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A B S T R A C T

This paper considers max-consensus of a discrete-time multi-agent system (MAS) in directed
random networks. Interactions among agents in the MAS are probabilistic and independent
with each other. By using max-plus algebra and random theory, a sufficient and necessary
condition is given for achieving max-consensus of the MAS. Moreover, we demonstrate that
the max-consensus in four probabilistic senses (almost surely, in probability, expectation and
mean square) is equivalent when expected graph is strongly connected. This ensures that
max-consensus can be achieved in multi-agent systems even if random failures occur in the
communication network, which is of practical importance in the fields of wireless sensor
networks and distributed computing. A simulation example is presented to illustrate the
effectiveness of theoretical results.

1. Introduction

In recent decades, the coordination control of multi-agent systems (MASs) has gained attention in the control field, and is widely
used in natural sciences, social sciences and other fields, including consensus [1–5], flocking control [6], containment control [7],
formation control [8], iterative learning control [9], and etcetera. Consensus problem, as a fundamental issue in distributed control,
which refers to agents updating their own states in local coordination and information communication, eventually achieving
consensus. A common consensus problem is the average consensus (e.g., [10–14]). However, in some applications, for example,
leader election, minimum-time rendezvous, a consensus algorithm called max-consensus is employed. The algorithm requires that
all agents achieve the maximum state of the initial states, i.e., achieve max-consensus. Nejad et al. [15,16] studied the max-consensus
under fixed and switching networks by max-plus algebra, and gave the sufficient and necessary conditions for solving strong and
weak max-consensus, respectively. Giannini et al. [17] designed an asynchronous max-consensus protocol and showed a sufficient
condition for discrete-time MASs to solve max-consensus in fixed networks. Zhang et al. [18] solved the max-consensus for MASs
by using soft-max algorithm. It is worth noting that all the above studies are analyzed under fixed or switching networks. Besides,
some researchers have also studied the dynamic max-consensus problem. Lippi et al. [19,20] designed an adaptive protocol and
a distributed dynamic consensus protocol that solves the dynamic max-consensus of MASs under undirected networks. In [21,22],
Deplano et al. designed dynamic max-consensus protocol, exact dynamic max-consensus (EDMC) protocol and self-tuning dynamic
max-consensus (STDMC) protocol to solve the dynamic max-consensus problem of discrete-time MASs and applied the STDMC
protocol to open MASs. Abdelrahim et al. [23] studied distributed maximal computation in open MASs. They addressed the challenge
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of agents leaving and arriving during the execution of the algorithm. The goal was to provide algorithms that can adapt to these
changes while still computing the maximum value.

However, in practical applications, the communication network of systems may change over time due to agent failures,
nformation channel failures, or packet losses. These phenomena are random events. As a result, it is crucial to investigate the
onsensus of MASs in random networks. In 2005, Hatano et al. [24] studied consensus for MASs in random networks. Later, Porfiri
t al. [25] considered consensus of MASs in directed weighted random networks, and gave a sufficient and necessary criterion for
ystems to reach consensus almost surely. Tahbaz-Salehi et al. [26,27] considered consensus for discrete-time MASs with linear
ynamics in random networks, and gave the sufficient and necessary criteria for systems to achieve consensus almost surely. Wu
t al. [28] provided sufficient conditions for sampled-data MASs to achieve mean-square consensus under two different random
etworks in the case that the sampling time is small enough. Lin et al. [29] provided the sufficient and necessary conditions for
witched MASs to achieve consensus almost surely and in mean-square, respectively. Sun et al. [30] provided criteria for second-
rder discrete-time MASs to achieve consensus almost surely. Wang et al. [31] provided a sufficient and necessary criterion for
iscrete-time high-order linear swarm systems to reach consensus almost surely.

Max-consensus is also investigated in the random case. Iutzeler et al. [32] proposed two consensus protocols random-broadcast-
ax and random-pairwise-max for MASs in random cases. In these two protocols, only one agent is randomly woken up and interacts
ith its neighbors at each time. Different from [32], this paper considers all agents interacting with their neighbors at every moment,

hus these two protocols cannot be used for the MASs in this paper. Muniraju et al. [33] studied max-consensus of MASs with
dditive noise. Using sub-additive ergodic theory, the upper and lower growth rates were provided for the MASs achieving consensus
nder fixed and random networks, respectively. In [34], Golfar studied max-consensus in the case of communication networks
atisfying Bernoulli packet loss, and gave sufficient conditions for MASs to converge with probability 1. However, in [33,34], detailed
heoretical proofs are not given for the max-consensus of MASs in random networks.

Inspired by the above observation results, we intend to investigate max-consensus of discrete-time MASs in directed random
etworks by using a max-plus algebra. Then, we prove the consensus criterion for solving the max-consensus problems in the
robabilistic sense. The following are the main contributions made in this paper:

(1) Based on matrix theory, stochastic analysis tools, max-plus algebra and random graph theory, the sufficient and necessary
conditions are obtained for MASs to achieve max-consensus almost surely in random networks.

(2) The equivalent relations for the max-consensus of discrete-time MASs in different senses (almost surely, in probability,
expectation, and mean square, respectively) are established when the expected graph is strongly connected.

ifficulties come down to the convergence analysis and modeling MASs in random networks. Besides, using max-plus algebra and
robability theory to count all the cases in which any two agents have directed paths is also difficult.

The structure of this paper is given as follow. Some necessary notions and terminologies from max-plus algebra theory and
irected random graph theory are provided in Section 2. The problem formulation is provided in Section 3. The criterion of max-
onsensus of MASs in a random network is obtained in Section 4. In Section 5, a simulation demonstrate our theoretical results.
nd Section 6 gives the conclusions.
Notations: N and R are the sets of non-negative integers and real numbers, respectively. The real vector space with 𝑛 dimensions

is represented by the symbol R𝑛. R𝑚×𝑛
𝑚𝑎𝑥 is 𝑚 × 𝑛 matrix space with elements including real numbers and infinity. ‖⋅‖∞ denotes the

infinite norm of a vector or matrix. The term 𝑥𝑇 is the transpose of a given vector 𝑥. |⋅| denotes the absolute value of a real number.
The probability of event ‘‘𝑥 > 𝑎’’ is represented by 𝑃 (𝑥 > 𝑎) and the mathematical expectation that comes with the random variable
𝑥 is expressed by 𝐸(𝑥). ⋃𝑛

𝑘=1 𝐴𝑘 is the union of 𝐴1,… , 𝐴𝑛.
⨂𝑘

𝑙=0 𝐴(𝑙) indicates that 𝐴(𝑘) ⊗ 𝐴(𝑘 − 1) ⊗ ⋯ ⊗ 𝐴(0). ⨁𝑛
𝑟=1(𝑎𝑖𝑟 ⊗ 𝑏𝑟𝑗 ) is

expressed as (𝑎𝑖1 ⊗ 𝑏1𝑗 ) ⊕ (𝑎𝑖2 ⊗ 𝑏2𝑗 ) ⊕ ⋯ ⊕ (𝑎𝑖𝑛 ⊗ 𝑏𝑛𝑗 ). 𝑋𝑛 → 𝑋 indicates that lim𝑛→∞ 𝑋𝑛 = 𝑋. 𝐼 is an 𝑛 × 𝑛 dimensional matrix
in which each element is an element 𝑒. × represents the multiplication in conventional algebra.

