

Ch.6: Residue Theory
 $L_{\text {6.1 }}$ The Residue Theorem

Introduction

- In the previous chapters, we have seen how the theory of contour integration lends great insight into the properties of analytic functions
- The goal this chapter is to explore another dividend of this theory, namely, its usefulness in evaluating certain real integrals
- We shall begin by presenting a technique for evaluating contour integrals that is known as residue theory
- Then we will introduce some application of the theory to the evaluating the real integrals
6.1 The Residue Theorem
6.2 Trigonometric Integrals Over ($0,2 \pi$)
6.3 Improper Integrals of Certain Functions Over $(-\infty, \infty)$
6.4 Improper Integrals Involving Trigonometric Functions

Ch.6: Residue Theory

$L_{6.1}$ The Residue Theorem

The Residue Theorem

- If $f(z)$ is analytic on and inside a simple closed positively oriented contour Γ except a single isolated singularity, z_{0}, lying interior to $\Gamma, f(z)$ has a Laurent series expansion

$$
f(z)=\sum_{j=-\infty}^{\infty} a_{j}\left(z-z_{0}\right)^{j}
$$

converging to some punctured neighborhood of z_{0}

- In particular, the above equation is valid for all z on the small positively oriented circle C continuously deformed from Γ (as shown in Fig. 6.1)

The Residue Theorem (Cont'd)

- According to the Continuous Deformation Invariance Theorem (page 231), we have

$$
\int_{\Gamma} f(z) d z=\int_{C} f(z) d z
$$

- The last integral can be computed by termwise integration of the series along C. For all $j \neq-1$ the integral is zero, and for $j=-1$ we obtain the value $2 \pi i a_{-1}$
- Consequently we have

$$
\int_{\Gamma} f(z) d z=2 \pi i a_{-1}
$$

The Residue Theorem (Cont'd)

- Thus the constant a_{-1} plays an important role in contour integration. Accordingly, we adopt the following terminology
Definition
If f has an isolated singularity at the point z_{0}, then the coefficient a_{-1} of $\left(z-z_{0}\right)^{-1}$ in the Laurent expansion for f around z_{0} is called the residue of f at z_{0} and is denoted by

$$
\operatorname{Res}\left(f ; z_{0}\right) \text { or } \operatorname{Res}\left(z_{0}\right)
$$

Ch.6: Residue Theory

$L_{\text {6.1 }}$ The Residue Theorem

How to Compute the Residue (Cont'd)

- If f has a removable singularity at z_{0}, all the coefficients of the negative powers of $\left(z-z_{0}\right)$ in its Laurent expansion are zero, and so, in particular, the residue at z_{0} is zero
- If f has an essential singularity at z_{0}, we have to use its Laurent expansion to find the residue at z_{0} (See Example 1 on page 308)
- If f has a pole of order m at z_{0}, we have the following theorem to find the residue

Theorem
If f has a pole of order m at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow 0} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]
$$

- Example 2 gives us another way to compute the residue when f is a rational polynomial
- Let $f(z)=P(z) / Q(z)$, where the functions $P(z)$ and $Q(z)$ are both analytic at z_{0} and Q has a simple zero at z_{0}, while $P\left(z_{0}\right) \neq 0$. Then we have

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{P\left(z_{0}\right)}{Q^{\prime}\left(z_{0}\right)}
$$

How to Compute the Residue (Cont'd)

- When there are a finite number of isolated singularities inside the simple closed positively oriented contour Γ, we have the following theorem
Theorem
If Γ is a simple closed positively oriented contour and f is analytic inside and on Γ except at the points $z_{1}, z_{2}, \cdots, z_{n}$ inside Γ, then

$$
\int_{\Gamma} f(z) d z=2 \pi i \sum_{j=1}^{n} \operatorname{Res}\left(z_{j}\right)
$$

Trigonometric Integrals Over [0, 2 π]

