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5.1 Sequences and Series

Introduction

� In Ch. 2 we defined what is meant by convergence of a
sequence of complex numbers; recall that the sequence
{An}∞n=1 has A as a limit if |A−An| can be made arbitrarily
small by taking n large enough

� For computational convenience it is often advantageous to use
an element An of the sequence as an approximation to A

� The use of sequences, and in particular the kind of sequences
associated with series, is an important tool in both the theory
and applications of analytic functions

� This chapter is devoted to the development of this subject
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5.1 Sequences and Series

Definition of a Series

Definition
A series is a formal expression of the form c0 + c1 + c2 + · · · , or
equivalently

∑∞
j=0 cj , where the terms cj are complex numbers.

The n-th partial sum of the series, usually denoted Sn, is the sum
of the first n+ 1 terms, that is, Sn :=

∑n
j=0 cj . If the sequence of

partial sums {Sn}∞n=1 has a limit S, the series is said to converge,
or sum to S, and we write S =

∑∞
j=0 cj . A series that does not

converge is said to diverge

� One way to demonstrate that a series converges to S is to
show that the reminder after summing the first n+ 1 terms,
S −∑n

j=0 cj , goes to zero as n→∞
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5.1 Sequences and Series

Comparison and Ratio Tests

Theorem
(Comparison Test) Suppose that the terms cj satisfy the
inequality

|cj | ≤Mj

for all integers j larger that some number J . Then if the series∑∞
j=0Mj converge, so does

∑∞
j=0 cj

Theorem
(Ratio Test) Suppose that the terms of the series

∑∞
j=0 cj have

the property that the ratios |cj+1/cj | approach a limit L as
j →∞. Then the series converges if L < 1 and diverges if L > 1
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5.1 Sequences and Series

Uniform Convergence

� If we have a sequence of functions F1(z), F2(z), F3(z), . . .,
we must consider the possibility that for some values of z the
sequence converges, while for others it diverges

� Similarly, a series of complex functions
∑∞

j=0 fj(z) may
converge for some values of z and diverge for others

� In applying this theory to analytic functions we need a
somewhat stronger notion of convergence

� Figure 5.1 (page 238) shows an example of ’pointwise
convergence’
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5.1 Sequences and Series

Uniform Convergence (Cont’d)

Definition
The sequence {Fn(z)}∞n=1 is said to converge uniformly to F (z)
on the set T if for any ε > 0 there exists an integer N such that
when n > N ,

|F (z)− Fn(z)| < ε for all z in T

Accordingly, the series
∑∞

j=0 fj(z) converges uniformly to f(z) on
T if the sequence of its partial sums converges uniformly to f(z)
there
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5.1 Sequences and Series

Uniform Convergence (Cont’d)

� The essential feature of uniform convergence is that for a
given ε > 0, one must be able to find an integer N that is
independent of z in T such that the error |F (z)− Fn(z)| is
less than ε for n > N

� In contrast, for pointwise convergence, N can depend upon z.
Of course, uniform convergence on T implies pointwise
convergence on T

� Example 3 and 4 show that the series
∑∞

j=0(z/z0)
j converges

pointwise in the open disk |z| < |z0| and uniformly on any
closed subdisk |z| ≤ r < |z0|
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5.2 Taylor Series

Introduction

� In Sec. 3.1, we learned the Taylor form of the polynomial
pn(z), centered at z0

� Suppose we want to find a polynomial pn(z) of degree at
most n that approximates an analytic function f(z) in a
neighborhood of a point z0

� Naturally there are differing criteria as to how well the
polynomial approximates the function

� We shall construct a polynomial that ”looks like” f(z) at the
point z0 in the sense that its derivatives match those of f at
z0
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5.2 Taylor Series

Definition of Taylor Series

� The n-th-degree polynomial that matches f , f ′, f ′′, . . ., f (n)

at z0 is

pn(z) =

f(z0)+f ′(z0)(z−z0)+ f ′′(z0)
2!