(𝑘+1
𝑟

)

represents a combination,
i.e.,

(𝑘+1
𝑟

)

= (𝑘+1)×(𝑘)×⋯×(𝑘+2−𝑟)
(𝑟)×(𝑟−1)×⋯×1 .

. Preliminaries

.1. Random graph

A vertex set 𝑉 = {1, 2,… , 𝑛} and an edge set  ⊆ 𝑉 × 𝑉 make up a directed graph 𝐺 = (𝑉 , ). In graph 𝐺, let (𝑗, 𝑖) be a directed
dge. (𝑗, 𝑖) ∈  demonstrates that agent 𝑗 can obtain the state of agent 𝑖. If the existence of (𝑗, 𝑖) is randomly determined by probability
𝑖𝑗 ∈ [0, 1], the graph 𝐺 is referred to as a random directed graph. In the random directed graph, interactions among agents can
e characterized as a sequence of directed graphs 𝐺(𝑘) = (𝑉 , (𝑘)), 𝑘 ∈ N, denoted as {𝐺(𝑘)}. 𝑁𝑖,𝑘 = {(𝑗, 𝑖) ∣ (𝑗, 𝑖) ∈ (𝑘), 𝑗 ∈ 𝑉 }
epresents the set of neighbors of vertex 𝑖 at the 𝑘th time. We assume that edges exist with probabilities independent of other edges,
hen the random graphs are also independent of each other. Meanwhile, we assume that each agent in the random graph has a fixed
elf-loop, i.e., 𝑝𝑖𝑖 = 1, 𝑖 ∈ 𝑉 . We represent 𝐺 = (𝑉 , ) as the expected graph of random graph sequence {𝐺(𝑘)}. If for any 𝑖, 𝑗 ∈ 𝑉 ,
𝑗, 𝑖) exists with probability 𝑝𝑖𝑗 > 0, then (𝑗, 𝑖) ∈  , otherwise, (𝑗, 𝑖) ∉  . A directed path between two different vertices 𝑖 and 𝑗 of
he expected graph 𝐺 is a finite-order sequence with different edges (𝑖, 𝑖1), (𝑖1, 𝑖2),… , (𝑖𝑠, 𝑗). The expected graph 𝐺 is claimed to be

strongly connected if for any 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, there is a directed path from vertex 𝑖 to vertex 𝑗.
2
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2.2. Max-plus algebra

Next, the fundamental knowledge of max-plus algebra are introduced in detail in this subsection (refer to [35,36]). The max-plus
lgebra theory is a mathematical framework that extends the conventional algebraic operations of addition and multiplication to
he operations of maximization and addition, respectively. It has been applied in various fields, including optimization, scheduling,
nd control systems. In consensus problems for MASs, max-plus algebra is used for the modeling and analysis of discrete-event or
iscrete-time systems. Besides, the weighted graph can be expressed as a compact expression.

Let 𝑒 = 0, 𝜀 = −∞ and R𝑚𝑎𝑥 = R ∪ {𝜀}. The definitions of the two operations ⊕ and ⊗ on R𝑚𝑎𝑥 are the following. For elements
, 𝑏 ∈ R𝑚𝑎𝑥,

𝑎 ⊕ 𝑏 = 𝑚𝑎𝑥(𝑎, 𝑏),

𝑎 ⊗ 𝑏 = 𝑎 + 𝑏.

hen (R𝑚𝑎𝑥, ⊕,⊗, 𝜀, 𝑒) is known as the max-plus algebra. The zero and one element of max-plus algebra are described by the elements
and 𝑒, respectively. And two operations ⊕ and ⊗ satisfy the following operation properties. ∀𝑎, 𝑏, 𝑐 ∈ R𝑚𝑎𝑥,

(1) Commutativity: 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 and 𝑎 ⊗ 𝑏 = 𝑏 ⊗ 𝑎.
(2) Associativity: 𝑎 ⊕ (𝑏 ⊕ 𝑐) = (𝑎 ⊕ 𝑏)⊕ 𝑐 and 𝑎 ⊗ (𝑏 ⊗ 𝑐) = (𝑎 ⊗ 𝑏)⊗ 𝑐.
(3) Distributivity: 𝑎 ⊗ (𝑏 ⊕ 𝑐) = (𝑎 ⊗ 𝑏)⊕ (𝑎 ⊗ 𝑐).
(4) Existence of a zero element: 𝑎 ⊕ 𝜀 = 𝜀 ⊕ 𝑎 = 𝑎.
(5) Existence of a unit element: 𝑎 ⊗ 𝑒 = 𝑒 ⊗ 𝑎 = 𝑎.
(6) The zero is absorbing for ⊗: 𝑎 ⊗ 𝜀 = 𝜀 ⊗ 𝑎 = 𝜀.

In addition, it is possible to apply the two operations of the max-plus algebra to matrices. For matrices 𝐴 = [𝑎𝑖𝑗 ]𝑚×𝑛, 𝐵 = [𝑏𝑖𝑗 ]𝑚×𝑛 ∈
𝑚×𝑛
𝑚𝑎𝑥 ,

(𝐴⊕ 𝐵)𝑖𝑗 = 𝑎𝑖𝑗 ⊕ 𝑏𝑖𝑗 , 𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛.

or 𝐴 = [𝑎𝑖𝑗 ]𝑚×𝑛 ∈ R𝑚×𝑛
𝑚𝑎𝑥 , 𝐵 = [𝑏𝑖𝑗 ]𝑛×𝑞 ∈ R𝑛×𝑞

𝑚𝑎𝑥,

(𝐴⊗ 𝐵)𝑖𝑗 =
𝑛

⨁

𝑘=1
(𝑎𝑖𝑘 ⊗ 𝑏𝑘𝑗 ) = max

𝑘=1,…,𝑛
(𝑎𝑖𝑘 + 𝑏𝑘𝑗 ), 𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑞.

