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L3.1 Polynomials and Rational Functions

The Degree of the Polynomial and Rational Functions

» The degree of the polynomial which has the form of

pn(z) =ap+ a1z + as?® + ...+ ap2"

is n if the complex constant a,, is nonzero
» The rational function which has the form of
Rovn(2) ag+ a1z + a2 + ...+ apz™
Z) =

e bo+ b1z 4 bez2 4+ ...+ byzm
has numerator degree m and denominator degree n, if a,, # 0
and b, # 0

» We will begin our study with these two simple types of
functions
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L3.1 Polynomials and Rational Functions

Deflation of Polynomial Functions

» You can always divide a "dividend” polynomial by a " divisor”
polynomial to obtain a " quotient” polynomial and a
"reminder” polynomial whose degree is less than that of the
divisor

dividend = divisor x quotient + remainder

» If z1 is any arbitrary complex number, then division of p,(z)
by the degree-one polynomial z — z; must result in a
remainder of lower degree: in other words, a constant,

pn(2) = (2 — 21)pn—1(2) + constant (1)

where the quotient polynomial p,,—1(z) has degree n — 1
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Deflation of Polynomial Functions (Cont'd)

» If 21 happens to be a zero of p,(z), we deduce that the
remainder is zero. Thus (1) shows how z — z; has been
factored out from p,,(z). We say p,(z) has been "deflated”

» If 29 is a zero of the quotient p,,—1(z), we can deflate further
by factoring out z — 29, and so on, until we run out of zeros,
leaving us with the factorization

pn(2) = (2 —21)(z — 22) -+ (2 — 2)Pp—i(2) (2)

» Example on page 99-100 gives us an explicit explanation of
how this procedure works
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Zeros-Characterization of Polynomials

» With the issue of existence of zeros for the quotients settled
we have a complete factorization of any polynomial as follows

pn(z) =an(z —21)(z —22) - (2 — zn)
» This equation demonstrates that a polynomial of degree n has

n zeros and p,(z) is completed determined by its zeros, up to
a constant multiple {a,}

» The Fundamental Theorem only tell us there are zeros, it
doesn't tell us how to find them

» The cases of degree one the two are simple, but the higher
degree is very difficult or unsolvable
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Zeros of Polynomial Functions

> In order to deflate a polynomial function, we must find the
zeros first. Hence the two questions arise: 1) How to find a
zero of p,(z); 2) How do we know p,(2) has any zeros?

» Gauss helped us answer the second question in his doctoral
dissertation of 1799: Every nonconstant polynomial with
complex coefficients has at least one zero in C

» We immediately conclude that a polynomial of degree n has n
zeros, since we can continue to factor out zeros in the
deflation process until we reach the final, constant, quotient.

> Repeated zeros are counted according to their multiplicities
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Taylor Form of the Polynomials

» Any polynomial function p,(z) can be expressed in the form
of Taylor form centered at 2y as follows

Pn(Zo) Ph(20)
1

an 2’0 z—zo)k

» We use the nomenclature Maclaurin Form for the Taylor form
centered at z9 =0

pn(2) (z—zo)l—i---'-l-i
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Factored Form of Rational Functions

» Since the rational functions are ratios of polynomials, all the
previous conclusions can be applied to their numerators and
denominators separately

» Probably the most enlightening display comes from the
factored from

Ryn(2) = am(z —2z1)(z —22) -+ (2 — zm)

bn(z - 51)(2 - 52) e (Z - gn)

where {z},} designates the zeros of the numerator and {¢;}

designates those of the denominator (We assume the common

zeros have been canceled)
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Partial Fractional Decomposition

_ _ agtaiztasz®+..+amz™ : : :

> If Ry = (e &) (o) 2 (5 6 is a rational function .
whose denominator degree n = dy + ds + - - - + d, exceeds its
numerator degree m, then R,,,, has a partial fraction

decomposition of the from

(1)
Aél) Agl) . Adl—l

where the {Agj)} are constants (The &'s are assumed
distinct)
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Factored Form of Rational Functions (Cont'd)

» The zeros of the numerator are, of course, zeros of Ry, ,,(2);
zeros of the denominator are called poles of R, ,,(2)

» Zeros and poles can, of course, be multiple
» Clearly, the magnitude of R,, ,,(z) grows without bounds as z
approaches a poles

» With the knowledge of poles, we can express R, ,(2) in
terms of partial fractions which will be discussed subsequently
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How to Find the Coefficients {Agj)}

» The brute-force procedure consists in rearranging the
proposed form (3) over a common denominator and
comparing the resulting numerator, term be term, with the
original numerator of R, ,,. But this will result in solving a
group of linear equations

> A quicker, more sophisticated method for evaluating the
{Ag])} is illustrated in the example on page 106

» The deduced conclusion is if R, ,, can be written in the form
(3), then a general expression for the coefficients is

St [CR LT e

AY) — i =
° zgrglj sldzs
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The Complex Function e?

