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1.1 The Algebra of Complex Numbers

Review of Real Numbers

� Initially, we learned the positive integers 1, 2, 3, . . .

� Zero 0 is an interesting number

� Sometimes we need to calculate the equation 2− 8, so we
introduced the solution −6 which is a negative integer

� An apple is cut into two pieces, each is half (0.5)

� Integers and fractions constitutes the rational number
system (a/b)

� One solution to the equation x2 = 2 is
√
2 which is an

irrational number

� Rational and irrational numbers form the real number
system
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1.1 The Algebra of Complex Numbers

Review of Real Numbers (Cont.)

� We can compare the magnitudes of any two real numbers
(larger, equal or smaller)

� One dimensional (represented by a straight line)

� Are real numbers enough?
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1.1 The Algebra of Complex Numbers

Extend Real Numbers to Complex Numbers

� The problem of solving the equation x2 = −1
� One solution is

√−1 (not a real number)
� Use a symbol i (or j) to designate

√−1
� We get: i2 = −1

� With the aid of i, we get the definition of a Complex
Number

z := a+ bi

where real numbers a := Rez = �z and b := Imz = �z are
called the Real Part and Imaginary Part of z
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1.1 The Algebra of Complex Numbers

Basic Operations of Complex Numbers

� Addition (or subtraction)

(a+ bi)± (c+ di) := (a± c) + (b± d)i

� Multiplication

(a+ bi)(c+ di) := (ac− bd) + (bc+ ad)i

� Division
(a+ bi)

(c+ di)
:=

ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i
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1.1 The Algebra of Complex Numbers

Comments to Complex Numbers

� The set of all complex numbers is denoted as C (R for reals)

� No nature ordering for the elements of C

� The real part and imaginary part are independent of each
other

� A complex number can be represented as a point in a
two-dimensional plane

� Or it can be viewed as a vector with two entries
(
a b

)
� All reals are complex (a line in the two-dimensional plane)
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1.2 Point Representation of Complex Numbers

Representing Complex Numbers in z-plane

Argand Diagram
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1.2 Point Representation of Complex Numbers

Absolute Value of a Complex Number

� The distance between two points z1 = a1 + b1i, z2 = a2 + b2i
in the z-plane is

√
(a1 − a2)2 + (b1 − b2)2

� When z2 = 0 is the origin of the z-plane, we get the absolute
value (or modulus) of z1 which is denoted by

|z1| :=
√

a12 + b1
2

� Hence, the distance between z1 and z2 can be written as
|z1 − z2|

� Equation |z − z0| = r (where z0 is a fixed complex number
and r is a fixed non-negative real number) describes a circle of
radius r centered at z0
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1.2 Point Representation of Complex Numbers

Complex Conjugate of a Complex Number

� Complex Conjugate (z or z∗ )
z = a+ bi := a− bi

� The function of complex conjugate is to change the sign of
the imaginary part of a complex number

� Features
� Rez = a = (z + z)/2 Imz = b = (z − z)/2i (z) = z,
� z1 ± z2 = z1 ± z2, z1z2 = z1 · z2,(z1/z2) = z1/z2
� |z| = |z|,zz = |z|2
� 1/z = z/|z|2
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1.3 Vectors and Polar Forms

Vectors in the Complex-plane

� Each point z in the complex plane
corresponds to a directed line
segment from the origin to the
point z

� The vector is determined by its
length and direction

� The length equals to the modulus
of z, namely |z|
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1.3 Vectors and Polar Forms

Vector Addition and Subtraction
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1.3 Vectors and Polar Forms

Vector Addition and Subtraction (cont.)

