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4.1 Contours

Introduction

� The two-dimensional nature of the complex plane required us
to generalize our notion of a derivative because of the
freedom of the variable to approach its limit along any of an
infinite number of directions.

� This two-dimensional aspect will have an effect on the theory
of integration, necessitating the consideration of integrals
along general curves in the plane not merely segments of the
x-axis

� Fortunately, such well-known techniques as using
antiderivatives to evaluate integrals carry over to the complex
case
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4.1 Contours

Introduction (Cont’d)

� When the function under consideration is analytic the theory
of integration becomes an instrument of profound significance
in studying its behavior

� The main result is the theorem of Cauchy, which roughly
says that the integral of a function around a closed loop is
zero if the function is analytic ”inside and on” the loop

� Using this result, we shall derive the Cauchy integral
formula, which explicitly displays many of the important
properties of analytic function



Ch.4: Complex Integration

4.1 Contours

Curves

Parametrization of a Curve

� To study the complex integration in a plane, the first problem
is finding a mathematical explication of our intuitive concept
of a curve in the xy-plane (or called z-plane)

� Although most of the applications described in this book
involve only two simple types of curves – line segments and
arc of circles – it will be necessary for proving theorems to nail
down the definition of more general curves

� A curve γ can be constituted by the points z(t) = x(t) + iy(t)
over an interval of time a ≤ t ≤ b. Then the curve γ is the
range of z(t) as t varies between a and b

� In such a case, z(t) is called the parametrization of γ
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4.1 Contours

Curves

Smooth Curves

Definition
A point set γ in the complex plane is said to be a smooth arc if it
is the range of some continuous complex-valued function z = z(t),
a ≤ t ≤ b, that satisfies the following conditions:

(i) z(t) has a continuous derivative on [a, b]

(ii) z′(t) never vanishes on [a, b]
� z′(t) must exist (no corners)
� z′(t) is nonzero (no cusps)

(iii) z(t) is one-to-one on [a, b] (no self-intersections)
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4.1 Contours

Curves

Smooth Curves (Cont’d)

Definition
A point set γ is called a smooth closed curve if it is the range of
some continuous function z = z(t), a ≤ t ≤ b, satisfying conditions
i and ii and the following:

(iii’) z(t) is one-to-one on the half open [a, b), but
z(b) = z(a) and z′(b) = z′(a)
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4.1 Contours

Curves

Smooth Curves (Cont’d)

� The phrase ”γ is a smooth curve” means that γ is either a
smooth arc or a smooth closed curve

� The conditions of the definition imply that smooth curve
possesses a unique tangent at every point and the tangent
direction varies continuous along the curve. Consequently a
smooth curve has no corners or cusps

� To show that a set of points γ in the complex plane is a
smooth curve, we have to exhibit a parametrization function
z(t) whose range is γ, and is ”admissible” in the sense that it
meets the criteria of the definition

� A given smooth curve γ will have many different admissible
parameterizations, but we need produce only one admissible
parametrization in order to show that a given curve is smooth
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Curves

Directed Smooth Arcs

� A smooth arc, together with a specific ordering of its points,
is called a directed smooth arc. The ordering can be
indicated by an arrow

� The point z(t1) will precede z(t2) whenever t1 < t2. Since
there are only two possible ordering, any admissible
parametrization must fall into one the two categories,
according to the particular ordering it respects

� If z = z(t), a ≤ t ≤ b, is an admissible parametrization
consistent with one of the ordering, then
z = z(−t),−b ≤ t ≤ −a, always corresponds to the opposite
ordering

Ch.4: Complex Integration

4.1 Contours

Curves

Directed Smooth Arcs (Cont’d)

� The points of a smooth closed curve have been ordered when
(i) a designation of the initial point is made and (ii) one of
the two ”directions of transit” from this point is selected

� If this parametrization is given by z = z(t), a ≤ t ≤ b, then (i)
the initial point must be z(a) and (ii) the point z(t1) precedes
the point z(t2) whenever a < t1 < t2 < b

� The phrase directed smooth curve will be used to mean either
a directed smooth arc or a directed smooth closed curve

� Next, we are ready to specify the more general kinds of curves
that will be used in the theory of integration
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4.1 Contours