» The complex exponential function e* plays a prominent role in
analytic function theory, not only because of its own
important properties but because it is used to define the
complex trigonometric and hyperbolic functions

> If z=x + iy, e* = e"(cosy + isiny) according to the Euler's

Equation
> ¢7 is an entire function and its arbitrary degree of derivative is
itself, i.e.,
d , ar
—ef = = —ef=¢
dz dz"
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Polar Form of the Complex Function e* (Cont'd)

» The Theorem tell us €* is periodic with complex period 27
» If we divide up the z-plane into the infinite horizontal strips:
Sp={rz+iyl —oco<r<o00,2n—1)r <y < (2n+1)r}
where n =0,+1,42,...

» e behaves in the same manner on each strip. Furthermore, e?
is one-to-one on each strip

> Any one of these strips is called a fundamental region for e?

Polar Form of the Complex Function e*

» The polar components of e* is
le*| = €%, arge® =y+2kn  (k=0,£1,42,...)

» From the above expression, we can see that e* is never zero.
However, e* does assume every other complex value
» The exponential function is one-to-one on the real axis, but it
is not one-to-one on the complex plane. In fact, we have
1. The equation e* = 1 holds if, and only if, z = 2kxi, where k is
an integer
2. The equation e** = e*2 holds if, and only if, 2y = 29 + 2kmi,
where k is an integer
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L3.2.2 Trigonometric Functions

Trigonometric Functions

» For real variables, we have the identities

e — e W e 4 e~

g CSY=——(F—

» We extend the identities to the complex case: Given any
complex number z, we define

eiz _ e—iz eiz + e—iz

—_— oSz i= —————

21 2

» Since €% and e~%* are entire functions, so are sin z and cos z.
Some further identities remain valid in the complex case (See
page 113)

siny =

sin z 1=
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L3.2.2 Trigonometric Functions
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L3.2.3 Hyperbolic Functions

The Distinction Between the Real and Complex Cases

» The real cosine function is bounded by 1, i.e.,
|cosz| <1, for all real x

» But in the complex case, the cosine function

= coshy

e Y+4e¥
2

| cos(iy)| =
which is unbounded and, in fact, is never less than 1

» But note that, this does not mean |sin z| or |cos z| is always
greater than 1!

Hyperbolic Functions

» For any complex number z, we define
z —z z —z
. e —e e +e
sinhz:= ——, coshz:= —F—
2 2

» One nice feature of the complex variable perspective is that it
reveals the intimate connection between hyperbolic functions
and their trigonometric analogues (See page 114-115 for
details)
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Definition of Logarithmic Functions

» log z is defined as the inverse of the exponential function; i.e.,
w=logz if z=1¢€v
» Since e is never zero, we presume that z # 0. Let us write z
in the polar form as z = re®® and w in the standard form as

w = u + tv. Then the equation z = e becomes
7”610 — eutiv — gugiv

» Taking magnitudes of both sides we deduce that r = e“, or
that w is the ordinary logarithm of r: u = Log r = Log |z|

» The equality of the remaining factors, e’ = ¢, identifies v as

the (multiple-valued) polar angle f=argz: v =argz =0
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L3.3 The Logarithmic Function

Definition of Logarithmic Functions (Cont'd)

» Thus w = log z is also a multiple-valued function. The
explicit definition is as follows

» Definition 3: If z # 0, then we define log z to be the set of
infinitely many values

logz: = Log|z| +iargz
= Log|z| +iArgz +i2km (kK =0,+1,£2,...)

» The multiple-valuedness of log z simply reflects the fact that
the imaginary part of logarithm is the polar angle 6
(multiple-valued); the real part is single-valued
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Properties of Logarithmic Functions

» Many familiar properties of the real logarithmic function can
be extended to the complex case, but it should be noted that
log 2z is multiple-valued. Hence, the precise statements of
these extensions are more complicated

» If z#£0, we have z = elogz put

loge* = z+2kmi (k=0,+£1,42,...)
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Analyticity and Derivative of Logz

» Logz also inherits, from Argz, the discontinuities along the
branch cut

» However, at all points off the nonpositive real axis, Logz is
continuous when it is defined on the interval (—m, 7] and we
have the following theorem

» Theorem 4: The function Logz is analytic in the domain D*
consisting of all points of the complex plane except those
lying on the nonpositive real axis. Furthermore

d

1
—Logz = —, for z in D*
dz z
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The Principle Value of Logarithm Logz