In this paper, matrix 𝐴 = [𝑎𝑖𝑗 ]𝑛×𝑛 ∈ R𝑛×𝑛
𝑚𝑎𝑥 signifies the adjacency matrix of the graph 𝐺𝐴. For any 𝑖, 𝑗 ∈ 𝑉 , if (𝑗, 𝑖) ∈  , 𝑎𝑖𝑗 = 𝑒,

therwise 𝑎𝑖𝑗 = 𝜀. Specifically, 𝑎𝑖𝑗 = 𝑒 indicates that agent 𝑖, 𝑗 is connected and 𝑎𝑖𝑗 = 𝜀 indicates disconnection. Therefore, the
adjacency matrix 𝐴(𝑘) = [𝑎𝑖𝑗 (𝑘)] ∈ R𝑛×𝑛

𝑚𝑎𝑥 corresponding to the random graph 𝐺(𝑘) can be referred to as

𝑎𝑖𝑗 (𝑘) =

{

𝑒, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖𝑗 ,
𝜀, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑖𝑗 ,

(1)

where 𝑖 ≠ 𝑗. We consider the case that the self-loops always exist, i.e., 𝑃 (𝑎𝑖𝑖(𝑘) = 𝑒) = 1, 𝑖 ∈ 𝑉 , 𝑘 ∈ N.
The adjacency matrix 𝐴 = 𝐸[𝐴] corresponding to the expected graph 𝐺 can be determined in the following way:

(𝐸[𝐴])𝑖𝑗 =

{

𝑒, 𝑓𝑜𝑟 𝑝𝑖𝑗 > 0,
𝜀, 𝑓𝑜𝑟 𝑝𝑖𝑗 = 0.

(2)

If the expected graph 𝐺 is strongly connected, then ∀𝑖, 𝑗 ∈ 𝑉 , there must be a directed path (𝑖, 𝑖1), (𝑖1, 𝑖2),… , (𝑖𝑠, 𝑗) such that
𝑝𝑖1𝑖 > 0, 𝑝𝑖2𝑖1 > 0,… , 𝑝𝑗𝑖𝑠 > 0.

In this paper, we will prove our results using regular matrices and positive series, which are defined as follows.

Definition 1 ([35]). A matrix 𝐴 ∈ R𝑛×𝑛
𝑚𝑎𝑥 is said to be a regular matrix if 𝐴 has at least one finite element (not 𝜀) in per row.

Definition 2 ([37]). For a series, if all of its terms are non-negative, it is called a positive series.

2.3. Some lemmas

This subsection introduces some lemmas needed in the paper.

Lemma 1 (Borel–Cantelli Lemma [38]). Let 𝑋1, 𝑋2, ⋯ be an event sequence in a space of probability. If ∑∞
𝑘=1 𝑃 (𝑋𝑘) < ∞, then

𝑃 (lim sup𝑘→∞ 𝑋𝑘) = 0.

Lemma 2 (Dominated Convergence Theorem [38]). Suppose that in probability 𝑋𝑛 → 𝑋 and |

|

𝑋𝑛
|

|

≤ 𝑌 , 𝐸𝑌 < ∞. Then 𝐸𝑋𝑛 → 𝐸𝑋.

Lemma 3 ([35]). Let 𝐴 ∈ R𝑚×𝑛
𝑚𝑎𝑥 be a regular matrix, then for any vector 𝑢, 𝑣 ∈ R𝑛,
3

‖𝐴⊗ 𝑢 − 𝐴⊗ 𝑣‖∞ ≤ ‖𝑢 − 𝑣‖∞ . (3)
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3. Problem statement

A discrete-time MAS with 𝑛 agents in a directed random network is considered, which purpose is to achieve max-consensus
lmost surely by using the max-plus algebra theory. The algorithm known as max-consensus is represented as:

𝑥𝑖(𝑘 + 1) = max
𝑗∈𝑁𝑖,𝑘

{

𝑥𝑗 (𝑘)
}

, 𝑖 = 1,… , 𝑛, (4)

where 𝑥𝑖(𝑘 + 1) ∈ R, 𝑘 ∈ N. It demonstrates that the state of agent 𝑖 at time 𝑘 + 1 is determines by the maximum state of its
neighbors at time 𝑘. Obviously, in conventional algebra, MAS (4) is nonlinear. In max-plus algebra, it is linear equation denoted by
the following:

𝑥𝑖(𝑘 + 1) =
⨁

𝑗∈𝑁𝑖,𝑘

(𝑥𝑗 (𝑘)), 𝑖 = 1,… , 𝑛. (5)

The compact form of (5) is

𝑥(𝑘 + 1) = 𝐴(𝑘)⊗ 𝑥(𝑘), (6)

where 𝑥(𝑘) = (𝑥1(𝑘), 𝑥2(𝑘),… , 𝑥𝑛(𝑘))𝑇 , 𝑥𝑖(𝑘) ∈ R, and matrix 𝐴(𝑘) ∈ R𝑛×𝑛
𝑚𝑎𝑥 is the adjacency matrix corresponding to the random graph

𝐺(𝑘). Due to MAS (6), the expression that follows can be obtained

𝑥(𝑘 + 1) =
𝑘

⨂

𝑙=0
𝐴(𝑙)⊗ 𝑥(0). (7)

Denote 𝑥𝑚𝑎𝑥 = (𝑥𝑚𝑎𝑥1 , 𝑥𝑚𝑎𝑥2 ,… , 𝑥𝑚𝑎𝑥𝑛 )
𝑇 , where 𝑥𝑚𝑎𝑥𝑖 = max𝑗∈𝑉

{

𝑥𝑗 (0)
}

, 𝑖 ∈ 𝑉 . Then 𝑥𝑚𝑎𝑥 = 𝐼 ⊗ 𝑥(0).

Remark 1. To address the problem of max-consensus in MASs, researchers have proposed many max-consensus algorithms [15,
19,21,22]. Max-consensus algorithms are a class of approaches to achieve the maximum value of the initial state for all agents
through interaction and coordination among agents. These algorithms can base on different protocols, communication networks,
and decision rules. In this paper, a common protocol is used. It is based on iteration and information exchange, where an agent
updates its state in each iteration and exchanges information with other agents to promote the system toward the maximum state.

The following definition introduces max-consensus in different sense of probability, respectively.

