Chapter 1: Complex Numbers

Li, Yongzhao

State Key Laboratory of Integrated Services Networks, Xidian University

September 28, 2010

Ch.1: Complex Numbers
 $L_{1.1}$ The Algebra of Complex Numbers

Review of Real Numbers

- Initially, we learned the positive integers $1,2,3, \ldots$
- Zero 0 is an interesting number
- Sometimes we need to calculate the equation $2-8$, so we introduced the solution -6 which is a negative integer
- An apple is cut into two pieces, each is half (0.5)
- Integers and fractions constitutes the rational number system (a / b)
- One solution to the equation $x^{2}=2$ is $\sqrt{2}$ which is an irrational number
- Rational and irrational numbers form the real number system
1.1 The Algebra of Complex Numbers
1.2 Point Representation of Complex Numbers
1.3 Vectors and Polar Forms
1.4 The Complex Exponential
1.5 Powers and Roots
1.6 Planar Sets

Ch.1: Complex Numbers

$\mathrm{L}_{1.1}$ The Algebra of Complex Numbers

Review of Real Numbers (Cont.)

- We can compare the magnitudes of any two real numbers (larger, equal or smaller)
- One dimensional (represented by a straight line)
- Are real numbers enough?

Extend Real Numbers to Complex Numbers

Basic Operations of Complex Numbers

- Addition (or subtraction)

$$
(a+b i) \pm(c+d i):=(a \pm c)+(b \pm d) i
$$

- Multiplication

$$
(a+b i)(c+d i):=(a c-b d)+(b c+a d) i
$$

- Division

$$
\frac{(a+b i)}{(c+d i)}:=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i
$$ called the Real Part and Imaginary Part of z

\qquad

Ch.1: Complex Numbers
 $L_{1.1}$ The Algebra of Complex Numbers

Ch.1: Complex Numbers
 $L_{1.2}$ Point Representation of Complex Numbers

Comments to Complex Numbers

- The set of all complex numbers is denoted as \mathbf{C} (\mathbf{R} for reals)
- No nature ordering for the elements of C
- The real part and imaginary part are independent of each other
- A complex number can be represented as a point in a two-dimensional plane
- Or it can be viewed as a vector with two entries $\left(\begin{array}{ll}a & b\end{array}\right)$
- All reals are complex (a line in the two-dimensional plane)

Representing Complex Numbers in z-plane

Argand Diagram

Absolute Value of a Complex Number

- The distance between two points $z_{1}=a_{1}+b_{1} i, z_{2}=a_{2}+b_{2} i$ in the z-plane is $\sqrt{\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}}$
- When $z_{2}=0$ is the origin of the z-plane, we get the absolute value (or modulus) of z_{1} which is denoted by $\left|z_{1}\right|:=\sqrt{a_{1}^{2}+b_{1}^{2}}$
- Hence, the distance between z_{1} and z_{2} can be written as $\left|z_{1}-z_{2}\right|$
- Equation $\left|z-z_{0}\right|=r$ (where z_{0} is a fixed complex number and r is a fixed non-negative real number) describes a circle of radius r centered at z_{0}

Complex Conjugate of a Complex Number

- Complex Conjugate (\bar{z} or z^{*})

$$
\bar{z}=\overline{a+b i}:=a-b i
$$

- The function of complex conjugate is to change the sign of the imaginary part of a complex number
- Features
- $\operatorname{Re} z=a=(z+\bar{z}) / 2 \quad \operatorname{Im} z=b=(z-\bar{z}) / 2 i \quad \overline{(\bar{z})}=z$,
- $\overline{z_{1} \pm z_{2}}=\overline{z_{1}} \pm \overline{z_{2}}, \overline{z_{1} z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}, \overline{\left(z_{1} / z_{2}\right)}=\overline{z_{1}} / \overline{z_{2}}$
- $|z|=|\bar{z}|, z \bar{z}=|z|^{2}$
- $1 / z=\bar{z} /|z|^{2}$

Ch.1: Complex Numbers
 $L_{1.3}$ Vectors and Polar Forms

Ch.1: Complex Numbers
 $L_{1.3}$ Vectors and Polar Forms

Vectors in the Complex-plane

- Each point z in the complex plane corresponds to a directed line segment from the origin to the point z
- The vector is determined by its length and direction
- The length equals to the modulus of z, namely $|z|$

Vector Addition and Subtraction (cont.)

