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3.1 Polynomials and Rational Functions

The Degree of the Polynomial and Rational Functions

� The degree of the polynomial which has the form of

pn(z) = a0 + a1z + a2z
2 + . . .+ anz

n

is n if the complex constant an is nonzero

� The rational function which has the form of

Rm,n(z) =
a0 + a1z + a2z

2 + . . .+ amzm

b0 + b1z + b2z2 + . . .+ bnzn

has numerator degree m and denominator degree n, if am �= 0
and bn �= 0

� We will begin our study with these two simple types of
functions
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3.1 Polynomials and Rational Functions

Deflation of Polynomial Functions

� You can always divide a ”dividend” polynomial by a ”divisor”
polynomial to obtain a ”quotient” polynomial and a
”reminder” polynomial whose degree is less than that of the
divisor

dividend = divisor × quotient+ remainder

� If z1 is any arbitrary complex number, then division of pn(z)
by the degree-one polynomial z − z1 must result in a
remainder of lower degree: in other words, a constant,

pn(z) = (z − z1)pn−1(z) + constant (1)

where the quotient polynomial pn−1(z) has degree n− 1
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3.1 Polynomials and Rational Functions

Deflation of Polynomial Functions (Cont’d)

� If z1 happens to be a zero of pn(z), we deduce that the
remainder is zero. Thus (1) shows how z − z1 has been
factored out from pn(z). We say pn(z) has been ”deflated”

� If z2 is a zero of the quotient pn−1(z), we can deflate further
by factoring out z − z2, and so on, until we run out of zeros,
leaving us with the factorization

pn(z) = (z − z1)(z − z2) · · · (z − zk)pn−k(z) (2)

� Example on page 99-100 gives us an explicit explanation of
how this procedure works
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3.1 Polynomials and Rational Functions

Zeros of Polynomial Functions

� In order to deflate a polynomial function, we must find the
zeros first. Hence the two questions arise: 1) How to find a
zero of pn(z); 2) How do we know pn(z) has any zeros?

� Gauss helped us answer the second question in his doctoral
dissertation of 1799: Every nonconstant polynomial with
complex coefficients has at least one zero in C

� We immediately conclude that a polynomial of degree n has n
zeros, since we can continue to factor out zeros in the
deflation process until we reach the final, constant, quotient.

� Repeated zeros are counted according to their multiplicities
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3.1 Polynomials and Rational Functions

Zeros-Characterization of Polynomials

� With the issue of existence of zeros for the quotients settled
we have a complete factorization of any polynomial as follows

pn(z) = an(z − z1)(z − z2) · · · (z − zn)

� This equation demonstrates that a polynomial of degree n has
n zeros and pn(z) is completed determined by its zeros, up to
a constant multiple {an}

� The Fundamental Theorem only tell us there are zeros, it
doesn’t tell us how to find them

� The cases of degree one the two are simple, but the higher
degree is very difficult or unsolvable
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3.1 Polynomials and Rational Functions

Taylor Form of the Polynomials

� Any polynomial function pn(z) can be expressed in the form
of Taylor form centered at z0 as follows

pn(z) =
pn(z0)

0!
+

p′n(z0)
1!

(z − z0)
1 + · · ·+ p

(n)
n (z0)

n!
(z − z0)

n

=
n∑

k=0

p
(k)
n (z0)

k!
(z − z0)

k

� We use the nomenclature Maclaurin Form for the Taylor form
centered at z0 = 0
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3.1 Polynomials and Rational Functions

Factored Form of Rational Functions

� Since the rational functions are ratios of polynomials, all the
previous conclusions can be applied to their numerators and
denominators separately

� Probably the most enlightening display comes from the
factored from

Rm,n(z) =
am(z − z1)(z − z2) · · · (z − zm)

bn(z − ξ1)(z − ξ2) · · · (z − ξn)

where {zk} designates the zeros of the numerator and {ξk}
designates those of the denominator (We assume the common
zeros have been canceled)
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3.1 Polynomials and Rational Functions

Factored Form of Rational Functions (Cont’d)

� The zeros of the numerator are, of course, zeros of Rm,n(z);
zeros of the denominator are called poles of Rm,n(z)

