Chapter 3: Elementary Functions

Li, Yongzhao

State Key Laboratory of Integrated Services Networks, Xidian University

September 28, 2010

Ch.3: Elementary Functions
L $_{\text {3.1 Polynomials and Rational Functions }}$

The Degree of the Polynomial and Rational Functions

- The degree of the polynomial which has the form of

$$
p_{n}(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}
$$

is n if the complex constant a_{n} is nonzero

- The rational function which has the form of

$$
R_{m, n}(z)=\frac{a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{m} z^{m}}{b_{0}+b_{1} z+b_{2} z^{2}+\ldots+b_{n} z^{n}}
$$

has numerator degree m and denominator degree n, if $a_{m} \neq 0$ and $b_{n} \neq 0$

- We will begin our study with these two simple types of functions
3.1 Polynomials and Rational Functions
3.2 The Exponential, Trigonometric, and Hyperbolic Functions 3.2.1 The Complex Function e^{z}
3.2.2 Trigonometric Functions
3.2.3 Hyperbolic Functions
3.3 The Logarithmic Function
3.5 Complex Powers and Inverse Trigonometric Functions

Ch.3: Elementary Functions

$L_{3.1}$ Polynomials and Rational Functions

Deflation of Polynomial Functions

- You can always divide a "dividend" polynomial by a "divisor" polynomial to obtain a "quotient" polynomial and a "reminder" polynomial whose degree is less than that of the divisor

$$
\text { dividend }=\text { divisor } \times \text { quotient }+ \text { remainder }
$$

- If z_{1} is any arbitrary complex number, then division of $p_{n}(z)$ by the degree-one polynomial $z-z_{1}$ must result in a remainder of lower degree: in other words, a constant,

$$
\begin{equation*}
p_{n}(z)=\left(z-z_{1}\right) p_{n-1}(z)+\text { constant } \tag{1}
\end{equation*}
$$

where the quotient polynomial $p_{n-1}(z)$ has degree $n-1$

Deflation of Polynomial Functions (Cont'd)

- If z_{1} happens to be a zero of $p_{n}(z)$, we deduce that the remainder is zero. Thus (1) shows how $z-z_{1}$ has been factored out from $p_{n}(z)$. We say $p_{n}(z)$ has been "deflated"
- If z_{2} is a zero of the quotient $p_{n-1}(z)$, we can deflate further by factoring out $z-z_{2}$, and so on, until we run out of zeros, leaving us with the factorization

$$
\begin{equation*}
p_{n}(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{k}\right) p_{n-k}(z) \tag{2}
\end{equation*}
$$

- Example on page 99-100 gives us an explicit explanation of how this procedure works

Zeros of Polynomial Functions

- In order to deflate a polynomial function, we must find the zeros first. Hence the two questions arise: 1) How to find a zero of $\left.p_{n}(z) ; 2\right)$ How do we know $p_{n}(z)$ has any zeros?
- Gauss helped us answer the second question in his doctoral dissertation of 1799: Every nonconstant polynomial with complex coefficients has at least one zero in C
- We immediately conclude that a polynomial of degree n has n zeros, since we can continue to factor out zeros in the deflation process until we reach the final, constant, quotient.
- Repeated zeros are counted according to their multiplicities

Ch.3: Elementary Functions
 $\left\llcorner_{3.1}\right.$ Polynomials and Rational Functions

Taylor Form of the Polynomials

- Any polynomial function $p_{n}(z)$ can be expressed in the form of Taylor form centered at z_{0} as follows

$$
\begin{aligned}
p_{n}(z) & =\frac{p_{n}\left(z_{0}\right)}{0!}+\frac{p_{n}^{\prime}\left(z_{0}\right)}{1!}\left(z-z_{0}\right)^{1}+\cdots+\frac{p_{n}^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} \\
& =\sum_{k=0}^{n} \frac{p_{n}^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}
\end{aligned}
$$

- We use the nomenclature Maclaurin Form for the Taylor form centered at $z_{0}=0$

Factored Form of Rational Functions

- Since the rational functions are ratios of polynomials, all the previous conclusions can be applied to their numerators and denominators separately
- Probably the most enlightening display comes from the factored from

$$
R_{m, n}(z)=\frac{a_{m}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{m}\right)}{b_{n}\left(z-\xi_{1}\right)\left(z-\xi_{2}\right) \cdots\left(z-\xi_{n}\right)}
$$

where $\left\{z_{k}\right\}$ designates the zeros of the numerator and $\left\{\xi_{k}\right\}$ designates those of the denominator (We assume the common zeros have been canceled)