Definition 3. Discrete-time MAS (6) converges to max-consensus

(1) in expectation if for any initial state value 𝑥(0) ∈ R𝑛, it holds that

lim
𝑘→∞

𝐸[‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞] = 0; (8)

(2) in mean square sense if for any initial state value 𝑥(0) ∈ R𝑛, it holds that

lim
𝑘→∞

𝐸[‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖
2
∞] = 0; (9)

(3) almost surely sense if any initial state value 𝑥(0) ∈ R𝑛, it holds that

𝑃 ( lim
𝑘→∞

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ = 0) = 1; (10)

(4) in probability if ∀𝜖 > 0 and for any initial state value 𝑥(0) ∈ R𝑛, it holds that

lim
𝑘→∞

𝑃 (‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖) = 0. (11)

Remark 2. Max-consensus of MASs has been widely concerned since it is practicable. A classic example is leader election. Consider
each agent as an elector, and each elector’s comprehensive ability as its own state. By interacting with their neighbors, the states
of each elector are compared and the elector with the maximal state is elected as the leader.

4. Main results

We present the main results on max-consensus of discrete-time MAS (6) in a directed random network at this section. Without
ausing confusion, in the following we will refer to ⊕ as an additive operation and ⊗ as a multiplicative operation, respectively.

For proofing all agents in MAS (6) almost surely converge to the maximal value of the initial states of all agents, we first prove the
following lemma.

Lemma 4 is aim to build the conditions that each agent can obtain information from the other agents in random communication
networks. Inspired by [39], we set that the probabilities of edges in the random network are different and independent of each other.
We consider from a statistical perspective, statistics all possible cases where there exists a directed path of length 𝑘 + 1 between
gents 𝑖 and 𝑗, ∀𝑖, 𝑗 ∈ 𝑉 .
4
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Lemma 4. Consider a sequence of graphs 𝐺(𝑘) = (𝑉 , (𝑘)) for 𝑘 ∈ N and let 𝐴(𝑘) be the adjacency matrix associated to each graph 𝐺(𝑘).
Then for any 𝑖, 𝑗 ∈ 𝑉 , (⨂𝑘

𝑙=0 𝐴(𝑙))𝑖𝑗 almost surely converges to 𝑒 if and only if the expected graph 𝐺 is strongly connected.

The following Theorem provides a description of the criterion for MAS (6) achieving max-consensus.

heorem 1. MAS (6) can achieve max-consensus almost surely if and only if the expected graph 𝐺 is strongly connected.

Proof (Sufficiency). Let 𝐴𝑘 =
⨂𝑘

𝑙=0 𝐴(𝑙). It is known that ‖
‖

𝑥(𝑘 + 1) − 𝑥𝑚𝑎𝑥‖‖∞ = ‖

‖

𝐴𝑘 ⊗ 𝑥(0) − 𝐼 ⊗ 𝑥(0)‖
‖∞, and 𝐴𝑘 ⊗ 𝑥(0), 𝐼 ⊗ 𝑥(0) ∈ R𝑛

are both finite. There exist 𝑖0 ∈ 𝑉 , such that

‖

‖

𝐴𝑘 ⊗ 𝑥(0) − 𝐼 ⊗ 𝑥(0)‖
‖∞ = |

|

|

(𝐴𝑘 ⊗ 𝑥(0) − 𝐼 ⊗ 𝑥(0))𝑖0
|

|

|

.

Since 𝐴𝑘 ⊗ 𝑥(0) − 𝐼 ⊗ 𝑥(0) ≤ 0, then
‖

‖

𝑥(𝑘 + 1) − 𝑥𝑚𝑎𝑥‖‖∞ =(𝐼 ⊗ 𝑥(0) − 𝐴𝑘 ⊗ 𝑥(0))𝑖0
=max

𝑗∈𝑉
(𝐼𝑖0𝑗 + 𝑥𝑗 (0)) − max

𝑚∈𝑉
(𝐴𝑘𝑖0𝑚

+ 𝑥𝑚(0))

=(𝐼𝑖0𝑗0 + 𝑥𝑗0 (0)) − max
𝑚∈𝑉

(𝐴𝑘𝑖0𝑚
+ 𝑥𝑚(0))

=(𝑒 + 𝑥𝑗0 (0)) − max
𝑚∈𝑉

(𝐴𝑘𝑖0𝑚
+ 𝑥𝑚(0))

=𝑥𝑗0 (0) − max
𝑚∈𝑉

(𝐴𝑘𝑖0𝑚
+ 𝑥𝑚(0)),

where 𝑥𝑗0 (0) = max𝑗∈𝑉
{

𝑥𝑗 (0)
}

, and 𝐼𝑖𝑗 = 𝑒, for ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗.
By Lemma 4, 𝑃 (lim𝑘→∞ 𝐴𝑘𝑖𝑗 = 𝑒) = 1 holds for all 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, since that expected graph 𝐺 is strongly connected. Then ∃𝑖0 ∈ 𝑉 ,

𝑃 (lim𝑘→∞ 𝐴𝑘𝑖0𝑚
= 𝑒) = 1 holds ∀𝑚 ∈ 𝑉 ,𝑚 ≠ 𝑖0. Hence ∃𝑖0 ∈ 𝑉 , one has

𝑃 ( lim
𝑘→∞

max
𝑚∈𝑉

(𝐴𝑘𝑖0𝑚
+ 𝑥𝑚(0)) = max

𝑚∈𝑉
(𝑒 + 𝑥𝑚(0))) = 1

⇒𝑃 [ lim
𝑘→∞

(𝑥𝑗0 (0) − max
𝑚∈𝑉

(𝐴𝑘𝑖0𝑚
+ 𝑥𝑚(0))) = 𝑥𝑗0 (0) − max

𝑚∈𝑉
(𝑥𝑚(0))] = 1

⇒𝑃 [ lim
𝑘→∞

(𝑥𝑗0 (0) − max
𝑚∈𝑉

(𝐴𝑘𝑖0𝑚
+ 𝑥𝑚(0))) = 𝑥𝑗0 (0) − 𝑥𝑗0 (0)] = 1

⇒𝑃 [ lim
𝑘→∞

(𝑥𝑗0 (0) − max
𝑚∈𝑉

(𝐴𝑘𝑖0𝑚
+ 𝑥𝑚(0))) = 0] = 1,

for all 𝑚 ∈ 𝑉 , 𝑚 ≠ 𝑖0, i.e., 𝑃 (lim𝑘→∞
‖

‖

𝑥(𝑘 + 1) − 𝑥𝑚𝑎𝑥‖‖∞ = 0) = 1. It implies that MAS (6) can achieve max-consensus almost surely.

