the
distance between two complex numbers

� Having a concept of distance, we can proceed to introduce
the notions of limit and continuity

� When we have an infinite sequences z1, z2, z3, · · · of complex
numbers, we say that the number z0 is the limit of the
sequence if the zn eventually (i.e., for large enough n) stay
arbitrarily close to z0
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2.2 Limits and Continuity

Definition of Limit of a Sequence of Complex Numbers

Definition
A sequence of complex numbers {zn}∞1 is said to have the limit z0
or to converge to z0 and we write

lim
n→∞ zn = z0

or equivalently,

zn → z0 as n→∞
if for any ε > 0, there exists an integer N such that |zn − z0| < ε
for all n > N (see Fig. 2.3 on page 59)
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2.2 Limits and Continuity

Definition of Limit of a Complex-Valued Function

Definition
Let f be a function defined in some neighborhood of z0, with the
possible exception of the point z0 itself. We say that the limit of
f(z) as z approaches z0 is the number w0 and write

lim
z→ z0

f(z) = w0

or equivalently,

f(z)→ w0 as z → z0

if for any ε > 0, there exists a positive number δ such that
|f(z)− w0| < ε whenever 0 < |z − z0| < δ
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2.2 Limits and Continuity

Relation between the limit of a function and the limit of a
sequence

� If limz→z0 f(z) = w0, then for every sequence {zn}∞1
converging to z0(zn �= z0) the sequence {f(zn)}∞1 converges
to w0, and vice versa

� The definitions of this section are direct analogous of concepts
introduced in elementary calculus. Hence, many of the
familiar theorems on real sequences, limits, and continuity
remain valid in the complex case
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2.2 Limits and Continuity

Condition of Continuity

Definition
Let f be a function defined in a neighborhood of z0. Then f is
continuous at z0 if

lim
z→z0

f(z) = f(z0)

� In other words, for f to be continuous at z0, it must have a
limiting value at z0, and this limiting value must be f(z0)

� A function f is said to be continuous on a set S if it is
continuous at each point of S
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2.2 Limits and Continuity

Some Comments

� One can show that f(z) approaches a limit precisely when its
real and imaginary parts approach limits

� Theorems 1 and 2 on page 61 are also derived from the
familiar theorems on real sequences

� It is easy to show that the constant function f(z) = z is
continuous on the whole plane C. Then, we can deduce that:

� The polynomial function a0 + a1z + a2z
2 + . . .+ anz

n is
continuous on the whole plane

� The rational function
a0 + a1z + a2z

2 + . . .+ anz
n

b0 + b1z + a2z2 + . . .+ bmzm
is

continuous at each point where the denominator does not
vanish
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2.2 Limits and Continuity

Limits Involving Infinity

� We say ”zn →∞” if, for each positive number M (no matter
how large), there is an integer N such that |zn| > M
whenever n > M

� Similarly,”limzn→z0 f(z) =∞” means that for each positive
number M (no matter how large), there is a δ > 0 such that
|f(z)| > M whenever 0 < |z − z0| < δ

� Essentially, we are saying that complex numbers approach
infinity when their magnitudes approach infinity
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2.2 Limits and Continuity

Distinction Between the Concepts of Real and Complex
Cases

� There is an important distinction between the concepts of
limit in the (one-dimensional) real and (two-dimensional)
complex case

� For latter situation, a sequence {zn}∞1 may approach a limit
z0 from any direction in the plane, or even along a spiral

� Thus, the manner in which a sequence of numbers approaches
its limit can be much more complicated in the complex case
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2.3 Analyticity

Introduction

� The theory of analytic functions is the main topic of this
course. Before we discuss this topic, we will give an informal
preview of what it is we want to achieve.

� In the real calculus, we don’t deal with the function that looks
like 3 + 4

√
2.

� This is because we we treat this number as an indivisible
module and we don’t ever perform separate algebraic
operations on integer part and a different operation on the

√·
part

� We seek to classify the complex functions that behave this
same way with regard to their complex argument
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2.3 Analyticity

Introduction (Cont’d)

� We treat the complex functions in the same way, i.e., we treat
the complex variable z as a single quantity and don’t perform
different algebraic operations on the x and a different one on
the y.

� Actually, we did in the same way in finding the limit of a
complex sequence or function

� For a complex variable z = x+ iy, the complex function f(z)
also has its real and imaginary parts u and v:

f(z) = u+ iv = u(x, y) + iv(x, y)
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2.3 Analyticity

Introduction (Cont’d)

� We want to admit the functions such as: z, z2, z3, and 1/z,
and there basic arithmetic combinations (sums, products,
quotients, powers, and roots)

� But we want to ban such functions as �z = x, �z = y, and
x2 − y2 + i3xy

� z is also banned because if we admit it we will open the gate
to x = (z + z)/2 and y = (z − z)/2i

� Similarly, admitting |z| would be a mistake as well, since
z = |z|2/z

� The function ez is more vexing. We suspect it to be admissible
but postpone the official verification until the next section
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2.3 Analyticity

Derivative of a Complex Function

� In the following chapters, we will see that the criterion of
analyticity we are seeking can be expressed simply in terms of
differentiability

Definition
Let f be a complex-valued function defined in a neighborhood of
z0. Then the derivative of f at z0 is given by

df

dz
(z0) ≡ f ′(z0) := lim

�z→0

f(z0 +	z)− f(z0))

	z

provided this limit exists. (Such as f is said to be differentiable at
z0)
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2.3 Analyticity