Contours

Concept of a Contour

� The general curves are formed by joining directed smooth
curves together end-to-end; this allows self-intersection, cusps,
and corners

� It will be convenient to include single isolated points as
members of this class

Definition
A contour Γ is either a single point z0 or a finite sequence of
directed smooth curves (γ1, γ2, . . . , γn) such that the terminal
point of γk coincides with the initial point of γk+1 for each
k = 1, 2, . . . , n− 1. In this case one can write
Γ = γ1 + γ2 + . . .+ γn
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4.1 Contours

Contours

Concept of a Contour (Cont’d)

� The theory of contour is easier to express in terms of contour
parameterizations

� One can say that z = z(t), a ≤ t ≤ b, is a parametrization of
the contour Γ = (γ1, γ2, . . . , γn) if there is a subdivision of
[a, b] into n subintervals [τ0, τ1], [τ1, τ2], . . . , [τn−1, τn], where
a = τ0 < τ1 < . . . < τn−1 < τn = b, such that on each
subinterval [τk−1, τk] the function z(t) is an admissible
parametrization of the smooth curve γk, consistent with the
direction on γk

� Since the endpoints of consecutive γk’s are properly
connected, z(t) must be continuous on [a, b]. However z′(t)
may have jump discontinuities at the points γk
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Contours

Parametrization of a Contour

� When we have admissible parameterizations of the
components γk of a contour Γ. We can piece these together
to get a contour parametrization for Γ by simply rescaling
and shifting the parameter intervals for t (Example 2 on page
156)

� The (undirected) point set underlying a contour is known as a
piecewise smooth curve

� We shall use the symbol Γ ambiguously to refer to both the
contour and its underlying curve, allowing the context to
provide the proper interpretation

� The opposite contour is denoted by −Γ
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Contours

Closed Contour

� Γ is said to be a closed contour or a loop if its initial and
terminal points coincide

� A simple closed contour is closed contour with no multiple
points other than its initial-terminal point; in other words, if
z = z(t), a ≤ t ≤ b, is a parametrization of the closed
contour, then z(t) is one-to-one on the half-open interval
[a, b) (no self-intersections)

� There is an alternative way of specifying the direction along a
curve if the curve happens to be a simple closed contour
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4.1 Contours

Jordan Curve Theorem

Jordan Curve Theorem

Theorem
Any simple closed contour separates the plane into two domains,
each having the curves as its boundary. One of these domains,
called the interior, is bounded; the other, called the exterior, is
unbounded

� When the interior domain lies to the left, we say that Γ is
positively oriented. Otherwise Γ is said to be oriented
negatively.

� A positive orientation generalizes the concept of
counterclockwise motion
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The Length of a Contour

The Length of a Contour

� If one admissible parametrization for curve γ is
z(t) = x(t) + iy(t), a ≤ t ≤ b, let s(t) be the length of the arc
of γ traversed in going from the point z(a) to the point z(b).
As shown in elementary calculus, we have

ds

dt
=

√(
dx

dt

)2

+

(
dy

dt

)2

=

∣∣∣∣dzdt
∣∣∣∣

� Consequently, the length of the smooth curve is given by
the important integral formula

l(γ) = length of γ =

∫ b

a

ds

dt
dt =

∫ b

a

∣∣∣∣dzdt
∣∣∣∣ dt (1)
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The Length of a Contour

The Length of a Contour (Cont’d)

� l(γ) is a geometric quantity that depends only on the point
set γ and is independent of the particular admissible
parametrization used in the computation

� The length of a contour is simply defined to be the sum of
the length of its component curves
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4.2 Contour Integrals

Introduction

� In calculus, the definite integral of a real-valued function f
over an interval [a, b] is defined as the limit of certain sums∑n

k=1 f(ck)�xk (called Riemann sums)

� However, the fundamental theorem of calculus lets us evaluate
integrals more directly when an antiderivative is known

� The aim of this section is to use this notion of Riemann sums
to define integral of a complex-valued function along a
contour Γ in the z-plane
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4.2 Contour Integrals

Introduction (Cont’d)