� Parallelogram Law for addition of two vectors (or complex
numbers)

� Triangle Inequality: |z1 + z2| ≤ |z1|+ |z2|
The length of any side of a triangle is no greater than the sum
of the lengths of the other two sides

� Corollary:|z2| ≤ |z1|+ |z2 − z1| =⇒ |z2| − |z1| ≤ |z2 − z1|
The difference of the lengths of any two sides of a triangle is
no greater than the length of the third side

Ch.1: Complex Numbers

1.3 Vectors and Polar Forms

Polar Forms of Complex Numbers

� (x, y) =⇒ (r, θ)

� x = r cos θ, y = r sin θ

� z = r(cos θ + i sin θ) = rcisθ

� r = |z| =
√

x2 + y2

� θ =

{
arctan(y/x), x > 0;
arctan(y/x)± π, x < 0

I to IV quadrant

� arg z = Argz + 2kπ
(k = 0,±1,±2, . . .)

Argz is the principal value of arg z

� Q: How to represent a product of
two complex numbers in a 2-D
plane?
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1.3 Vectors and Polar Forms

Another Two Examples
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1.4 The Complex Exponential

Euler’s Equation

� The real exponential function f(x) = ex where x is a real
number

� By replacing x with z = x+ iy, we get the complex
exponential function f(z) = ez

� First, we postulate that the multiplication property should
persist: ex+iy = exeiy, where ex is still a real number and the
second part eiy needs to be defined

� According to Taylor’ series expansion, we get the following
equation

ey = 1 + y +
y2

2!
+

y3

3!
+

y4

4!
+

y5

5!
+ . . . (1)
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1.4 The Complex Exponential

Euler’s Equation (Cont’d)

� By replacing y with iy in Eq. (1), we get the Taylor’s
expansion of eiy as follows

eiy = 1 + iy +
(iy)2

2!
+

(iy)3

3!
+

(iy)4

4!
+

(iy)5

5!
+ . . . (2)

� We know the identities

i1 = i, i2 = −1, i3 = −i, i4 = 1
i5 = i, i6 = −1, i7 = −i, i8 = 1, . . .

(3)

� Hence, we deduce that in = in+4 is periodical function with
period 4
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1.4 The Complex Exponential

Euler’s Equation (Cont’d)

� By separating the real part and imaginary part of eiy, Eq. (2)
can be rewritten as

eiy =

(
1− y2

2!
+

y4

4!
− . . .

)
+ i

(
y − y3

3!
+

y5

5!
− . . .

)
(4)

� Note that the real part and the imaginary part of the above
are just the Taylor’s expansions of cos y and sin y, respectively

� Hence, We arrive at the famous Euler’s equation as follows

eiy = cos y + i sin y

� By using the Euler’s equation, we have the definition of a
complex exponential function: ez := ex(cos y + i sin y)
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1.4 The Complex Exponential

Comments to Euler’s Equation

� Since |eiy| = | cos y + i sin y| =
√

cos2 y + sin2 y = 1, eiy is a
vector which locates on the circle of radius 1 about origin

� y is the angle of inclination of the vector eiy, measured
positively in a counterclockwise sense from the positive real
axis

� Recall that any complex number z can be written as the polar
form: z = r(cos θ + i sin θ)

� Euler’s equation enables us to write it in another form:
z = reiθ = |z|ei arg z
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1.4 The Complex Exponential

Application of Complex Exponential

� cos θ = �eiθ = eiθ + e−iθ

2
; sin θ = �eiθ = eiθ − e−iθ

2i
� Multiplication of two complex numbers:

z1z2 =
(
r1e

iθ1
) (

r2e
iθ2

)
= (r1r2)e

i(θ1+θ2)

� Division of two complex numbers:

z1
z2

=
r1e

iθ1

r2eiθ2
=

r1
r2
ei(θ1−θ2)

� Complex Conjugate: z = re−iθ

� De Moivre’s Formula: (cos θ + i sin θ)n = cosnθ + i sinnθ
Q: Does this formula hold for arbitrary integers n (positive or
negative)?
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1.5 Powers and Roots

Powers of a Complex Number

� We can represent the complex number z in its polar form:
z = reiθ = r(cos θ + i sin θ)