Factored Form of Rational Functions (Cont'd)

- The zeros of the numerator are, of course, zeros of $R_{m, n}(z)$; zeros of the denominator are called poles of $R_{m, n}(z)$
- Zeros and poles can, of course, be multiple
- Clearly, the magnitude of $R_{m, n}(z)$ grows without bounds as z approaches a poles
- With the knowledge of poles, we can express $R_{m, n}(z)$ in terms of partial fractions which will be discussed subsequently

Ch.3: Elementary Functions
 $L_{\text {3.1 }}$ Polynomials and Rational Functions

Partial Fractional Decomposition

- If $R_{m, n}=\frac{a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{m} z^{m}}{b_{n}\left(z-\xi_{1}\right)^{d_{1}}\left(z-\xi_{2}\right)^{d_{2}} \ldots\left(z-\xi_{r}\right)^{d_{r}}}$ is a rational function whose denominator degree $n=d_{1}+d_{2}+\cdots+d_{r}$ exceeds its numerator degree m, then $R_{m, n}$ has a partial fraction decomposition of the from

$$
\begin{align*}
R_{m, n} & =\frac{A_{0}^{(1)}}{\left(z-\xi_{1}\right)^{d_{1}}}+\frac{A_{1}^{(1)}}{\left(z-\xi_{1}\right)^{d_{1}-1}}+\cdots+\frac{A_{d_{1}-1}^{(1)}}{\left(z-\xi_{1}\right)} \\
& +\frac{A_{0}^{(2)}}{\left(z-\xi_{2}\right)^{d_{2}}}+\cdots+\frac{A_{d_{2}-1}^{(1)}}{\left(z-\xi_{2}\right)} \tag{3}\\
& +\cdots+\frac{A_{0}^{(r)}}{\left(z-\xi_{r}\right)^{d_{r}}}+\cdots+\frac{A_{d_{r}-1}^{(r)}}{\left(z-\xi_{r}\right)}
\end{align*}
$$

where the $\left\{A_{s}^{(j)}\right\}$ are constants (The ξ_{k} 's are assumed distinct)

- The brute-force procedure consists in rearranging the proposed form (3) over a common denominator and comparing the resulting numerator, term be term, with the original numerator of $R_{m, n}$. But this will result in solving a group of linear equations
- A quicker, more sophisticated method for evaluating the $\left\{A_{s}^{(j)}\right\}$ is illustrated in the example on page 106
- The deduced conclusion is if $R_{m, n}$ can be written in the form (3), then a general expression for the coefficients is

$$
A_{s}^{(j)}=\lim _{z \rightarrow \xi_{j}} \frac{1}{s!} \frac{d^{s}}{d z^{s}}\left[\left(z-\xi_{j}\right)^{d_{j}} R_{m, n}(z)\right]
$$

The Complex Function e^{z}

- The complex exponential function e^{z} plays a prominent role in analytic function theory, not only because of its own important properties but because it is used to define the complex trigonometric and hyperbolic functions
- If $z=x+i y, e^{z}=e^{x}(\cos y+i \sin y)$ according to the Euler's Equation
- e^{z} is an entire function and its arbitrary degree of derivative is itself, i.e.,

$$
\frac{d}{d z} e^{z}=e^{z} \quad \Longrightarrow \quad \frac{d^{n}}{d z^{n}} e^{z}=e^{z}
$$

Polar Form of the Complex Function e^{z}

- The polar components of e^{z} is

$$
\left|e^{z}\right|=e^{x}, \quad \arg e^{z}=y+2 k \pi \quad(k=0, \pm 1, \pm 2, \ldots)
$$

- From the above expression, we can see that e^{z} is never zero.

However, e^{z} does assume every other complex value

- The exponential function is one-to-one on the real axis, but it is not one-to-one on the complex plane. In fact, we have

1 . The equation $e^{z}=1$ holds if, and only if, $z=2 k \pi i$, where k is an integer
2. The equation $e^{z_{1}}=e^{z_{2}}$ holds if, and only if, $z_{1}=z_{2}+2 k \pi i$, where k is an integer

Ch.3: Elementary Functions
 3.2 The Exponential, Trigonometric, and Hyperbolic Functions
 $L_{\text {3.2.2 }}$ Trigonometric Functions

Trigonometric Functions

- For real variables, we have the identities

$$
\sin y=\frac{e^{i y}-e^{-i y}}{2 i}, \quad \cos y=\frac{e^{i y}+e^{-i y}}{2}
$$