(z−z0)2+. . .+
f (n)(z0)

n!
(z−z0)n

Definition
If f is analytic at z0, then the series

f(z0)+f ′(z0)(z−z0)+
f ′′(z0)
2!

(z−z0)
2+. . . =

∞∑

j=0

f (j)(z0)

j!
(z−z0)

j

is called the Taylor series for f around z0. When z0 = 0, it is
known as the Maclaurin series of f
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5.2 Taylor Series

Convergence of Taylor Series

Theorem
If f is analytic in the disk |z − z0| < R, then the Taylor series
converges to f(z) for all z in this disk. Furthermore, the
convergence of the series is uniform in any closed subdisk
|z − z0| ≤ R′ < R

� The theorem implies that the Taylor series will converge to
f(z) everywhere inside the largest open disk, centered at z0,
over which f is analytic
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5.2 Taylor Series

Derivatives of Taylor Series

Theorem
If f is analytic at z0, the Taylor series for f ′ around z0 can be
obtained by termwise differentiation of the Taylor series for f
around z0 and converges in the same disk as the series for f
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5.2 Taylor Series

Linearity of Taylor Series

Theorem
If f and g be analytic functions with Taylor series
f(z) =

∑∞
j=0 aj(z − z0)

j and g(z) =
∑∞

j=0 bj(z − z0)
j around the

point z0 [that is aj = f (j)(z0)/j! and bj = g(j)(z0)/j!]. Then
(i) the Taylor series for cf(z), c a constant, is

∑∞
j=0 caj(z − z0)

j

(ii) the Taylor series for f(z)± g(z) is
∑∞

j=0(aj ± bj)(z − z0)
j
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5.2 Taylor Series

Product of Two Taylor Series

Definition
The Cauchy product of two Taylor series

∑∞
j=0 aj(z − z0)

j and∑∞
j=0 bj(z − z0)

j is defined to be the (formal) series∑∞
j=0 cj(z − z0)

j , where cj is given by

ajb0 + aj−1b1 + aj−2b2 + . . .+ a1bj−1 + a0bj =
j∑

l=0

aj−lbl

Theorem
Let f and g be analytic functions with Taylor series
f(z) =

∑∞
j=0 aj(z − z0)

j and g(z) =
∑∞

j=0 bj(z − z0)
j around the

point z0. Then the Taylor series for the product fg around z0 is
given by the Cauchy product of these two series
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5.2 Taylor Series

Comments

� The proof of the validity of the Taylor expansion substantiates
the claim, made in Sec. 2.3, that any analytic function can
be displayed with a formula involving z alone, and not z,
x, or y
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5.3 Power Series

Definition of Power Series

� Actually, a Taylor series for an analytic function appears to be
a special instance of a certain general type of series of the
form

∑∞
j=0 aj(z − z0)

j . Such series have a name of Power
Series

Definition
A series of the form

∑∞
j=0 aj(z − z0)

j is called a power series.
The constants aj are the coefficients of the power series
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5.3 Power Series

The Goal of This Section

� Consider an arbitrary power series, such as
∞∑

j=0

zj

(j + 1)2
= 1 +

z

4
+

z2

9
+

z3

16
+ · · ·

� We will answering the following questions
� For what values of z does the series converge?
� Is the sum an analytic function?
� Is the power series representation of a function unique?
� Is every power series a Taylor series?
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5.3 Power Series

Convergence of the Power series

Theorem
For any power series

∑∞
j=0 aj(z − z0)

j there is a real number R
between 0 and ∞, inclusive, which depends only on the coefficients
{aj}, such that

(i) the series converges for |z − z0| < R

(ii) the series converges uniformly in any closed subdisk
|z − z0| ≤ R′ < R

(iii) the series diverges for |z − z0| > R.