(Necessity). If the expected graph is not strongly connected, then there exists 𝑖0, 𝑗0 ∈ 𝑉 , 𝑖0 ≠ 𝑗0, such that 𝑃 ((
⨂𝑘

𝑙=0 𝐴(𝑙))𝑖0𝑗0 =
𝜀) = 1. This implies that there is no path between agent 𝑗0 and 𝑖0. Hence, if 𝑥𝑖0 (0) = max𝑗∈𝑉

{

𝑥𝑗 (0)
}

, then 𝑥𝑗0 (𝑘) < 𝑥𝑖0 (0) for ∀𝑘 ∈ N.
i.e., discrete-time MAS (6) cannot reach max-consensus for any initial condition. The necessity of proof has been completed. □

Remark 3. For reaching consensus of MASs in directed graphs, it is commonly required that the directed graph contains a spanning
tree. A spanning tree provides a connected sub-graph that connects all agents and does not form loops, thus ensuring that information
can flow throughout the network to achieve consensus. However, in our paper, if we only require the directed graph to contain a
spanning tree, a part of the agents will not be able to achieve max-consensus when the agent with the maximal initial state is not
the root node. Thus, all agents can achieve max-consensus only if the directed graph contains a directed spanning tree and the agent
with the maximal initial state is the root node. However, this condition is too artificial. We further require a strongly connected
directed communication graph, which implies the existence of a directed path between any two nodes in the network.

The following theorem indicates that the four cases in Definition 3 are equivalent when the expected graph is strongly connected.

Theorem 2. The four statements that follow are equivalent if expected graph 𝐺 is strongly connected.

(a) Discrete-time MAS (6) reaches max-consensus almost surely;
(b) Discrete-time MAS (6) reaches max-consensus in probability;
(c) Discrete-time MAS (6) reaches max-consensus in expectation;
(d) Discrete-time MAS (6) reaches max-consensus in mean square.

Proof. (𝑎) ⇒ (𝑏), Eq. (10) can be equated to ∀𝜖 > 0, there is a positive integer 𝑁 ∈ N, such that for all 𝑘 ≥ 𝑁 , there is
‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ < 𝜖.
i.e, ∀𝜖 > 0,

lim
𝑘0→∞

𝑃 (
⋃

𝑘≥𝑘0

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖) = 0.

Let
{

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖
}

be denoted as an event, then it is obviously established that
{

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖
}

⊆
⋃

{

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖
}

,

5

𝑘≥𝑘0
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we can get

lim
𝑘→∞

𝑃 (‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖) ≤ lim
𝑘0→∞

𝑃 (
⋃

𝑘>𝑘0

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖) = 0.

Due to lim𝑘→∞ 𝑃 (‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖) ≥ 0, then it is shown that ∀𝜖 > 0,

lim
𝑘→∞

𝑃 (‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖) = 0,

i.e., (𝑎) ⇒ (𝑏) holds.
(𝑏) ⇒ (𝑐), for all 𝑘 ∈ N, 𝑃 (𝑎𝑖𝑖(𝑘) = 𝑒) = 1, then 𝐴(𝑘) is a regular matrix. By Lemma 3, we derive

‖

‖

𝑥(𝑘 + 1) − 𝑥𝑚𝑎𝑥‖‖∞ = ‖

‖

𝐴(𝑘)⊗ 𝑥(𝑘) − 𝐴(𝑘)⊗ 𝑥𝑚𝑎𝑥‖‖∞
≤ ‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ . (12)

According to Eq. (12), we get that the sequence
{

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞
}

is bounded and monotonic non-increasing, then ‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞
≤ ‖

‖

𝑥(0) − 𝑥𝑚𝑎𝑥‖‖∞. Since 𝐸
[

‖

‖

𝑥(0) − 𝑥𝑚𝑎𝑥‖‖∞
]

= ‖

‖

𝑥(0) − 𝑥𝑚𝑎𝑥‖‖∞ < ∞, from Lemma 2 (Dominated Convergence Theorem), we can obtain
hat discrete-time MAS (6) achieves max-consensus in expectation.

(𝑐) ⇒ (𝑑), by Eq. (12), ‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ is non-increasing, then one has

𝐸
[

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖
2
∞

]

≤ 𝐸
[

‖

‖

𝑥(0) − 𝑥𝑚𝑎𝑥‖‖∞ ‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞
]

= ‖

‖

𝑥(0) − 𝑥𝑚𝑎𝑥‖‖∞ 𝐸
[

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞
]

.

ince lim𝑘→∞ 𝐸[‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞] = 0, one has

lim
𝑘→∞

𝐸[‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖
2
∞] ≤ lim

𝑘→∞
‖

‖

𝑥(0) − 𝑥𝑚𝑎𝑥‖‖∞ 𝐸
[

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞
]

= 0.

ue to lim𝑘→∞ 𝐸[‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖
2
∞] ≥ 0, i.e., (𝑐) ⇒ (𝑑) holds.

(𝑑) ⇒ (𝑎), by Chebyshev’s inequality [40], ∀𝜖 > 0,

𝑃 (‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ ≥ 𝜖) ≤
𝐸[‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖
2
∞]

𝜖2
. (13)

It is known that Eq. (9) holds, hence

lim
𝑘→∞

𝑃 (‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ ≥ 𝜖) = 0.

By Eq. (12), the sequence
{

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞
}

is bounded and monotonic non-increasing, then
∞
⋃

𝑘=𝑘0

{

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖
}

=
{

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖
}

. (14)

Thus

lim
𝑘0→∞

𝑃 (
⋃

𝑘>𝑘0

‖

‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖) = lim
𝑘→∞

𝑃 (‖
‖

𝑥(𝑘) − 𝑥𝑚𝑎𝑥‖‖∞ > 𝜖) = 0, (15)

i.e., (𝑑) ⇒ (𝑎) holds. □

According to the results in Theorem 2, we can also obtain the following conclusions.

Remark 4. A sufficient and necessary criterion for MAS (6) to reach max-consensus in mean square, expectation and probability
is that the expected graph 𝐺 satisfies the condition of strong connected.