� Zeros and poles can, of course, be multiple

� Clearly, the magnitude of Rm,n(z) grows without bounds as z
approaches a poles

� With the knowledge of poles, we can express Rm,n(z) in
terms of partial fractions which will be discussed subsequently
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3.1 Polynomials and Rational Functions

Partial Fractional Decomposition

� If Rm,n = a0+a1z+a2z2+...+amzm

bn(z−ξ1)d1 (z−ξ2)d2 ···(z−ξr)dr is a rational function

whose denominator degree n = d1 + d2 + · · ·+ dr exceeds its
numerator degree m, then Rm,n has a partial fraction
decomposition of the from

Rm,n =
A

(1)
0

(z−ξ1)d1 +
A

(1)
1

(z−ξ1)d1−1 + · · ·+ A
(1)
d1−1

(z−ξ1)

+
A

(2)
0

(z−ξ2)d2 + · · ·+ A
(1)
d2−1

(z−ξ2)

+ · · ·+ A
(r)
0

(z−ξr)dr + · · ·+ A
(r)
dr−1

(z−ξr)

(3)

where the {A(j)
s } are constants (The ξk’s are assumed

distinct)
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3.1 Polynomials and Rational Functions

How to Find the Coefficients {A(j)
s }

� The brute-force procedure consists in rearranging the
proposed form (3) over a common denominator and
comparing the resulting numerator, term be term, with the
original numerator of Rm,n. But this will result in solving a
group of linear equations

� A quicker, more sophisticated method for evaluating the

{A(j)
s } is illustrated in the example on page 106

� The deduced conclusion is if Rm,n can be written in the form
(3), then a general expression for the coefficients is

A
(j)
s = lim

z→ξj

1

s!

ds

dzs

[
(z − ξj)

djRm,n(z)
]
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3.2 The Exponential, Trigonometric, and Hyperbolic Functions

3.2.1 The Complex Function ez

The Complex Function ez

� The complex exponential function ez plays a prominent role in
analytic function theory, not only because of its own
important properties but because it is used to define the
complex trigonometric and hyperbolic functions

� If z = x+ iy, ez = ex(cos y + i sin y) according to the Euler’s
Equation

� ez is an entire function and its arbitrary degree of derivative is
itself, i.e.,

d

dz
ez = ez =⇒ dn

dzn
ez = ez
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3.2 The Exponential, Trigonometric, and Hyperbolic Functions

3.2.1 The Complex Function ez

Polar Form of the Complex Function ez

� The polar components of ez is

|ez| = ex, arg ez = y + 2kπ (k = 0,±1,±2, . . .)
� From the above expression, we can see that ez is never zero.

However, ez does assume every other complex value
� The exponential function is one-to-one on the real axis, but it

is not one-to-one on the complex plane. In fact, we have

1. The equation ez = 1 holds if, and only if, z = 2kπi, where k is
an integer

2. The equation ez1 = ez2 holds if, and only if, z1 = z2 + 2kπi,
where k is an integer
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3.2 The Exponential, Trigonometric, and Hyperbolic Functions

3.2.1 The Complex Function ez

Polar Form of the Complex Function ez (Cont’d)

� The Theorem tell us ez is periodic with complex period 2πi

� If we divide up the z-plane into the infinite horizontal strips:

Sn := {x+ iy| −∞ < x <∞, (2n− 1)π < y ≤ (2n+ 1)π}
where n = 0,±1,±2, . . .

� ez behaves in the same manner on each strip. Furthermore, ez

is one-to-one on each strip

� Any one of these strips is called a fundamental region for ez
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3.2 The Exponential, Trigonometric, and Hyperbolic Functions

3.2.2 Trigonometric Functions

Trigonometric Functions

� For real variables, we have the identities

sin y =
eiy − e−iy

2i
, cos y =

eiy + e−iy

2
� We extend the identities to the complex case: Given any

complex number z, we define

sin z :=
eiz − e−iz

2i
, cos z :=

eiz + e−iz

2
� Since eiz and e−iz are entire functions, so are sin z and cos z.