- Parallelogram Law for addition of two vectors (or complex numbers)
- Triangle Inequality: $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ The length of any side of a triangle is no greater than the sum of the lengths of the other two sides
- Corollary: $\left|z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}-z_{1}\right| \Longrightarrow\left|z_{2}\right|-\left|z_{1}\right| \leq\left|z_{2}-z_{1}\right|$ The difference of the lengths of any two sides of a triangle is no greater than the length of the third side

Ch.1: Complex Numbers
 $L_{1.3}$ Vectors and Polar Forms

Another Two Examples

Geometric interpretation of the product

Conjugate and the reciprocal

Polar Forms of Complex Numbers

- $(x, y) \Longrightarrow(r, \theta)$
- $x=r \cos \theta, \quad y=r \sin \theta$
- $z=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$
- $r=|z|=\sqrt{x^{2}+y^{2}}$
- $\theta=\left\{\begin{array}{l}\arctan (y / x), \quad x>0 ; \\ \arctan (y / x) \pm \pi, \quad x<0\end{array}\right.$ I to IV quadrant
- $\arg z=\operatorname{Arg} z+2 k \pi$

$$
(k=0, \pm 1, \pm 2, \ldots)
$$

$\operatorname{Arg} z$ is the principal value of $\arg z$

- Q: How to represent a product of two complex numbers in a $2-D$ plane?

Ch.1: Complex Numbers
$L_{1.4}$ The Complex Exponential

Euler's Equation

- The real exponential function $f(x)=e^{x}$ where x is a real number
- By replacing x with $z=x+i y$, we get the complex exponential function $f(z)=e^{z}$
- First, we postulate that the multiplication property should persist: $e^{x+i y}=e^{x} e^{i y}$, where e^{x} is still a real number and the second part $e^{i y}$ needs to be defined
- According to Taylor' series expansion, we get the following equation

$$
\begin{equation*}
e^{y}=1+y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+\frac{y^{5}}{5!}+\ldots \tag{1}
\end{equation*}
$$

Euler's Equation (Cont'd)

- By replacing y with $i y$ in Eq. (1), we get the Taylor's expansion of $e^{i y}$ as follows

$$
\begin{equation*}
e^{i y}=1+i y+\frac{(i y)^{2}}{2!}+\frac{(i y)^{3}}{3!}+\frac{(i y)^{4}}{4!}+\frac{(i y)^{5}}{5!}+\ldots \tag{2}
\end{equation*}
$$

- We know the identities

$$
\begin{array}{ll}
i^{1}=i, & i^{2}=-1, \\
i^{3}=-i, & i^{4}=1 \tag{3}\\
i^{5}=i, & i^{6}=-1,
\end{array} i^{7}=-i, \quad i^{8}=1, \ldots .
$$

- Hence, we deduce that $i^{n}=i^{n+4}$ is periodical function with period 4

Euler's Equation (Cont'd)

- By separating the real part and imaginary part of $e^{i y}$, Eq. (2) can be rewritten as

$$
\begin{equation*}
e^{i y}=\left(1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-\ldots\right)+i\left(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\ldots\right) \tag{4}
\end{equation*}
$$

- Note that the real part and the imaginary part of the above are just the Taylor's expansions of $\cos y$ and $\sin y$, respectively
- Hence, We arrive at the famous Euler's equation as follows

$$
e^{i y}=\cos y+i \sin y
$$

- By using the Euler's equation, we have the definition of a complex exponential function: $e^{z}:=e^{x}(\cos y+i \sin y)$

Ch.1: Complex Numbers

$\mathrm{L}_{1.4}$ The Complex Exponential

Application of Complex Exponential

- $\cos \theta=\Re e^{i \theta}=\frac{e^{i \theta}+e^{-i \theta}}{2} ; \quad \sin \theta=\Im e^{i \theta}=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$
- Multiplication of two complex numbers:

$$
z_{1} z_{2}=\left(r_{1} e^{i \theta_{1}}\right)\left(r_{2} e^{i \theta_{2}}\right)=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

- Division of two complex numbers:

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

- Complex Conjugate: $\bar{z}=r e^{-i \theta}$
- De Moivre's Formula: $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ Q: Does this formula hold for arbitrary integers n (positive or negative)?