- Our goal of this section is to apply the residue theory to evaluate real integrals of the form

$$
\begin{equation*}
\int_{0}^{2 \pi} U(\cos \theta, \sin \theta) d \theta \tag{1}
\end{equation*}
$$

- We use $z=e^{i \theta}(0 \leq \theta \leq 2 \pi)$ to parameterize the closed positively oriented contour $|z|=1$. Then a contour integral can be transformed into a real integral
- According to Euler's equation, we have

$$
\begin{gathered}
\cos \theta=\left(e^{i \theta}+e^{i \theta}\right) / 2=\left(z+z^{-1}\right) / 2 \\
\sin \theta=\left(e^{i \theta}-e^{i \theta}\right) / 2 i=\left(z-z^{-1}\right) / 2 i
\end{gathered}
$$

Ch.6: Residue Theory

$\left\llcorner_{6.2}\right.$ Trigonometric Integrals Over ($0,2 \pi$)
Trigonometric Integrals Over $[0,2 \pi]$ (Cont'd)

- Of course, the function F must be a rational function of z
- Hence, it has only removable singularities (which can be ignored in evaluation integrals) or poles
- Consequently, by the residue theorem, our trigonometric integral equals $2 \pi i$ time the sum of the residues at those poles of F that lie inside the unite circle

Improper Integrals of Certain Functions Over $(-\infty, \infty)$

- Given any function f continuous on $(-\infty, \infty)$, the limit

$$
\lim _{\rho \rightarrow \infty} \int_{-\rho}^{\rho} f(x) d x
$$

is called the Cauchy principal value of the integral of f over $(-\infty, \infty)$, and we write

$$
\text { p.v. } \int_{-\infty}^{\infty} f(x) d x:=\lim _{\rho \rightarrow \infty} \int_{-\rho}^{\rho} f(x) d x
$$

- We shall now show how the theory of residue can be used to compute p.v. integrals for certain functions of f
- See Example 1 on page 319 to learn the basic idea of the algorithm

Improper Integrals of Certain Functions Over $(-\infty, \infty)$ (Cont'd)

Lemma
If $f(z)=P(z) / Q(z)$ is the quotient of two polynomials such that

$$
\text { degree } Q \geq 2+\text { degree } P
$$

then

$$
\lim _{\rho \rightarrow \infty} \int_{C_{\rho}^{+}} f(z) d z=0
$$

where C_{ρ}^{+}is the upper half-circle of radius ρ defined in Eq. (4) on page 320 as shown in Figure 6.4

Ch.6: Residue Theory
 $L_{6.4}$ Improper Integrals Involving Trigonometric Functions

Improper Integrals Involving Trigonometric Functions

- The purpose of this section is to use residue theory to evaluate integrals of the general forms:

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \cos m x d x, \quad \text { p.v. } \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin m x d x
$$

- If we obtain the value of the integral

$$
\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} e^{i m x} d x
$$

the above two integrals can be obtained by computing the real and imaginary parts

Improper Integrals Involving Trigonometric Functions
Improper Integrals Involving Trigonometric Functions (Cont'd)

- Then the improper integral $\int_{-\infty}^{\infty} f(x) d x$ can be computed as follows
p.v. $\int_{-\infty}^{\infty} e^{i m x} \frac{P(x)}{Q(x)} d x=\lim _{\rho \rightarrow \infty} 2 \pi i \sum\left(\right.$ residues inside $\left.\Gamma_{\rho}\right)$
- Thus

$$
\begin{aligned}
& \text { p.v. } \int_{-\infty}^{\infty} \cos m x \frac{P(x)}{Q(x)} d x=\Re\left\{\text { p.v. } \int_{-\infty}^{\infty} e^{i m x} \frac{P(x)}{Q(x)} d x\right\} \\
& \text { p.v. } \int_{-\infty}^{\infty} \sin m x \frac{P(x)}{Q(x)} d x=\Im\left\{\text { p.v. } \int_{-\infty}^{\infty} e^{i m x} \frac{P(x)}{Q(x)} d x\right\}
\end{aligned}
$$