Some further identities remain valid in the complex case (See
page 113)
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3.2 The Exponential, Trigonometric, and Hyperbolic Functions

3.2.2 Trigonometric Functions

The Distinction Between the Real and Complex Cases

� The real cosine function is bounded by 1, i.e.,

| cosx| ≤ 1, for all real x

� But in the complex case, the cosine function

| cos(iy)| =
∣∣∣ e−y+ey

2

∣∣∣ = cosh y

which is unbounded and, in fact, is never less than 1

� But note that, this does not mean | sin z| or | cos z| is always
greater than 1!
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3.2 The Exponential, Trigonometric, and Hyperbolic Functions

3.2.3 Hyperbolic Functions

Hyperbolic Functions

� For any complex number z, we define

sinh z :=
ez − e−z

2
, cosh z :=

ez + e−z

2
� One nice feature of the complex variable perspective is that it

reveals the intimate connection between hyperbolic functions
and their trigonometric analogues (See page 114-115 for
details)
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3.3 The Logarithmic Function

Definition of Logarithmic Functions

� log z is defined as the inverse of the exponential function; i.e.,

w = log z if z = ew

� Since ew is never zero, we presume that z �= 0. Let us write z
in the polar form as z = reiθ and w in the standard form as
w = u+ iv. Then the equation z = ew becomes

reiθ = eu+iv = eueiv

� Taking magnitudes of both sides we deduce that r = eu, or
that u is the ordinary logarithm of r: u = Log r = Log |z|

� The equality of the remaining factors, eiθ = eiv, identifies v as
the (multiple-valued) polar angle θ=arg z: v = arg z = θ
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3.3 The Logarithmic Function

Definition of Logarithmic Functions (Cont’d)

� Thus w = log z is also a multiple-valued function. The
explicit definition is as follows

� Definition 3: If z �= 0, then we define log z to be the set of
infinitely many values

log z : = Log|z|+ i arg z
= Log|z|+ iArgz + i2kπ (k = 0,±1,±2, . . .)

� The multiple-valuedness of log z simply reflects the fact that
the imaginary part of logarithm is the polar angle θ
(multiple-valued); the real part is single-valued



Ch.3: Elementary Functions

3.3 The Logarithmic Function

Properties of Logarithmic Functions

� Many familiar properties of the real logarithmic function can
be extended to the complex case, but it should be noted that
log z is multiple-valued. Hence, the precise statements of
these extensions are more complicated

� If z �= 0, we have z = elog z, but

log ez = z + 2kπi (k = 0,±1,±2, . . .)
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3.3 The Logarithmic Function

The Principle Value of Logarithm Logz

� The notation of branch cut is used to resolve the ambiguity in
the designation of the polar angle θ = arg z

� We take Argz to be the principal value of arg z, in the interval
(τ, τ + 2π] which shifts the 2π-discontinuities to the ray θ = τ

� Similarly, we generate single-valued branches of log z. The
principle value of the logarithm Logz is the value inherited
from the principal value of the argument:

Logz := Log|z|+ iArgz

(Note that we use the same convention ’capital L’ for the
principal value as for the real value, since Argz = 0 if z is
positive real)
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3.3 The Logarithmic Function

Analyticity and Derivative of Logz

� Logz also inherits, from Argz, the discontinuities along the
branch cut

� However, at all points off the nonpositive real axis, Logz is
continuous when it is defined on the interval (−π, π] and we
have the following theorem

� Theorem 4: The function Logz is analytic in the domain D∗

consisting of all points of the complex plane except those
lying on the nonpositive real axis. Furthermore

d

dz
Logz =

1

z
, for z in D∗
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3.3 The Logarithmic Function

Other Branches of log z

� Other branches log z can be employed if the location of the
discontinuities on the negative axis is inconvenient. Clearly,
the specification

Lτ (z) := Logz + i argτ z

results in a single-valued function whose imaginary part lies in
the interval (τ, τ + 2π]

� Also, Theorem 4 shows that this function is analytic in the
complex plane excluding the ray θ = τ and the origin

� When complex arithmetic is incorporated into computer
packages, all functions must of necessity be programmed as
single-valued
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3.5 Complex Powers and Inverse Trigonometric Functions