Powers of a Complex Number

- We can represent the complex number z in its polar form: $z=r e^{i \theta}=r(\cos \theta+i \sin \theta)$
- The n-th power of z is calculated by two steps:
- Step 1: The n-th power of the modulus: r^{n}
- Step 2: The n-fold of the angle of inclination: $n \theta$
- Finally, we get the n-th power of z, namely, $z^{n}=r^{n} e^{i n \theta}$
- The above rule is valid for both positive and negative integers
- The question arises whether the formula will work for $n=1 / m$

Roots of a Complex Number

- The computation of the roots is more complicated than powers
- Let $w=\rho(\cos \varphi+i \sin \varphi)$ be the m-th roots of $z=r(\cos \theta+i \sin \theta)$, so $w^{m}=z$ means

$$
\begin{equation*}
\rho^{m}(\cos m \varphi+i \sin m \varphi)=r(\cos \theta+i \sin \theta) \tag{5}
\end{equation*}
$$

- Eq.(5) means

$$
\rho^{m}=r, \quad \cos m \varphi=\cos \theta, \quad \sin m \varphi=\sin \theta
$$

- Hence, $\rho=r^{1 / m}, \quad m \varphi=\theta+2 k \pi \Longrightarrow \varphi=\frac{\theta+2 k \pi}{m}$

Ch.1: Complex Numbers
 $L_{1.5}$ Powers and Roots

An Example of Finding the Roots

Find the Four fourth roots of $\sqrt{2}+i \sqrt{2}$

Ch.1: Complex Numbers
 $\left\llcorner_{1.6}\right.$ Planar Sets

Domain

Open Disk (Neighborhood) and Open Set

- The set of all points that satisfy the inequality

$$
\left|z-z_{0}\right|<\rho
$$

where ρ is a positive number, is called an open disk or circular neighborhood of z_{0}

- A point z_{0} which lies in a set \mathbf{S} is called an interior point of \mathbf{S} if there is some circular neighborhood of z_{0} that is completely contained in \mathbf{S}
- If every point of a set \mathbf{S} is an interior point of \mathbf{S}, we say that \mathbf{S} is an open set

Ch.1: Complex Numbers
 $\left\llcorner_{1.6}\right.$ Planar Sets

Domain (Cont'd)

- An open set \mathbf{S} is said to be connected if every pair of points z_{1}, z_{2} in \mathbf{S} can be joined by a polygonal path that lies entirely in \mathbf{S}. Roughly speaking, this means that \mathbf{S} consists of a "Single Piece"
- An open connected set is called a domain
- For real variables, the derivative of the function equals zero implies that this function is identically constant on the defined interval
- The extension result to functions of two real variables: Suppose $u(x, y)$ is a real-valued function defined in a domain D. If the first partial derivative of u satisfy

$$
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0
$$

at all points of D, then $u \equiv$ constant in D

- If D is merely assumed to be an open set (not connected), the theorem is no longer true

Boundary

- A point z_{0} is said to be a boundary point of a set S if every neighborhood of z_{0} contains at least one point not in S
- The set of all boundary points of S is called the boundary or frontier of S
- Since each point of a domain D is an interior point of D, it follows that a domain cannot contain any of its boundary points
- A set S is said to be closed if it contains all of its boundary points. The set of points z that satisfy the inequality $\left|z-z_{0}\right| \leq \rho \quad(\rho>0)$ is a closed set, for it contains its boundary $\left|z-z_{0}\right|=\rho$. We call this set a closed disk
- A set of points S is said to be bounded if there exists a positive real number R such that $|z|<R$ for every z in S
- A set is both closed and bounded is said to be compact
- A region is a domain together with some, none, or all of its boundary points. In particular, every domain is region