� We will accomplish this by first defining the integral along a
single directed smooth curve and then defining integrals along
a contour in terms of the integrals along its smooth
components

� Finally, we once again obtain simple rules for evaluating
integrals in terms of antiderivatives
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4.2 Contour Integrals

Riemann Sum
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Riemann Sum

� Partition Pn is a finite number of points {z0, z1, . . . , zn} on
γ such that z0 = α, zn = β

� Riemann sum for the function f corresponding to the
partition Pn:
S(Pn) := f(c1)(z1−z0)+f(c2)(z2−z1)+· · ·+f(cn)(zn−zn−1)

� On writing zk − zk−1 = �zk, this becomes

S(Pn) =
n∑

k=1

f(ck)(zk − zk−1) =
n∑

k=1

f(ck)�zk

� With the concept of Riemann Sum, we can generalize the
definition of definite integral given in calculus
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4.2 Contour Integrals

Integral of a Complex Function f along a Directed Smooth
Curve γ

Definition
Let f be a complex-valued function defined on the directed smooth
curve γ. We say that f is integrable along γ if there exists a
complex number L that is the limit of every sequence of Riemann
sums S(P1), S(P2), . . ., S(Pn), . . . corresponding to any sequence
of partitions of γ satisfying lim

n→∞μ(Pn) = 0; i.e.

lim
n→∞S(Pn) = L whenever lim

n→∞μ(Pn) = 0

The constant L is called the integral of f along γ, and we write

L = lim
n→∞

n∑
k=1

f(ck)Δzk =
∫
γ f(z)dz =

∫
γ f
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4.2 Contour Integrals

Integral of a Complex Function f along a Directed Smooth
Curve γ (Cont’d)

Theorem
If f is continuous on the directed smooth curve γ, then f is
integrable along γ

� This theorem is of great theatrical importance, but is gives us
no information of how to compute the integral

∫
γ f(z)dz

� Since we are ready skilled in evaluating the definite integral of
calculus, it would certainly be advantageous if we could
express the complex integral in terms of real integrals
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4.2 Contour Integrals

Contour Integrals Along a Directed Smooth Curve

� First consider the special case when γ is the real line segment
[a, b] directed from left to right

� Notice that if f happened to be a real-valued function defined
on [a, b], the definition of complex integral reduces to the

integral
∫ b
a f(t) given in calculus

� When f is a complex-valued function continuous on [a, b], we
can write f(t) = u(t) + iv(t), where u and v are each
real-valued and continuous on [a, b], then we have

∫ b

a
f(t)dt =

∫ b

a
u(t)dt+ i

∫ b

a
v(t)dt (2)

this expresses the complex integral in terms of two real
integrals
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4.2 Contour Integrals

Contour Integrals Along a Directed Smooth Curve (Cont’d)

Theorem
If the complex-valued function f is continuous on [a, b] and
F ′(t) = f(t) for all t in [a, b], then∫ b

a
f(t)dt = F (b)− F (a)

Theorem
Let f be a function continuous on the directed smooth curve γ.
Then if z = z(t), a ≤ t ≤ b, is any admissible parametrization of γ
consistent with its direction, we have∫

γ
f(z)dz =

∫ b

a
f(z(t))z′(t)dt
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4.2 Contour Integrals

Contour Integrals Along a Directed Smooth Curve (Cont’d)

� Since the integral of f along γ was defined independently of
any parametrization, we immediately deduce the following
corollary

Corollary

If f is continuous on the directed smooth curve γ and if
z = z1(t), a ≤ t ≤ b, and z = z2(t), c ≤ t ≤ d, are any two
admissible parameterizations of γ consistent with its direction, then∫ b

a
f(z1(t))z

′
1(t)dt =

∫ d

c
f(z2(t))z

′
2(t)dt
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4.2 Contour Integrals

Contour Integrals Along a Contour

Definition
Suppose that Γ is a contour consisting of the directed smooth
curves (γ1, γ2, . . . , γn), and let f be a function continuous on Γ.
Then the contour integral of f along Γ is denoted by the symbol∫
Γ f(z)dz and is defined by the equation∫