Complex Powers Functions

� One important theoretical use of the logarithmic function is to
define complex powers of z. The definition is motivated by
the identity

zn =
(
elog z

)n
= en log z

which holds for any integer n

� Definition 5: If α is a complex constant and z �= 0, then we
define zα by

zα := eα log z

This means that each value of log z leads to a particular value
of zα
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3.5 Complex Powers and Inverse Trigonometric Functions

Complex Powers Functions (Cont’d)

� Since log z = Logz + iArgz + 2kπi, we can get the following
expression

zα = eα(Log|z|+iArgz+2kπi) = eα(Log|z|+iArgz)eα2kπi (4)

where k = 0,±1,±2, · · · (See Example 1 on page 132)

� The values of zα obtained by taking k = k1 and k = k2
( �= k1) in Eq.(4) will therefore be the same when

eα2k1πi = eα2k2πi

By Theorem 3 of Sec. 3.2 this occurs only if

α2k1πi = α2k2πi+ 2mπi

where m is an integer. By solving this equation, we get
α = m/(k1 − k2)
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3.5 Complex Powers and Inverse Trigonometric Functions

Complex Powers Functions (Cont’d)

� This means only when α is a real rational number, (4) yields
some identical values of zα

� If α is not a real rational number, we obtain infinitely many
different values for zα, one for each choice of the integer k in
Eq.(4)

� One the other hand, if α = m/n, where m and n > 0 are
integers having no common factor, then one can verify that
there are exactly n distinct values of zm/n, namely

zm/n = exp
(m
n
Log|z|

)
exp

(
i
m

n
(Argz + 2kπ)

)
(5)

where k = 0, 1, . . . , n− 1
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3.5 Complex Powers and Inverse Trigonometric Functions

Complex Powers Functions (Cont’d)

� Eq.(5) is entirely consistent with the theory of roots discussed
in Sec. 1.5

� In summary,
� zα is single-valued when α is a real integer
� zα takes finitely many values when α is a real rational number
� zα takes infinitely many values in all other cases

� From Definition 4 and 5, we know that each branch of log z
yields a branch of zα. For example, using the principal branch
of log z we obtain the principal branch of zα, namely, eαLogz



Ch.3: Elementary Functions

3.5 Complex Powers and Inverse Trigonometric Functions

Complex Powers Functions (Cont’d)

� Since ez in entire and Logz is analytic in the slit domain D∗,
the chain rule implies that the principal branch of zα is also
analytic in D∗

� For z in D∗, we have
d

dz

(
eαLogz

)
= eαLogz

d

dz
(αLogz) = eαLogz

α

z
� Other branches of zα can be constructed by using other

branches of log z, and since each branch of the latter has
derivative 1/z, the formula

d

dz
(zα) = αzα

1

z
is valid for each corresponding branch of zα
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3.5 Complex Powers and Inverse Trigonometric Functions

Inverse Trigonometric Functions

� We have exponentials expressed in terms of trig functions, trig
functions expressed as exponentials, and logs interpreted as
inverse of exponentials

� Similarly, we can get the inverse trigonometric functions for
complex numbers

� We start with the inverse sin function w = sin−1 z. From the
identity: z = sinw = eiw−e−iw

2i , we can deduce that

e2iw − 2izeiw − 1 = 0

� By solving the above quadratic formula, we arrive at

eiw = iz + (1− z2)1/2

� Next, by taking logarithms, we get:

sin−1 z = −i log[iz + (1− z2)1/2]
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3.5 Complex Powers and Inverse Trigonometric Functions

Inverse Trigonometric Functions (Cont’d)

� We can obtain a branch of the multiple-valued function
sin−1 z by first choosing a branch of the square root and then
selecting a suitable branch of the logarithm

� Using the chain rule and the formula of sin−1 z, one can show
that any such branch of sin−1 z satisfies

d

dz
(sin−1 z) =

1

(1− z2)1/2
(z �= ±1)

where the choice of the square root on the right must be the
same as that used in the branch of sin−1 z

� The same methods can be applied to inverse cosine, tangent,
and hyperbolic functions


