Chapter 1: Complex Numbers

Li, Yongzhao

State Key Laboratory of Integrated Services Networks, Xidian University

September 28, 2010

Ch.1: Complex Numbers └─1.1 The Algebra of Complex Numbers

Review of Real Numbers

- Initially, we learned the **positive integers** $1, 2, 3, \ldots$
- **Zero** 0 is an interesting number
- ► Sometimes we need to calculate the equation 2 8, so we introduced the solution -6 which is a **negative integer**
- An apple is cut into two pieces, each is half (0.5)
- Integers and fractions constitutes the rational number system (a/b)
- One solution to the equation $x^2 = 2$ is $\sqrt{2}$ which is an irrational number
- Rational and irrational numbers form the real number system

Outline
1.1 The Algebra of Complex Numbers
1.2 Point Representation of Complex Numbers
1.3 Vectors and Polar Forms
1.4 The Complex Exponential
1.5 Powers and Roots
1.6 Planar Sets

- We can compare the magnitudes of any two real numbers (larger, equal or smaller)
- One dimensional (represented by a straight line)
- Are real numbers enough?

Ch.1: Complex Numbers

Extend Real Numbers to Complex Numbers

- \blacktriangleright The problem of solving the equation $x^2=-1$
 - One solution is $\sqrt{-1}$ (not a real number)
 - Use a symbol i (or j) to designate $\sqrt{-1}$
 - We get: $i^2 = -1$
- With the aid of *i*, we get the definition of a Complex Number

z := a + bi

where real numbers $a:={\rm Re}z=\Re z$ and $b:={\rm Im}z=\Im z$ are called the Real Part and Imaginary Part of z

・ロト (個) (目) (目) (日) (の)

Ch.1: Complex Numbers └─1.1 The Algebra of Complex Numbers

Comments to Complex Numbers

- The set of all complex numbers is denoted as **C** (**R** for reals)
- ► No nature ordering for the elements of C
- The real part and imaginary part are independent of each other
- A complex number can be represented as a point in a two-dimensional plane
- Or it can be viewed as a vector with two entries $\begin{pmatrix} a & b \end{pmatrix}$
- All reals are complex (a line in the two-dimensional plane)

Ch.1: Complex Numbers

└─1.1 The Algebra of Complex Numbers

Basic Operations of Complex Numbers

Addition (or subtraction)

$$(a+bi) \pm (c+di) := (a \pm c) + (b \pm d)i$$

Multiplication

$$(a+bi)(c+di) := (ac-bd) + (bc+ad)i$$

Division

$$\frac{(a+bi)}{(c+di)} := \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Absolute Value of a Complex Number

- ▶ The distance between two points $z_1 = a_1 + b_1 i$, $z_2 = a_2 + b_2 i$ in the z-plane is $\sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2}$
- When z₂ = 0 is the origin of the z-plane, we get the absolute value (or modulus) of z₁ which is denoted by |z₁| := √a₁² + b₁²
- Hence, the distance between z_1 and z_2 can be written as $|z_1 z_2|$
- Equation $|z z_0| = r$ (where z_0 is a fixed complex number and r is a fixed non-negative real number) describes a circle of radius r centered at z_0

Ch.1: Complex Numbers —1.3 Vectors and Polar Forms

Vectors in the Complex-plane

- Each point z in the complex plane corresponds to a directed line segment from the origin to the point z
- The vector is determined by its length and direction
- ► The length equals to the modulus of z, namely |z|

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - めんの

1.2 Point Representation of Complex Numbers

Complex Conjugate of a Complex Number

• Complex Conjugate (\overline{z} or z^*)

$$\overline{z} = \overline{a + bi} := a - bi$$

- The function of complex conjugate is to change the sign of the imaginary part of a complex number
- Features
 - $\operatorname{Re} z = a = (z + \overline{z})/2$ $\operatorname{Im} z = b = (z \overline{z})/2i$ $\overline{(\overline{z})} = z$,
 - $\bullet \ \overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}, \ \overline{(z_1/z_2)} = \overline{z_1}/\overline{z_2}$
 - $\blacktriangleright |z| = |\overline{z}|, z\overline{z} = |z|^2$
 - $\blacktriangleright 1/z = \overline{z}/|z|^2$

▲□▶▲圖▶▲≣▶▲≣▶ ■ の90

Ch.1: Complex Numbers -1.3 Vectors and Polar Forms Vector Addition and Subtraction $y = \frac{y}{22} + \frac{z_1 + z_2}{v_1 + z_1} + \frac{y}{v_2} + \frac{z_2}{v_2 + v_1 + z_1} + \frac{z_2}{v_1 + z_1} + \frac{z_2}{v_1 + z_1} + \frac{z_2}{v_2 + v_1 + z_1} + \frac{z_2}{v_2 + v_1 + z_1} + \frac{z_2}{v_2 + v_1 + z_1} + \frac{z_2}{v_1 + z_1}$

Vector Addition and Subtraction (cont.)