Γ
f(z)dz :=

∫
γ1

f(z)dz +

∫
γ2

f(z)dz + . . .+

∫
γn

f(z)dz

If Γ consists of a single point, then for obvious reasons we set∫
Γ
f(z)dz := 0
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4.2 Contour Integrals

Contour Integrals Along a Contour (Cont’d)

� If we have a parametrization z = z(t), a ≤ t ≤ b, for the whole
contour Γ = (γ1, γ2, . . . , γn), we can get the following formula∫

Γ
f(z)dz =

∫ b

a
f(z(t))z′(t)dt

� Using this formula it is not difficult to prove that integration
around simple closed contour is independent of the choice of
the initial-terminal point

� In problems dealing with integrals along such contours, we
need only specify the direction of transit, not the starting
point
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Upper Bound of the Magnitude of a Contour Integral

Theorem
If f is continuous on the contour Γ and if |f(z)| ≤M for all z on
Γ, then ∣∣∣∣

∫
Γ
f(z)dz

∣∣∣∣ ≤Ml(Γ)

where l(Γ) denotes the length of Γ. In particular, we have∣∣∣∣
∫
Γ
f(z)dz

∣∣∣∣ ≤ max
z on Γ

|f(z)| · l(Γ)
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4.2 Contour Integrals

Comments

� Although the real definite integral can be interpreted, among
other things, as an area, no corresponding geometric
visualization is available for contour integrals

� Nevertheless, the latter integrals are extremely useful in
applied problems, as we shall see in subsequent chapters
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4.3 Independence of Path

Introduction

� One of the important results in the theory of complex analysis
is the extension of the Fundamental Theorem of Calculus to
contour integrals

� It implies that in certain situations, the integral of a function
is independent of the particular path joining the initial and
terminal points, in fact, it completely characterize the
conditions under which this property holds

� In this section, we will explore this phenomenon in detail. We
will begin with the Fundamental Theorem, which enables us
to evaluate integrals without introducing parameterizations,
provided that an antiderivative of the integrand is known
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4.3 Independence of Path

Independence of Path

Theorem
Suppose that the function f(z) is continuous in a domain D and
has an antiderivative F (z) throughout D; i.e., dF (z)/dz = f(z)
for each a in D. Then for any contour Γ lying in D, with initial
point zI and terminal point zT , we have∫

Γ
f(z)dz = F (zT )− F (zI)

Note that the conditions of the theorem imply that F (z) is
analytic and hence continuous in D
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Independence of Path (Cont’d)

� Since the endpoints of a loop, i.e., a closed contour, are equal,
we have the following immediate consequence of the theorem

Corollary

If f is continuous in a domain D and has an antiderivative
throughout D, then

∫
Γ f(z)dz = 0 for all loops Γ lying in D

� Another important conclusion that can be drawn from the
theorem is that when a function f has an antiderivative
throughout a domain D, its integral along a contour in D
depends only on the endpoints zI and zT ; i.e., the integral is
independent of the path Γ joining these two points
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4.3 Independence of Path

Independence of Path (Cont’d)

Theorem
let f be continuous in a domain D. Then the following are
equivalent:

(i) f has antiderivative in D

(ii) Every loop integral of f in D vanishes [i.e., if Γ is any loop in
D, then

∫
Γ f(z)dz = 0]

(iii) The contour integral of f are independent of path in D [i.e.,
if Γ1 and Γ2 are any two contours in D sharing the same
initial and terminal points, then

∫
Γ1

f(z)dz =
∫
Γ2

f(z)dz ]

Ch.4: Complex Integration

4.4 Cauchy’s Integral Theorem

Cauchy’s Integral Theorem

Theorem
If f is analytic in a simple connected domain D and Γ is any loop
(closed contour) in D, then∫

Γ
f(z)dz = 0

Theorem
In a simple connected domain, an analytic function has an
antiderivative, its contour integral are independent of path, and its
loop integrals vanish
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4.5 Cauchy’s Integral Formula and Its Consequences

Introduction

� From Cauchy’s theorem we know that, if f is analytic inside
and on the simple closed contour Γ,

∫
Γ f(z)dz = 0

� Now the question is how about the integral∫
Γ f(z)/(z − z0)dz, where z0 is a point in the interior of Γ