The number R is called the radius of convergence of the power
series
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5.3 Power Series

Convergence of the Power series (Cont’d)

� In particular, when R = 0 the power series converges only at
z = z0, and when R =∞ the series converges for all z

� For 0 < R <∞, the circle |z − z0| = R is called the circle of
convergence, but no general convergence statement can be
made for z lying on this circle

Lemma
If the power series

∑∞
j=0 ajz

j converges at a point having modulus
r, then it converges at every point in the disk |z| < r
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5.3 Power Series

Convergence of the Power series (Cont’d)

� To see the existence of the number R in Theorem for the
power series

∑∞
j=0 ajz

j we reason informally as follows:
� Consider the set of all real numbers r such that the series

converges at some point having modulus r
� Let R be the ”largest” of these numbers r
� Then by Lemma, the series converges for |z| < R, and from

the definition of R, the series diverges for all z with |z| > R

� If z is replaced by (z − z0), we deduce that the region of
convergence of the general power series

∑∞
j=0 aj(z − z0)

j

must be a disk with center z0
� The formula for the radius of convergence R will be given in

Sec. 5.4 (will not be covered)
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5.3 Power Series

Uniform Convergence

� Uniform convergence is a powerful feature of a sequence, as
the next three results show

� The first says that the uniform limit of continuous functions is
itself continuous

Lemma
Let fn be a sequence of functions continuous on a set T ⊂ C and
converging uniformly to f on T . Then f is also continuous on T
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5.3 Power Series

Uniform Convergence (Cont’d)

� Knowing that the uniform limit of a sequence of continuous
functions is continuous, we can integrate this limit. In fact the
integral of the limit is the limit of integrals

Theorem
Let fn be a sequence of functions continuous on a set T ⊂ C
containing the contour Γ, and suppose that fn converges uniformly
to f on T . Then the sequence

∫
Γ fn(z)dz converges to

∫
Γ f(z)dz

� Combining these results with Morera’s theorem (page 210),
we can prove the following theorem in the next slide

Ch.5: Series Representations for Analytic Functions

5.3 Power Series

Uniform Convergence (Cont’d)

Theorem
Let fn be a sequence of functions analytic in a simple connected
domain D and converging uniformly to f in D. Then f is analytic
in D

� Since the partial sums of a power series are analytic functions
(indeed, polynomials) and since they converge uniformly in
any closed subdisk interior to the circle of convergence, we
know that the limit function is analytic inside every such
subdisk
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5.3 Power Series

Uniform Convergence (Cont’d)

� But any point within the circle of convergence lies inside every
such a subdisk, so we can state the following

Theorem
A power series sums to a function that is analytic at every point
inside its circle of convergence
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5.3 Power Series

Relationship Between Power Series and Taylor Series

Theorem
If
∑∞

j=0 aj(z − z0)
j converges to f(z) in some neighborhood of z0

(that is, the radius of its circle of convergence is nonzero), then

aj =
f (j)(z0)

j!
(j = 0, 1, 2, . . .)

Consequently,
∑∞

j=0 aj(z − z0)
j is the Taylor expansion of f(z)

around z0

� If a power series converges inside some circle, it is the Taylor
series of its (analytic) limit function and can be integrated
and differentiated term by term inside this circle; moreover,
this limit function must fail to be analytic somewhere on the
circle of convergence
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5.5 Laurent Series

Introduction

� In this section, we wish to investigate the possibility of a series
representation of a function f near a singularity

� After all, if the occurrence of a singularity is merely due to a
vanishing denominator, might it not be possible to express the
function as something like A/(z − z0)

p + g(z), where g is
analytic and has a Taylor series around z0?