. Simulation

We consider a directed network with 𝑛 = 15 agents, where the probability of the presence of an edge is 𝑃 (𝑎𝑖𝑗 = 𝑒) = 0.1,
, 𝑗 = 1,… , 15, and 𝑖 ≠ 𝑗. Each agent has a fixed self-loop, i.e., 𝑃 (𝑎𝑖𝑖 = 𝑒) = 1, 𝑖 = 1,… , 15, as shown in Fig. 1, and the network

evolves from 0 to 8 s. In Fig. 1, we find that the graphs for each time interval have different patterns and are irregular, which
reflects the randomness. We give the initial state as 𝑥(0) = [7, 3, 9, 11, 8, 6, 4, 1, 1.7, 3.2, 5.3, 9.9, 7.4, 3.5, 1.4]⊤. The agents’ dynamics are
escribed in (4). Fig. 2 displays each agent’s state trajectories in MASs. We can observe that all agents’ state eventually reaches
he maximum value of the initial state. Therefore, we can obtain that discrete-time MAS (6) reaches max-consensus in the directed
andom network, which conforms to the result stated in Theorem 1.
6
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Fig. 1. Directed random graph: 𝑛 = 15, 𝑝 = 0.1.

Fig. 2. All agents’ state trajectories in MAS (6).

6. Conclusions

This paper studied the max-consensus of discrete-time MASs in random networks. The max-plus algebra was used to describe
the dynamical structure and to solve max-consensus algorithm’s convergence problems. Then, we derived sufficient and necessary
conditions for reaching max-consensus almost surely of MASs. And the results shown that the max-consensus is equivalent in different
probabilistic senses, which include almost surely, in probability, expectation, and mean square when the expected graph is strongly
connected. In numerical simulation, the MASs achieve consensus when directed edges of the network are randomly connected. It
indicate that the offered consensus algorithm is effective and the max-plus algebraic algorithm can be applied in a probabilistic sense.
In consideration of more general network systems in the real world, our future work will consider the max- (or min-) consensus
problem for random networks with non-independence assumption.
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ppendix

roof of Lemma 4. (Sufficiency). Firstly, we need to obtain an explicit form to represent the specific operation of each element
𝑖𝑗 of the matrix obtained after multiplying 𝑘 + 1 matrices, that is, 𝐴(𝑘)⊗⋯⊗𝐴(1)⊗𝐴(0) satisfies

(
𝑘

⨂

𝑙=0
𝐴(𝑙))𝑖𝑗 = (𝐴(𝑘)⊗𝐴(𝑘 − 1)⊗⋯⊗𝐴(0))𝑖𝑗

=
𝑛

⨁

𝑟𝑘−1=1

𝑛
⨁

𝑟𝑘−2=1
⋯

𝑛
⨁

𝑟0=1
(𝑎𝑖𝑟𝑘−1 (𝑘)⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗⋯⊗ 𝑎𝑟1𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0)), (16)

where 𝑟𝑧 ∈ 𝑉 , 𝑧 = 1, 2,… , 𝑘 − 1.
In the following, we use mathematical induction to prove it. For 𝑘 = 1, one has

(
1

⨂

𝑙=0
𝐴(𝑙))𝑖𝑗 = (𝐴(1)⊗𝐴(0))𝑖𝑗 =

𝑛
⨁

𝑟0=1
(𝑎𝑖𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0))

= (𝑎𝑖1(1)⊗ 𝑎1𝑗 (0))⊕ (𝑎𝑖2(1)⊗ 𝑎2𝑗 (0))⊕⋯⊕ (𝑎𝑖𝑛(1)⊗ 𝑎𝑛𝑗 (0)).

For 𝑘 = 2, one has

(
2

⨂

𝑙=0
𝐴(𝑙))𝑖𝑗 = (𝐴(2)⊗𝐴(1)⊗𝐴(0))𝑖𝑗

=
𝑛

⨁

𝑟1=1
(𝑎𝑖𝑟1 (2)⊗ (

𝑛
⨁

𝑟0=1
(𝑎𝑟1𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0))))

=
𝑛

⨁

𝑟1=1
[𝑎𝑖𝑟1 (2)⊗ ((𝑎𝑟11(1)⊗ 𝑎1𝑗 (0))⊕ (𝑎𝑟12(1)⊗ 𝑎2𝑗 (0))⊕⋯⊕ (𝑎𝑟1𝑛(1)⊗ 𝑎𝑛𝑗 (0)))]

=
𝑛

⨁

𝑟1=1
[(𝑎𝑖𝑟1 (2)⊗ 𝑎𝑟11(1)⊗ 𝑎1𝑗 (0))⊕ (𝑎𝑖𝑟1 (2)⊗ 𝑎𝑟12(1)⊗ 𝑎2𝑗 (0))⊕⋯⊕ (𝑎𝑖𝑟1 (2)⊗ 𝑎𝑟1𝑛(1)⊗ 𝑎𝑛𝑗 (0))]

=
𝑛

⨁

𝑟1=1

𝑛
⨁

𝑟0=1
(𝑎𝑖𝑟1 (2)⊗ 𝑎𝑟1𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0)).

Next, we suppose that Eq. (16) holds, then for 𝑘 = 𝑘 + 1,

(
𝑘+1
⨂

𝑙=0
𝐴(𝑙))𝑖𝑗 =(𝐴(𝑘 + 1)⊗𝐴(𝑘)⊗⋯⊗𝐴(1)⊗𝐴(0))𝑖𝑗

=
𝑛

⨁

𝑟𝑘=1
𝑎𝑖𝑟𝑘 (𝑘 + 1)⊗ (

𝑛
⨁

𝑟𝑘−1=1

𝑛
⨁

𝑟𝑘−2=1
⋯

𝑛
⨁

𝑟0=1
(𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗⋯⊗ 𝑎𝑟1𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0))).

ince the formula ⨁𝑛
𝑟𝑘−1=1

⨁𝑛
𝑟𝑘−2=1

⋯
⨁𝑛

𝑟0=1
(𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘−1)⊗⋯⊗𝑎𝑟1𝑟0 (1)⊗𝑎𝑟0𝑗 (0)) is too long to understand, we analyzed

t separately. Using the distributivity of two binary operations in max-plus algebra, we can get
𝑛

⨁

𝑟𝑘−1=1

𝑛
⨁

𝑟𝑘−2=1
⋯

𝑛
⨁

𝑟0=1
(𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗⋯⊗ 𝑎𝑟1𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0))

=
𝑛

⨁

𝑟𝑘−1=1

𝑛
⨁

𝑟𝑘−2=1
⋯

𝑛
⨁

𝑟1=1
[𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗⋯⊗ 𝑎𝑟2𝑟1 (2)⊗ (𝑎𝑟11(1)⊗ 𝑎1𝑗 (0))⊕ 𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)