� Obviously, there is no reason to expect that this integral is
zero, because the integrand has a singularity inside the
contour Γ

� In fact, as the primary result of this section, we shall show
that for all z0 inside Γ the value of the integral is proportional
to f(z0)
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Cauchy’s Integral Formula

Theorem
let Γ be a simple closed positively oriented contour. If f is analytic
in some simple connected domain D containing Γ and z0 is any
point inside Γ, then

f(z0) =
1

2πi

∫
Γ

f(z)

z − z0
dz

� One remarkable consequence of Cauchy’s formula is that by
merely knowing the values of the analytic function f on Γ we
can compute the above integral and hence all the values of f
inside Γ. In other words, the behavior of a function analytic in
a region is completely determined by its behavior on the
boundary
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4.5 Cauchy’s Integral Formula and Its Consequences

Cauchy’s Integral Formula (Cont’d)

Theorem
If f is analytic in a domain D, then all its derivatives f ′, f ′′, . . .,
f (n), . . . exist and are analytic in D

Theorem
If f = u+ iv is analytic in a domain D, then all partial derivatives
of u and v exist and are analytic in D
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4.5 Cauchy’s Integral Formula and Its Consequences

Cauchy’s Integral Formula (Cont’d)

Theorem
If f is continuous in a domain D and if∫

Γ
f(z)dz = 0

for every closed contour Γ in D, then f is analytic in D

Theorem
If f is analytic inside and on the simple closed oriented contour Γ
and if z is any point inside Γ, then

f (m−1)(z0) =
(m− 1)!

2πi

∫
Γ

f(z)

(z − z0)m
dz
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4.6 Bounds for Analytic Functions

Introduction

� Many interesting facts about analytic functions are uncovered
when one considers upper bounds on their moduli

� We already have one result in this direction, namely, the
integral estimate Theorem 5 of Sec 4.2

� When this is judiciously applied to the Cauchy integral
formulas we obtain the Cauchy estimates for the derivatives of
an analytic function
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Cauchy Estimate for the Derivative of an Analytic Function

Theorem
Let f be analytic inside and on a circle CR of radius R centered
about z0. If |f(z)| ≤M for all z on CR, then the derivatives of f
at z0 satisfy ∣∣∣f (n)(z0)∣∣∣ ≤ n!M

Rn

Theorem
Liouville’s theorem: The only bounded entire functions are the
constant functions
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4.6 Bounds for Analytic Functions

Fundamental Theorem of Algebra

� Clearly, nonconstant polynomials are unbounded (over the
whole plane)

� We expect a polynomial of degree n to behave like zn for large
|z|, because the leading term will dominate the lower powers

� If P (z) = anz
n + an−1zn−1 + . . .+ a1z + a0, and we can see

that

P (z)/zn → an as |z| → ∞

Theorem
Every nonconstant polynomial with complex coefficients has at
least one zero
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4.6 Bounds for Analytic Functions

Mean-Value Property

� According to the Cauchy formula, for the function f , analytic
inside and on the circle CR around z0, we have

f(z0) =
1

2πi

∫
�

CR

f(z)

z − z0
dz

� Parameterizing CR by z = z0 +Reit, 0 ≤ t ≤ 2π, then we
write the above formula as

f(z0) =
1

2πi

∫ 2π

0

f(z0 +Reit)

Reit
iReitdt

=
1

2π

∫ 2π

0
f(z0 +Reit)dt
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4.6 Bounds for Analytic Functions

Mean-Value Property (Cont’d)

� The mean-value formula helps us establish the following
lemma

Lemma
Suppose that f is analytic in a disk centered at z0 and that the
maximum value of |f(z)| over this disk is |f(z0)|. Then |f(z)| is
constant in the disk

� The lemma says that the modulus of an analytic function
cannot achieve its maximum at the center of the disk unless
|f | is constant
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4.6 Bounds for Analytic Functions

Maximum Modulus Principle

Theorem
If f ia analytic in a domain D and |f(z)| achieves its maximum
value at a point z0 in D, then f is constant in D

Theorem
A function analytic in a bounded domain and continuous up to and
including its boundary attains its maximum modulus on the
boundary