� To be sure, not all singularities are of this type (recall Logz at
z0 = 0)

� If the function is analytic in an annulus surrounding one or
more of its singularities (note that Logz does not have this
property, due to its branch cut), we can display its ”singular
part” according to the following theorem
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5.5 Laurent Series

Definition of Laurent Series

Theorem
Let f be analytic in the annulus r < |z − z0| < R. Then f can be expressed
there as the sum of two series

f(z) =
∞∑
j=0

aj(z − z0)
j +

∞∑
j=1

a−j(z − z0)
−j

both series converging in the annulus, and converging uniformly in any closed
subannulus r < ρ1 ≤ |z − z0| ≤ ρ2 < R. The coefficients aj are given by

aj =
1

2πi

∫
�
C

f(ξ)

(ξ − z0)j+1
dξ (j = 0,±1,±2, . . .)

where C is any positively oriented simple closed contour lying in the annulus
and containing z0 in its interior
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5.5 Laurent Series

Definition of Laurent Series (Cont’d)

� Such an expansion, containing negative as well as positive
powers of (z − z0), is called the Laurent series for f in this
annulus. It is usually abbreviated

∞∑
j=−∞

aj(z − z0)
j

� Note that if f is analytic throughout the disk |z − z0| < R,
the coefficients with negative subscripts are zero by Cauchy’s
theorem, and the others reproduce the Taylor series for f
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5.5 Laurent Series

Definition of Laurent Series (Cont’d)

� Replacing (z − z0) with 1/(z − z0) in Theorem 7 (page 253),
one easily sees that any formal series of the form∑∞

j=1 c−j(z − z0)
−j will converge outside some ”circle of

convergence” |z − z0| = r whose radius depends on the
coefficients, with uniform convergence holding in each region
|z − z0| ≥ r′ > r

� Thus termwise integration is justified by Theorem 8 (page
255), and proceeding in a manner analogous to that of Sec
5.3 we can prove the theorem in the next slide
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5.5 Laurent Series

Definition of Laurent Series (Cont’d)

Theorem
Let

∑∞
j=0 cj(z − z0)

j and
∑∞

j=1 c−j(z − z0)
−j be any two series

with the following properties:

(i)
∞∑
j=0

cj(z − z0)
j converges for |z − z0| < R

(ii)
∞∑
j=1

c−j(z − z0)
−j converges for |z − z0| > r and

(iii) r < R

Then there is a function f(z), analytic for r < |z − z0| < R, whose
Laurent series in this annulus is give by

∑∞
j=−∞ cj(z − z0)

j
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5.6 Zeros and Singularities

Introduction

� This section focuses on using the Laurent expansion to
classify the behavior of an analytic function near its zeros and
isolated singularities

� A zero of a function is a point z0 where f is analytic and
f(z0) = 0

� An isolated singularity of f is a point z0 such that f is
analytic in some punctured disk 0 < |z − z0| < R but not
analytic at z0 itself
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5.6 Zeros and Singularities

Zeros of Complex-Valued Functions

Definition
A point z0 is called a zero of order m for the function f if f is
analytic at z0 and f and its first m− 1 derivatives vanish at z0,
but f (m)(z0) �= 0

� In other words, we have

f(z0) = f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0 �= f (m)(z0)

� In this case the Taylor series for f around z0 takes the form

f(z) = am(z−z0)m+am+1(z−z0)m+1+am+2(z−z0)m+2+· · ·
or

f(z) = (z−z0)
m
[
am + am+1(z − z0) + am+2(z − z0)

2 + · · · ]

where am = f (m)(z0)/m! �= 0
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5.6 Zeros and Singularities

Zeros of Complex-Valued Functions (Cont’d)

Theorem
Let f be analytic at z0. Then f has a zero of order m at z0 if and
only if f can be written as

f(z) = (z − z0)
mg(z)

where g is analytic at z0 and g(z0) �= 0

Corollary

If f ia an analytic function such that f(z0) = 0, then either f is
identically zero in a neighborhood of z0 or there is a punctured
disk about z0 in which f has no zeros
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5.6 Zeros and Singularities

Zeros of Complex-Valued Functions (Cont’d)

� Notice that if f is nonconstant, analytic, and zero at z0, the
order of the zero must be a whole number

� The function z1/2 could be said to have a zero of order 1/2 at
z = 0, but of course it is not analytic there
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5.6 Zeros and Singularities

Singularities of Complex-Valued Functions

� We know that f has a Laurent expansion around any isolated
singularity z0;

f(z) =

∞∑

j=−∞
aj(z − z0)

j (1)

for, say 0 < |z − z0| < R. (The r is zero for an isolated
singularity)