Derivative of a Complex Function (Cont’d)

� The catch here is that 	z is a complex number, so it can
approach zero in many different ways (from the right, from
below, along a spiral, etc.); but the difference quotient must
tend to a unique limit f ′(z0) independent of the manner in
which 	z → 0

� Example 2 on page 67-68 shows why analyticity disqualifies z

� Theorem 3 on page 69 is corresponding to the rules of
elementary calculus

� It should be also noted that differentiability implies continuity,
as in the real case

� We see then that for purpose of differentiation, polynomial
and rational functions in z can be treated as if z were a real
variable
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2.3 Analyticity

Definition of Analyticity

Definition
A complex-valued function f(z) is said to be analyticity on an
open set G if it has a derivative at every point of G

� Here we emphasize that analyticity is a property defined over
open sets, while differentiability could conceivably hold at one
point only

� A point where f is not analytic but which is the limit of points
where f is analytic is known as a singular point or singularity

� If f(z) is analytic on the whole plane, then it is said to be
entire

Ch.2: Analytic Functions

2.3 Analyticity

Comments to Analyticity

� As we will see in the next few chapters, analyticity is the
criterion that we have been seeking, for functions to respect
the complex structure of the variable z

� We will demonstrate later that all analytic fucntions can be
written in terms of z alone (not x, y, or z)

� When a function is given in terms of real and imaginary parts
as u(x, y) + iv(x, y), it may be very tedious to apply the
definition to determine if f is analytic

� The next section will provide a test that is easier to use
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2.4 The Cauchy-Riemann Equations

The Relationship Between u(x, y) and v(x, y)

� The property of analyticity for a function indicates some type
of connection between its real and imaginary parts

� If f(z) = u(x, y) + iv(x, y) is differentiable at z0 = x0 + iy0,
then the limit

f ′(z0) = lim
�z→0

f(z0 +	z)− f(z0)

	z

can be computed by allowing 	z = 	x+ i	y to approach
zero from any convenient direction in the complex plane
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2.4 The Cauchy-Riemann Equations

The Relationship Between u(x, y) and v(x, y) (Cont’d)

� If it approaches horizontally, then 	z = 	x, we obtain

f ′(z0) = lim
�x→0

u(x0+�x,y0)+iv(x0+�x,y0)−u(x0,y0)−iv(x0,y0))
�x

= lim
�x→0

[
u(x0+�x,y0)−u(x0,y0)

�x

]
+ i lim

�x→0

[
v(x0+�x,y0)−v(x0,y0)

�x

]

� Since the limits of the bracketed expressions are just the first
partial derivatives of u and v with respect to x, we deduce
that

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) (1)
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2.4 The Cauchy-Riemann Equations

The Relationship Between u(x, y) and v(x, y) (Cont’d)

� If 	z approaches zero vertically, then 	z = i	y and we
obtain the following relation similarly

f ′(z0) = lim
�y→0

[
u(x0,y0+�y)−u(x0,y0)

i�y

]
+ i lim

�y→0

[
v(x0+,y0+�y)−v(x0,y0)

i�y

]

� Hence

f ′(z0) = −i∂u
∂y

(x0, y0) +
∂v

∂y
(x0, y0) (2)

Ch.2: Analytic Functions

2.4 The Cauchy-Riemann Equations

Cauchy-Riemann Equations

� By equating real and imaginary part in (1) and (2), we get the
famous Cauchy-Riemann Equations as follows

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
� A necessary condition for a function f(z) = u(x, y) + iv(x, y)

to be differentiable at point z0 is that the Cauchy-Riemann
equation hold at z0

� Consequently, if f is analytic in an open set G, then then
Cauchy-Riemann equations must hold at every point of G

Ch.2: Analytic Functions

2.4 The Cauchy-Riemann Equations

Cauchy-Riemann Equations (Cont’d)

� An easy way to recall the Cauchy-Riemann equations:
Horizontal derivative must equal the vertical derivative, i.e.,

∂f

∂x
=

∂f

∂iy
or

∂(u+ iv)

∂x
=

∂(u+ iv)

∂iy
� By equating the real and imaginary parts, we get

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

Ch.2: Analytic Functions

2.4 The Cauchy-Riemann Equations

Comments to Cauchy-Riemann Equations

� The Cauchy-Riemann equations alone are not sufficient to
ensure differentiability. One needs the additional hypothesis of
continuity of the first partial derivatives of u and v

� Theorem 5: Let f(z) = u(x, y) + iv(x, y) be defined in some
open set G containing the point z0. If the first derivatives of
u and v exist in G, are continuous at z0, and satisfy the
Cauchy-Riemann equations at z0, then f if differentiable at z0

� Theorem 6: If f(z) is analytic in a domain D and if f ′(z) = 0
everywhere in D, then f(z) is constant in D
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2.4 The Cauchy-Riemann Equations

Comments to Cauchy-Riemann Equations (Cont’d)

� One easy consequence of Theorem 6 is the fact that if f and
g are two functions analytic in a domain D whose derivatives
are identical in D, then f = g + constant in D

� Using Theorem 6 and Cauchy-Riemann equations, you can
further show that an analytic function f(z) must be constant
when any one of the following conditions hold in a domain D:

�f(z) is constant
�f(z) is constant
|f(z)| is constant

� We can also use Cauchy-Riemann Equations and continuity of
the partial derivatives to verify the analyticity of ez