- Parallelogram Law for addition of two vectors (or complex numbers)
- ▶ Triangle Inequality: |z₁ + z₂| ≤ |z₁| + |z₂| The length of any side of a triangle is no greater than the sum of the lengths of the other two sides
- Corollary: |z₂| ≤ |z₁| + |z₂ − z₁| ⇒ |z₂| − |z₁| ≤ |z₂ − z₁| The difference of the lengths of any two sides of a triangle is no greater than the length of the third side

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - めんの

Ch.1: Complex Numbers

Polar Forms of Complex Numbers

Ch.1: Complex Numbers \square 1.4 The Complex Exponential

Euler's Equation

- ▶ The real exponential function $f(x) = e^x$ where x is a real number
- ▶ By replacing x with z = x + iy, we get the complex exponential function $f(z) = e^z$
- ► First, we postulate that the multiplication property should persist: e^{x+iy} = e^xe^{iy}, where e^x is still a real number and the second part e^{iy} needs to be defined
- According to Taylor' series expansion, we get the following equation

$$e^{y} = 1 + y + \frac{y^{2}}{2!} + \frac{y^{3}}{3!} + \frac{y^{4}}{4!} + \frac{y^{5}}{5!} + \dots$$
 (1)

Another Two Examples

Ch.1: Complex Numbers

Euler's Equation (Cont'd)

 By replacing y with iy in Eq. (1), we get the Taylor's expansion of e^{iy} as follows

$$e^{iy} = 1 + iy + \frac{(iy)^2}{2!} + \frac{(iy)^3}{3!} + \frac{(iy)^4}{4!} + \frac{(iy)^5}{5!} + \dots$$
 (2)

We know the identities

$$i^{1} = i, i^{2} = -1, i^{3} = -i, i^{4} = 1$$

 $i^{5} = i, i^{6} = -1, i^{7} = -i, i^{8} = 1, \dots$ (3)

• Hence, we deduce that $i^n = i^{n+4}$ is periodical function with period 4

Ch.1: Complex Numbers

Comments to Euler's Equation

- Since $|e^{iy}| = |\cos y + i\sin y| = \sqrt{\cos^2 y + \sin^2 y} = 1$, e^{iy} is a vector which locates on the circle of radius 1 about origin
- y is the angle of inclination of the vector e^{iy}, measured positively in a counterclockwise sense from the positive real axis
- Recall that any complex number z can be written as the polar form: z = r(cos θ + i sin θ)
- Euler's equation enables us to write it in another form: $z = re^{i\theta} = |z|e^{i\arg z}$

Euler's Equation (Cont'd)

• By separating the real part and imaginary part of e^{iy} , Eq. (2) can be rewritten as

$$e^{iy} = \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \ldots\right) + i\left(y - \frac{y^3}{3!} + \frac{y^5}{5!} - \ldots\right) \quad (4)$$

- ► Note that the real part and the imaginary part of the above are just the Taylor's expansions of cos y and sin y, respectively
- ► Hence, We arrive at the famous **Euler's equation** as follows

 $e^{iy} = \cos y + i \sin y$

▶ By using the Euler's equation, we have the definition of a complex exponential function: e^z := e^x(cos y + i sin y)

Ch.1: Complex Numbers

Application of Complex Exponential

•
$$\cos\theta = \Re e^{i\theta} = \frac{e^{i\theta} + e^{-i\theta}}{2}; \quad \sin\theta = \Im e^{i\theta} = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Multiplication of two complex numbers:

$$z_1 z_2 = (r_1 e^{i\theta_1}) (r_2 e^{i\theta_2}) = (r_1 r_2) e^{i(\theta_1 + \theta_2)}$$

Division of two complex numbers:

$$\frac{z_1}{z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

- Complex Conjugate: $\overline{z} = re^{-i\theta}$
- De Moivre's Formula: (cos θ + i sin θ)ⁿ = cos nθ + i sin nθ Q: Does this formula hold for arbitrary integers n (positive or negative)?