» The notation of branch cut is used to resolve the ambiguity in
the designation of the polar angle 6§ = arg z

> We take Argz to be the principal value of arg z, in the interval
(7,7 + 27] which shifts the 27-discontinuities to the ray 6 = 7
» Similarly, we generate single-valued branches of log z. The
principle value of the logarithm Logz is the value inherited
from the principal value of the argument:
Logz := Log|z| + iArgz
(Note that we use the same convention 'capital L’ for the

principal value as for the real value, since Argz =0 if z is
positive real)
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Other Branches of log z

» Other branches log z can be employed if the location of the
discontinuities on the negative axis is inconvenient. Clearly,
the specification

L;(z) := Logz +iarg, z
results in a single-valued function whose imaginary part lies in
the interval (7,7 + 27]

» Also, Theorem 4 shows that this function is analytic in the
complex plane excluding the ray § = 7 and the origin

» When complex arithmetic is incorporated into computer

packages, all functions must of necessity be programmed as
single-valued
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Complex Powers Functions

» One important theoretical use of the logarithmic function is to
define complex powers of z. The definition is motivated by
the identity

oM — (elogz)" — enlogz
which holds for any integer n

» Definition 5: If o is a complex constant and z # 0, then we

define z% by

L0 ealogz
This means that each value of log z leads to a particular value
of z¢
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Complex Powers Functions (Cont'd)

» This means only when « is a real rational number, (4) yields
some identical values of z®

» If o is not a real rational number, we obtain infinitely many
different values for z%, one for each choice of the integer k in
Eq.(4)

» One the other hand, if &« = m/n, where m and n > 0 are
integers having no common factor, then one can verify that
there are exactly n distinct values of 2™/™, namely

2™ = exp (%Logw) exp (i%(Argz + 2k‘7r)) (5)

where £k =0,1,...,n—1
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Complex Powers Functions (Cont'd)

» Since log z = Logz + iArgz + 2kmi, we can get the following
expression

2X = 6a(Log\z|+zArgz+2km) — ea(Log|z|+zArgz)€a2km (4)

where k£ = 0,+1,4+2,--- (See Example 1 on page 132)

» The values of z® obtained by taking k = k1 and k = ko
(# k1) in Eq.(4) will therefore be the same when

eoa?kﬂri o2komi

=e
By Theorem 3 of Sec. 3.2 this occurs only if
a2kimi = a2komi + 2mmi

where m is an integer. By solving this equation, we get
a = m/(k:l — k‘g)

Ch.3: Elementary Functions
L3.5 Complex Powers and Inverse Trigonometric Functions

Complex Powers Functions (Cont'd)

» Eq.(5) is entirely consistent with the theory of roots discussed
in Sec. 1.5
> In summary,
> 2% is single-valued when « is a real integer
» 2% takes finitely many values when « is a real rational number
» 2% takes infinitely many values in all other cases
» From Definition 4 and 5, we know that each branch of log z
yields a branch of z¢. For example, using the principal branch
of log z we obtain the principal branch of 2%, namely, e®t°8?
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Complex Powers Functions (Cont'd)

» Since e” in entire and Logz is analytic in the slit domain D*,
the chain rule implies that the principal branch of z¢ is also
analytic in D*

» For z in D*, we have

d alogz) __ _alogz d _ aLogza
o (e )=e a(aLogz) =e .

» Other branches of z® can be constructed by using other
branches of log 2z, and since each branch of the latter has
derivative 1/z, the formula

d 1
%(za) = ozza;
is valid for each corresponding branch of z¢
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Inverse Trigonometric Functions (Cont'd)

» We can obtain a branch of the multiple-valued function
sin~! z by first choosing a branch of the square root and then
selecting a suitable branch of the logarithm

» Using the chain rule and the formula of sin™*

that any such branch of sin™! z satisfies

d, . _ 1
a(sm 1z)zm (z # £1)

where the choice of the square root on the right must be the
same as that used in the branch of sin™! z

z, one can show

» The same methods can be applied to inverse cosine, tangent,
and hyperbolic functions
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Inverse Trigonometric Functions

» We have exponentials expressed in terms of trig functions, trig
functions expressed as exponentials, and logs interpreted as
inverse of exponentials

» Similarly, we can get the inverse trigonometric functions for
complex numbers
» We start with the inverse sin function w = sin~! z. From the
identity: z =sinw = % we can deduce that
e — 2izet — 1 =0
» By solving the above quadratic formula, we arrive at
e =iz + (1 —2%)1/?
> Next, by taking logarithms, we get:

sin™! z = —ilogliz + (1 — 22)Y/?]