- We extend the identities to the complex case: Given any complex number z, we define

$$
\sin z:=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \cos z:=\frac{e^{i z}+e^{-i z}}{2}
$$

- Since $e^{i z}$ and $e^{-i z}$ are entire functions, so are $\sin z$ and $\cos z$. Some further identities remain valid in the complex case (See page 113)

The Distinction Between the Real and Complex Cases

- The real cosine function is bounded by 1 , i.e.,

$$
|\cos x| \leq 1, \quad \text { for all real } x
$$

- But in the complex case, the cosine function

$$
|\cos (i y)|=\left|\frac{e^{-y}+e^{y}}{2}\right|=\cosh y
$$

which is unbounded and, in fact, is never less than 1

- But note that, this does not mean $|\sin z|$ or $|\cos z|$ is always greater than 1 !

Ch.3: Elementary Functions
3.3 The Logarithmic Function

Definition of Logarithmic Functions

- $\log z$ is defined as the inverse of the exponential function; i.e.,

$$
w=\log z \text { if } z=e^{w}
$$

- Since e^{w} is never zero, we presume that $z \neq 0$. Let us write z in the polar form as $z=r e^{i \theta}$ and w in the standard form as $w=u+i v$. Then the equation $z=e^{w}$ becomes

$$
r e^{i \theta}=e^{u+i v}=e^{u} e^{i v}
$$

- Taking magnitudes of both sides we deduce that $r=e^{u}$, or that u is the ordinary logarithm of $r: u=\log r=\log |z|$
- The equality of the remaining factors, $e^{i \theta}=e^{i v}$, identifies v as the (multiple-valued) polar angle $\theta=\arg z: v=\arg z=\theta$

Hyperbolic Functions

- For any complex number z, we define

$$
\sinh z:=\frac{e^{z}-e^{-z}}{2}, \quad \cosh z:=\frac{e^{z}+e^{-z}}{2}
$$

- One nice feature of the complex variable perspective is that it reveals the intimate connection between hyperbolic functions and their trigonometric analogues (See page 114-115 for details)

Ch.3: Elementary Functions
 $L_{\text {3.3 }}$ The Logarithmic Function

Definition of Logarithmic Functions (Cont'd)

- Thus $w=\log z$ is also a multiple-valued function. The explicit definition is as follows
- Definition 3: If $z \neq 0$, then we define $\log z$ to be the set of infinitely many values

$$
\begin{aligned}
\log z: & =\log |z|+i \operatorname{\operatorname {arg}z} \\
& =\log |z|+i \operatorname{Arg} z+i 2 k \pi \quad(k=0, \pm 1, \pm 2, \ldots)
\end{aligned}
$$

- The multiple-valuedness of $\log z$ simply reflects the fact that the imaginary part of logarithm is the polar angle θ (multiple-valued); the real part is single-valued

Properties of Logarithmic Functions

- Many familiar properties of the real logarithmic function can be extended to the complex case, but it should be noted that $\log z$ is multiple-valued. Hence, the precise statements of these extensions are more complicated
- If $z \neq 0$, we have $z=e^{\log z}$, but

$$
\log e^{z}=z+2 k \pi i \quad(k=0, \pm 1, \pm 2, \ldots)
$$

The Principle Value of Logarithm Logz

- The notation of branch cut is used to resolve the ambiguity in the designation of the polar angle $\theta=\arg z$
- We take $\operatorname{Arg} z$ to be the principal value of $\arg z$, in the interval $(\tau, \tau+2 \pi]$ which shifts the 2π-discontinuities to the ray $\theta=\tau$
- Similarly, we generate single-valued branches of $\log z$. The principle value of the logarithm $\log z$ is the value inherited from the principal value of the argument:

$$
\log z:=\log |z|+i \operatorname{Arg} z
$$

(Note that we use the same convention 'capital L' for the principal value as for the real value, since $\operatorname{Arg} z=0$ if z is positive real)

Ch.3: Elementary Functions
 $L_{3.3}$ The Logarithmic Function

Other Branches of $\log z$

- Other branches $\log z$ can be employed if the location of the discontinuities on the negative axis is inconvenient. Clearly, the specification

$$
\mathcal{L}_{\tau}(z):=\log z+i \arg _{\tau} z
$$

results in a single-valued function whose imaginary part lies in the interval $(\tau, \tau+2 \pi]$

- Also, Theorem 4 shows that this function is analytic in the complex plane excluding the ray $\theta=\tau$ and the origin
- When complex arithmetic is incorporated into computer packages, all functions must of necessity be programmed as single-valued