⊗⋯⊗ 𝑎𝑟2𝑟1 (2)⊗ (𝑎𝑟12(1)⊗ 𝑎2𝑗 (0))⊕⋯⊕ 𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗⋯⊗ 𝑎𝑟2𝑟1 (2)⊗ (𝑎𝑟1𝑛(1)⊗ 𝑎𝑛𝑗 (0))]

=
𝑛

⨁

𝑟𝑘−1=1

𝑛
⨁

𝑟𝑘−2=1
⋯

𝑛
⨁

𝑟1=1
[(𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗⋯⊗ 𝑎𝑟2𝑟1 (2))⊗ (𝑎𝑟11(1)⊗ 𝑎1𝑗 (0)⊕ 𝑎𝑟12(1)⊗ 𝑎2𝑗 (0)⊕⋯

⊕ 𝑎𝑟1𝑛(1)⊗ 𝑎𝑛𝑗 (0))]

=
𝑛

⨁

𝑛
⨁

⋯
𝑛

⨁

[(𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗⋯⊗ 𝑎𝑟2𝑟1 (2))⊗ (
𝑛

⨁

(𝑎𝑟1𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0)))]
8

𝑟𝑘−1=1 𝑟𝑘−2=1 𝑟1=1 𝑟0=1
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=⋯

=
𝑛

⨁

𝑟𝑘−1=1
[𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ [

𝑛
⨁

𝑟𝑘−2=1
[𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗ [⋯⊗ [

𝑛
⨁

𝑟1=1
[𝑎𝑟2𝑟1 (2)⊗ [

𝑛
⨁

𝑟0=1
(𝑎𝑟1𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0))]]]⋯]]]].

Then we can get

(
𝑘+1
⨂

𝑙=0
𝐴(𝑙))𝑖𝑗 =(𝐴(𝑘 + 1)⊗𝐴(𝑘)⊗⋯⊗𝐴(1)⊗𝐴(0))𝑖𝑗

=
𝑛

⨁

𝑟𝑘=1
𝑎𝑖𝑟𝑘 (𝑘 + 1)⊗ (

𝑛
⨁

𝑟𝑘−1=1

𝑛
⨁

𝑟𝑘−2=1
⋯

𝑛
⨁

𝑟0=1
(𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗⋯⊗ 𝑎𝑟1𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0)))

=
𝑛

⨁

𝑟𝑘=1
[𝑎𝑖𝑟𝑘 (𝑘 + 1)⊗ [

𝑛
⨁

𝑟𝑘−1=1
[𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ [

𝑛
⨁

𝑟𝑘−2=1
[𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗ [⋯⊗ [

𝑛
⨁

𝑟1=1
[𝑎𝑟2𝑟1 (2)⊗

[
𝑛

⨁

𝑟0=1
(𝑎𝑟1𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0))]]]⋯ ]]]]]]

=
𝑛

⨁

𝑟𝑘=1
[(𝑎𝑖𝑟𝑘 (𝑘 + 1)⊗ 𝑎𝑟𝑘1(𝑘)⊗𝑄)⊕ (𝑎𝑖𝑟𝑘 (𝑘 + 1)⊗ 𝑎𝑟𝑘2(𝑘)⊗𝑄)⊕⋯⊕ (𝑎𝑖𝑟𝑘 (𝑘 + 1)⊗ 𝑎𝑟𝑘𝑛(𝑘)⊗𝑄)]

=
𝑛

⨁

𝑟𝑘=1

𝑛
⨁

𝑟𝑘−1=1
[𝑎𝑖𝑟𝑘 (𝑘 + 1)⊗ [𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗𝑄]]

=
𝑛

⨁

𝑟𝑘=1

𝑛
⨁

𝑟𝑘−1=1
[𝑎𝑖𝑟𝑘 (𝑘 + 1)⊗ [𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗ [

𝑛
⨁

𝑟𝑘−2=1
[𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗ [⋯⊗ [

𝑛
⨁

𝑟1=1
[𝑎𝑟2𝑟1 (2)⊗ [

𝑛
⨁

𝑟0=1
(𝑎𝑟1𝑟0 (1)

⊗ 𝑎𝑟0𝑗 (0))]]]⋯ ]]]]]
=⋯

=
𝑛

⨁

𝑟𝑘=1

𝑛
⨁

𝑟𝑘−1=1
⋯

𝑛
⨁

𝑟0=1
(𝑎𝑖𝑟𝑘 (𝑘 + 1)⊗ 𝑎𝑟𝑘𝑟𝑘−1 (𝑘)⊗⋯⊗ 𝑎𝑟0𝑗 (0)),

where

𝑄 =
𝑛

⨁

𝑟𝑘−2=1
[𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1)⊗ [⋯⊗ [

𝑛
⨁

𝑟1=1
[𝑎𝑟2𝑟1 (2)⊗ [

𝑛
⨁

𝑟0=1
(𝑎𝑟1𝑟0 (1)⊗ 𝑎𝑟0𝑗 (0))]]]⋯]].

Hence, Eq. (16) holds.
According to Eq. (16), we obtain that (

⨂𝑘
𝑙=0 𝐴(𝑙))𝑖𝑗 can be denoted as the sum of the 𝑛𝑘 formulas. It is worth noting that

𝐴(𝑘) ⊗ 𝐴(𝑘 − 1) ⊗ ⋯ ⊗ 𝐴(0) = 𝐼 in max-plus algebra implies that there exists a directed path of length 𝑘 + 1 between any
agents in the union graph consisting of 𝐺(0),… , 𝐺(𝑘). And (

⨂𝑘
𝑙=0 𝐴(𝑙))𝑖𝑗 = 𝜀 only if all these 𝑛𝑘 formulas equal 𝜀. The formula

𝑎𝑖𝑟𝑘−1 (𝑘) ⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1) ⊗ ⋯ ⊗ 𝑎𝑟1𝑟0 (1) ⊗ 𝑎𝑟0𝑗 (0) obtained from Eq. (16) is equal to 𝜀 if at least one of these 𝑘 + 1 terms in
𝑎𝑖𝑟𝑘−1 (𝑘) ⊗ 𝑎𝑟𝑘−1𝑟𝑘−2 (𝑘 − 1) ⊗ ⋯ ⊗ 𝑎𝑟1𝑟0 (1) ⊗ 𝑎𝑟0𝑗 (0) is equal to 𝜀. Next, we will analyze the probability of each of these 𝑛𝑘 formulas
being equal to 𝜀. We find that the most comprehensive case to consider is the complete graph, i.e., the probability of each edge
𝑝𝑖𝑗 > 0. Therefore, we intend to first consider all cases from the complete graph, and then scale the results obtained to get the final
criterion condition. Since we assume that each agent has a self-loop with probability 1, we address all possible cases by categorizing
them in terms of the number of self-loops. For 𝑖 ≠ 𝑟𝑘−1, 𝑟𝑧 ≠ 𝑟𝑧−1, (𝑧 = 1, 2,… , 𝑘 − 1), 𝑟0 ≠ 𝑗, one has