� We can classify z0 into one of the following three categories in
the next slide
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5.6 Zeros and Singularities

Singularities of Complex-Valued Functions (Cont’d)

Definition
Let f have an isolated singularity at z0, and let (1) be the Laurent
expansion of f in 0 < |z − z0| < R. Then

(i) If aj = 0 for all j < 0, we say that z0 is a removable
singularity of f

(ii) If a−m �= 0 for some positive integer m but aj = 0 for all
j < −m, we say that z0 is a pole of order m for f

(iii) If a−m �= 0 for an infinite number of negative values of j, we
say that z0 is an essential singularity of f
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5.6 Zeros and Singularities

Removable Singularities

� When f has a removable singularity at z0, its Laurent series
takes the form

f(z) = a0+a1(z−z0)+a2(z−z0)
2+· · · (0 < |z−z0| < R)

Lemma
If f has a removable singularity at z0, then

(i) f(z) is bounded in some punctured circular neighborhood of
z0

(ii) f(z) has a (finite) limit as z approaches z0, and

(iii) f(z) can be redefined at z0 so that the new function is
analytic at z0
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5.6 Zeros and Singularities

Removable Singularities (Cont’d)

� Conversely, if a function is bounded in some punctured
neighborhood of an isolated singularity, that singularity is
removable

� Clearly, removable singularities are not too important in the
theory of analytic functions

� The concept is occasionally helpful in providing compact
descriptions of the other kinds of singularities
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5.6 Zeros and Singularities

A Pole of Order m

� The Laurent series for a function with a pole of order m looks
like

f(z) =
a−m

(z − z0)m
+

a−(m−1)
(z − z0)m−1

+ · · ·+ a−1
z − z0

+ a0 +

a1(z − z0) + a2(z − z0)
2 + · · · (a−m �= 0)

valid in some punctured neighborhood of z0
� A pole of order 1 is called a simple pole

Lemma
If the function f has a pole of order m at z0, then
|(z − z0)

lf(z)| → ∞ as z → z0 for all integers l < m, while
(z − z0)

mf(z) has a removable singularity at z0. In particular,
|f(z)| → ∞ as z approaches a pole
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5.6 Zeros and Singularities

A Pole of Order m (Cont’d)

Lemma
A function f has a pole of order m at z0 if and only if in some
punctured neighborhood of z0

f(z) =
g(z)

(z − z0)m

where g is analytic at z0 and g(z0) �= 0

(See Example 1 on page 281)
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5.6 Zeros and Singularities

Essential Singularities

Theorem
(Picard’s Theorem) A function with an essential singularity
assumes every complex number, with possibly one exception, as a
value in any neighborhood of this singularity

� If neither lim
z→z0

f nor lim
z→z0

1/f exist, then z0 is an essential

singularity of both f and 1/f
� Another way to characterize an essential singularity is: The

point z0 is an essential singularity if and only if one (or both)
of these of two conditions exist:

(1) The function f has poles in every neighborhood of z0, meaning
that the singularity is not isolated

(2) The Laurent series of f at the point z0 has infinitely many
negative degree terms
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5.6 Zeros and Singularities

Essential Singularities (Cont’d)

Plot of the function e1/z,
centered on the essential
singularity at z0 = 0. The hue
represents the complex
argument, the luminance
represents the absolute value.
This plot shows how
approaching the essential
singularity from different
directions yields different
behaviors (as opposed to a
pole, which would be uniformly
white)
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5.6 Zeros and Singularities

Comments to Three Types of Singularities

� Boundedness indicated a removable singularity, approaching
∞ indicated a pole, and anything else must indicate an
essential singularity

� These characterizations are often useful in determining the
nature of a singularity when it is inconvenient to find the
Laurent expansion
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5.6 Zeros and Singularities

Comments to Three Types of Singularities (Cont’d)