・ロト・(型)・(目)・(目)・(ロ)・(ロ)・

Powers of a Complex Number

- We can represent the complex number z in its polar form: $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$
- ▶ The *n*-th power of *z* is calculated by two steps:
 - Step 1: The *n*-th power of the modulus: r^n
 - Step 2: The *n*-fold of the angle of inclination: $n\theta$
- Finally, we get the *n*-th power of z, namely, $z^n = r^n e^{in\theta}$
- ▶ The above rule is valid for both positive and negative integers
- ▶ The question arises whether the formula will work for n = 1/m

Ch.1: Complex Numbers └─1.5 Powers and Roots

Roots of a Complex Number (Con't) • When $k = 0, 1, 2, \ldots, m-1$, we get the m distinct roots for Eq.(5) as $\left\{ w_k = r^{1/m} \left(\cos \frac{\theta + 2k\pi}{m} + i \sin \frac{\theta + 2k\pi}{m} \right) \right\}$ • When $k = m, m + 1, m + 2, \dots, 2m - 1$, the same roots repeat again,... • Hence, there are only m distinct roots for $z^{1/m}$

Roots of a Complex Number

- ▶ The computation of the roots is more complicated than powers
- Let $w = \rho(\cos \varphi + i \sin \varphi)$ be the *m*-th roots of $z = r(\cos \theta + i \sin \theta)$, so $w^m = z$ means

$$\rho^m(\cos m\varphi + i\sin m\varphi) = r(\cos \theta + i\sin \theta)$$
 (5)

► Eq.(5) means

$$\label{eq:relation} \begin{split} \rho^m = r, \quad \cos m\varphi = \cos \theta, \quad \sin m\varphi = \sin \theta \\ \blacktriangleright \mbox{ Hence, } \rho = r^{1/m}, \quad m\varphi = \theta + 2k\pi \Longrightarrow \varphi = \frac{\theta + 2k\pi}{m} \end{split}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 めんの

Ch.1: Complex Numbers -1.5 Powers and Roots

An Example of Finding the Roots

Find the Four fourth roots of $\sqrt{2} + i\sqrt{2}$

・ロト ・四ト ・ヨト ・ヨー うへの

Ch.1: Complex Numbers

└─1.6 Planar Sets

Planar Sets

- ▶ In the calculus of functions of a real variable, the main theorems are typically stated for functions defined on an interval, such as (0,1), (0,1], [0,1), [0,1]
- The interval can be interpreted as a segment in the x-axis in z-plane
- A complex number is two-dimensional, hence for the functions of a complex variable, the basic results are formulated for functions defined on sets that are 2-dimensional "domains" or "closed regions"

└─1.6 Planar Sets

Ch.1: Complex Numbers

Domain

- An open set S is said to be connected if every pair of points z₁, z₂ in S can be joined by a polygonal path that lies entirely in S. Roughly speaking, this means that S consists of a "Single Piece"
- An open connected set is called a domain
- For real variables, the derivative of the function equals zero implies that this function is identically constant on the defined interval

Ch.1: Complex Numbers

└─1.6 Planar Sets

Open Disk (Neighborhood) and Open Set

The set of all points that satisfy the inequality

 $|z - z_0| < \rho$

where ρ is a positive number, is called an **open disk** or **circular neighborhood** of z_0

- A point z₀ which lies in a set S is called an interior point of S if there is some circular neighborhood of z₀ that is completely contained in S
- If every point of a set S is an interior point of S, we say that
 S is an open set

Ch.1: Complex Numbers └─1.6 Planar Sets

Domain (Cont'd)

The extension result to functions of two real variables: Suppose u(x, y) is a real-valued function defined in a domain D. If the first partial derivative of u satisfy

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$$

at all points of D, then $u \equiv \text{constant}$ in D

 If D is merely assumed to be an open set (not connected), the theorem is no longer true

◆□> ◆□> ◆豆> ◆豆> → □ → ◇へ⊙

Ch.1: Complex Numbers

└─1.6 Planar Sets

Boundary

- ► A point z₀ is said to be a **boundary point** of a set S if every neighborhood of z₀ contains at least one point not in S
- The set of all boundary points of S is called the **boundary** or frontier of S
- Since each point of a domain D is an interior point of D, it follows that a domain cannot contain any of its boundary points
- A set S is said to be closed if it contains all of its boundary points. The set of points z that satisfy the inequality |z − z₀| ≤ ρ (ρ > 0) is a closed set, for it contains its boundary |z − z₀| = ρ. We call this set a closed disk

Ch.1: Complex Numbers

1.6 Planar Sets

Bounded and Region

- ► A set of points S is said to be **bounded** if there exists a positive real number R such that |z| < R for every z in S</p>
- A set is both closed and bounded is said to be **compact**
- A region is a domain together with some, none, or all of its boundary points. In particular, every domain is region

・ロト・日本・モン・モン・モー めんの