Complex Powers Functions

- One important theoretical use of the logarithmic function is to define complex powers of z. The definition is motivated by the identity

$$
z^{n}=\left(e^{\log z}\right)^{n}=e^{n \log z}
$$

which holds for any integer n

- Definition 5: If α is a complex constant and $z \neq 0$, then we define z^{α} by

$$
z^{\alpha}:=e^{\alpha \log z}
$$

This means that each value of $\log z$ leads to a particular value of z^{α}

Complex Powers Functions (Cont'd)

- Since $\log z=\log z+i \operatorname{Arg} z+2 k \pi i$, we can get the following expression

$$
\begin{equation*}
z^{\alpha}=e^{\alpha(\log |z|+i \operatorname{Arg} z+2 k \pi i)}=e^{\alpha(\log |z|+i \operatorname{Arg} z)} e^{\alpha 2 k \pi i} \tag{4}
\end{equation*}
$$

where $k=0, \pm 1, \pm 2, \cdots$ (See Example 1 on page 132)

- The values of z^{α} obtained by taking $k=k_{1}$ and $k=k_{2}$ ($\neq k_{1}$) in Eq.(4) will therefore be the same when

$$
e^{\alpha 2 k_{1} \pi i}=e^{\alpha 2 k_{2} \pi i}
$$

By Theorem 3 of Sec. 3.2 this occurs only if

$$
\alpha 2 k_{1} \pi i=\alpha 2 k_{2} \pi i+2 m \pi i
$$

where m is an integer. By solving this equation, we get $\alpha=m /\left(k_{1}-k_{2}\right)$

Ch.3: Elementary Functions
$L_{3.5}$ Complex Powers and Inverse Trigonometric Functions

Complex Powers Functions (Cont'd)

- Eq.(5) is entirely consistent with the theory of roots discussed in Sec. 1.5
- In summary,
- z^{α} is single-valued when α is a real integer
- z^{α} takes finitely many values when α is a real rational number
- z^{α} takes infinitely many values in all other cases
- From Definition 4 and 5, we know that each branch of $\log z$ yields a branch of z^{α}. For example, using the principal branch of $\log z$ we obtain the principal branch of z^{α}, namely, $e^{\alpha \log z}$
where $k=0,1, \ldots, n-1$

Complex Powers Functions (Cont'd)

- Since e^{z} in entire and $\log z$ is analytic in the slit domain D^{*}, the chain rule implies that the principal branch of z^{α} is also analytic in D^{*}
- For z in D^{*}, we have

$$
\frac{d}{d z}\left(e^{\alpha \log z}\right)=e^{\alpha \log z} \frac{d}{d z}(\alpha \log z)=e^{\alpha \log z} \frac{\alpha}{z}
$$

- Other branches of z^{α} can be constructed by using other branches of $\log z$, and since each branch of the latter has derivative $1 / z$, the formula

$$
\frac{d}{d z}\left(z^{\alpha}\right)=\alpha z^{\alpha} \frac{1}{z}
$$

is valid for each corresponding branch of z^{α}

Inverse Trigonometric Functions

- We have exponentials expressed in terms of trig functions, trig functions expressed as exponentials, and logs interpreted as inverse of exponentials
- Similarly, we can get the inverse trigonometric functions for complex numbers
- We start with the inverse sin function $w=\sin ^{-1} z$. From the identity: $z=\sin w=\frac{e^{i w}-e^{-i w}}{2 i}$, we can deduce that

$$
e^{2 i w}-2 i z e^{i w}-1=0
$$

- By solving the above quadratic formula, we arrive at

$$
e^{i w}=i z+\left(1-z^{2}\right)^{1 / 2}
$$

- Next, by taking logarithms, we get:

$$
\sin ^{-1} z=-i \log \left[i z+\left(1-z^{2}\right)^{1 / 2}\right]
$$

Ch.3: Elementary Functions

$L_{3.5}$ Complex Powers and Inverse Trigonometric Functions

Inverse Trigonometric Functions (Cont'd)

- We can obtain a branch of the multiple-valued function $\sin ^{-1} z$ by first choosing a branch of the square root and then selecting a suitable branch of the logarithm
- Using the chain rule and the formula of $\sin ^{-1} z$, one can show that any such branch of $\sin ^{-1} z$ satisfies

$$
\frac{d}{d z}\left(\sin ^{-1} z\right)=\frac{1}{\left(1-z^{2}\right)^{1 / 2}} \quad(z \neq \pm 1)
$$

where the choice of the square root on the right must be the same as that used in the branch of $\sin ^{-1} z$

- The same methods can be applied to inverse cosine, tangent, and hyperbolic functions