The following theorem summarize the various equivalent
characterizations of the three types of isolated singularities

Theorem
If f has an isolated singularity at z0, then the following equivalences
hold:

(1) z0 is a removable singularity ⇔ |f | is bounded near z0 ⇔ f(z) has a
limit as z → z0 ⇔ f can be redefined at z0 so that f is analytic at z0

(2) z0 is a pole ⇔ |f(z)| → ∞ as z → z0 ⇔ f can be written
f(z) = g(z)/(z − z0)

m for some integer m > 0 and some function g
analytic at z0 with g(z0) �= 0

(3) z0 is an essential singularity ⇔ |f(z)| neither is bounded near z0 nor
goes to infinity as z → z0 ⇔ f(z) assumes every complex number,
with possible one exception, as a value in every neighborhood of z0
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5.6 Zeros and Singularities

Some Observations

� The analytic property for a function f at a point z0 places
enormous restrictions on f ; in particular, it must be infinitely
differentiable, and expressed by its Taylor series in a
neighborhood of z0

� Now we find that if f is merely presumed to be defined, and
analytic, in a punctured neighborhood of z0 (like
0 < |z − z0| < r), then it is still strongly restricted

� One can characterized its behavior near z0 by asking how
many powers of (z − z0) would it take to ”civilize” f(z), in
the sense that (z − z0)

mf(z) would have a finite, nonzero
limiting values as z → z0
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5.6 Zeros and Singularities

Some Observations (Cont’d)

� If the answer m is a positive integer, then f has a pole of
order m at z0 and it can be written as g(z)/(z − z0)

m with g
analytic and nonzero at z0

� If m is a negative integer, then f can be written as
g(z)(z − z0)

|m| with g, again, analytic and nonzero at z0. In
this case, f exhibits a zero of order |m| at z0

� If m is zero, then f has a removable singularity at z0
� The only other possibility is that no such m exists, that is, no

power of (z − z0) can endow (z − z0)
mf(z) with a nonzero

limit at z0. Then unless f is identically zero, it has an
essential singularity at z0, taking all complex numbers as
values in any neighborhood of z0 (with possibly, one
exception)
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5.7 The Point at Infinity

Introduction

� From last section we know that if a mapping is given by an
analytic function possessing a pole, it carries points near that
pole to indefinitely distant points

� It must have occurred to the reader that one might take the
value of f at the pole to be ∞

� Before taking this plunge, however, we should be aware of all
the ramifications

� Geometrically, we are speaking of the point of infinity, which
can be reached by proceeding infinitely far along any
direction in the complex plane
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5.7 The Point at Infinity

Concept of Point of Infinity

� A sequence of points zn in C (n = 1, 2, 3, . . .) approaches ∞
if |zn| can be made arbitrarily large by taking n large

� Consequently, we shall write f(z0) =∞ when |f(z)| increases
without bound as z → z0 and shall write f(∞) = w0 when
f(z)→ w0 as z →∞

� We find it convenient to carry this notion still further and
speak of functions that are ”analytic at ∞”

� The analyticity properties of f at ∞ are classified by first
performing the mapping w = 1/z, which maps the point to
the origin, and then examining the behavior of the composite
function g(w) := f(1/w) at the origin w = 0
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5.7 The Point at Infinity

Concept of Point of Infinity (Cont’d)

Thus we say

1. f(z) is analytic at ∞ if f(1/w) is analytic (or has a removable
singularity) at w = 0

2. f(z) has a pole of order m at ∞ if f(1/w) has a pole order at w = 0

3. f(z) has an essential singularity at ∞ if f(1/w) has an essential
singularity at w = 0

We can interpret these conditions for a function analytic outside some
disk as follows:

1’. f(z) is analytic at ∞ if |f(z)| is bounded for sufficiently large |z|
2’. f(z) has a pole at ∞ if f(z)→∞ as z →∞
3’. f(z) has an essential singularity at ∞ if |f(z)| neither is bounded for

large |z| nor goes to infinity as z →∞