� The n-th power of z is calculated by two steps:
� Step 1: The n-th power of the modulus: rn

� Step 2: The n-fold of the angle of inclination: nθ

� Finally, we get the n-th power of z, namely, zn = rneinθ

� The above rule is valid for both positive and negative integers

� The question arises whether the formula will work for
n = 1/m
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1.5 Powers and Roots

Roots of a Complex Number

� The computation of the roots is more complicated than
powers

� Let w = ρ(cosϕ+ i sinϕ) be the m-th roots of
z = r(cos θ + i sin θ), so wm = z means

ρm(cosmϕ+ i sinmϕ) = r(cos θ + i sin θ) (5)

� Eq.(5) means

ρm = r, cosmϕ = cos θ, sinmϕ = sin θ

� Hence, ρ = r1/m, mϕ = θ + 2kπ =⇒ ϕ =
θ + 2kπ

m
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1.5 Powers and Roots

Roots of a Complex Number (Con’t)

� When k = 0, 1, 2, . . . ,m− 1, we get the m distinct roots for

Eq.(5) as

{
wk = r1/m

(
cos

θ + 2kπ

m
+ i sin

θ + 2kπ

m

)}

� When k = m,m+ 1,m+ 2, . . . , 2m− 1, the same roots
repeat again,...

� Hence, there are only m distinct roots for z1/m
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1.5 Powers and Roots

An Example of Finding the Roots
Find the Four fourth roots of

√
2 + i

√
2
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1.6 Planar Sets

Planar Sets

� In the calculus of functions of a real variable, the main
theorems are typically stated for functions defined on an
interval, such as (0, 1), (0, 1], [0, 1), [0, 1]

� The interval can be interpreted as a segment in the x-axis in
z-plane

� A complex number is two-dimensional, hence for the functions
of a complex variable, the basic results are formulated for
functions defined on sets that are 2-dimensional ”domains” or
”closed regions”
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1.6 Planar Sets

Open Disk (Neighborhood) and Open Set

� The set of all points that satisfy the inequality

|z − z0| < ρ

where ρ is a positive number, is called an open disk or
circular neighborhood of z0

� A point z0 which lies in a set S is called an interior point of
S if there is some circular neighborhood of z0 that is
completely contained in S

� If every point of a set S is an interior point of S, we say that
S is an open set
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1.6 Planar Sets

Domain

� An open set S is said to be connected if every pair of points
z1, z2 in S can be joined by a polygonal path that lies entirely
in S. Roughly speaking, this means that S consists of a
”Single Piece”

� An open connected set is called a domain

� For real variables, the derivative of the function equals zero
implies that this function is identically constant on the defined
interval
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1.6 Planar Sets

Domain (Cont’d)

� The extension result to functions of two real variables:
Suppose u(x, y) is a real-valued function defined in a domain
D. If the first partial derivative of u satisfy

∂u

∂x
=

∂u

∂y
= 0

at all points of D, then u ≡constant in D

� If D is merely assumed to be an open set (not connected),
the theorem is no longer true
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1.6 Planar Sets

Boundary

� A point z0 is said to be a boundary point of a set S if every
neighborhood of z0 contains at least one point not in S

� The set of all boundary points of S is called the boundary or
frontier of S

� Since each point of a domain D is an interior point of D, it
follows that a domain cannot contain any of its boundary
points

� A set S is said to be closed if it contains all of its boundary
points. The set of points z that satisfy the inequality
|z − z0| ≤ ρ (ρ > 0) is a closed set, for it contains its
boundary |z − z0| = ρ. We call this set a closed disk
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1.6 Planar Sets

Bounded and Region

� A set of points S is said to be bounded if there exists a
positive real number R such that |z| < R for every z in S

� A set is both closed and bounded is said to be compact

� A region is a domain together with some, none, or all of its
boundary points. In particular, every domain is region