𝑃 (𝑎𝑖𝑟𝑘−1 (𝑘)⊗⋯⊗ 𝑎𝑟0𝑗 (0) = 𝜀) = 1 − 𝑝𝑖𝑟𝑘−1 ×⋯ × 𝑝𝑟0𝑗 ≤ 1 − (min
𝑖,𝑗∈𝑉

𝑝𝑖𝑗 )𝑘+1 < 1, (17)

where 𝑝𝑖𝑗 > 0, 𝑖, 𝑗 ∈ 𝑉 . There are 𝜂𝑘+1 =
(𝑘+1

0

)

× 𝜃𝑘, 𝜃𝑘 ∈ ((𝑛 − 1)𝑘−1, (𝑛 − 1)𝑘) cases included in (17). If one and only one of formulas
𝑖 = 𝑟𝑘−1, 𝑟𝑧 = 𝑟𝑧−1, (𝑧 = 1, 2,… , 𝑘 − 1), 𝑟0 = 𝑗 holds, then

𝑃 (𝑎𝑖𝑟𝑘−1 (𝑘)⊗⋯⊗ 𝑎𝑟0𝑗 (0) = 𝜀) ≤ 1 − (min
𝑖,𝑗∈𝑉

𝑝𝑖𝑗 )𝑘 < 1. (18)

There are 𝜂𝑘 =
(𝑘+1

1

)

× 𝜃𝑘−1, 𝜃𝑘−1 ∈ ((𝑛− 1)𝑘−2, (𝑛− 1)𝑘−1) cases included in (18). And so on, if exactly 𝑘+ 1 − 𝑑 equations hold in
𝑖 = 𝑟𝑘−1, 𝑟𝑧 = 𝑟𝑧−1, (𝑧 = 1, 2,… , 𝑘 − 1), 𝑟0 = 𝑗, then

𝑃 (𝑎𝑖𝑟𝑘−1 (𝑘)⊗⋯⊗ 𝑎𝑟0𝑗 (0) = 𝜀) ≤ 1 − (min
𝑖,𝑗∈𝑉

𝑝𝑖𝑗 )𝑑 < 1. (19)

There are 𝜂𝑑 cases included in (19), where 𝑟𝑧 ∈ {1, 2,… , 𝑛} , (𝑧 = 0, 1, 2,… , 𝑘−1), 𝜂𝑑 =
( 𝑘+1
𝑘+1−𝑑

)

×𝜃𝑑−1, 𝜃𝑑 ∈
(

(𝑛 − 1)𝑑−1, (𝑛 − 1)𝑑
)

, (𝑑 =
1, 2,… , 𝑘, 𝑘 + 1), 𝜃0 = 1 and ∑𝑘+1

𝑑=1 𝜂𝑑 = 𝑛𝑘. Then

𝑃 ((
𝑘

⨂

𝑙=0
𝐴(𝑙))𝑖𝑗 = 𝜀) ≤

𝑘+1
∏

𝑑=1
(1 − 𝑝𝑑 )𝜂𝑑 , (20)

where 𝑝 = min 𝑝 ∈ (0, 1).
9

𝑖,𝑗∈𝑉 𝑖𝑗
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Since that the expected graph is strongly connected, there exist a directed path from 𝑗 to 𝑖 for any 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗. Then,
e denote the shortest length of path from 𝑗 to 𝑖 as 𝑑𝑖𝑗 for any 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗. Thus, there exist 𝑖1, 𝑖2,… , 𝑖𝑑𝑖𝑗−1 ∈ 𝑉 , such that

∀𝑙 ∈ N, 𝑃 (𝑎𝑖𝑖1 (𝑙) = 𝑒) = 𝑝𝑖𝑖1 > 0, 𝑃 (𝑎𝑖1𝑖2 (𝑙) = 𝑒) = 𝑝𝑖1𝑖2 > 0,… , 𝑃 (𝑎𝑖𝑑𝑖𝑗−1𝑗 (𝑙) = 𝑒) = 𝑝𝑖𝑑𝑖𝑗−1𝑗 > 0. From Eq. (20), for any 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, the
robability of (⨂𝑘

𝑙=0 𝐴(𝑙))𝑖𝑗 = 𝜀 is

𝑃 ((
𝑘

⨂

𝑙=0
𝐴(𝑙))𝑖𝑗 = 𝜀) =

𝑘+1
∏

𝑑=𝑑𝑖𝑗

(1 − 𝑝𝑑 )𝜂𝑑

≤ (1 − 𝑝𝑑𝑖𝑗 )
( 𝑘+1
𝑘+1−𝑑𝑖𝑗

)

≤ (1 − 𝑝𝑑𝑖𝑗 )𝑘+1,

(21)

here 1 ≤ 𝑑𝑖𝑗 ≤ 𝑛 − 1 ≤ 𝑘 + 1.
Then ∀𝜖 > 0, ∀𝑖, 𝑗 ∈ 𝑉 , and 𝑖 ≠ 𝑗, we can get

∞
∑

𝑘=0
𝑃

(

|

|

|

|

|

|

(
𝑘

⨂

𝑙=0
𝐴(𝑙))𝑖𝑗

|

|

|

|

|

|

> 𝜖

)

=
∞
∑

𝑘=0
𝑃 ((

𝑘
⨂

𝑙=0
𝐴(𝑙))𝑖𝑗 = 𝜀). (22)

According to Eq. (21), we obtain that 𝑃 ((
⨂𝑘

𝑙=0 𝐴(𝑙))𝑖𝑗 = 𝜀) ≤ (1 − 𝑝𝑑𝑖𝑗 )𝑘+1. It follows from (1−𝑝𝑑𝑖𝑗 )𝑘+1

(1−𝑝𝑑𝑖𝑗 )𝑘
= 1 − 𝑝𝑑𝑖𝑗 < 1 that the

eries ∑∞
𝑘=0(1 − 𝑝𝑑𝑖𝑗 )𝑘+1 is convergence. Since ∀𝑘 ∈ N, 𝑃 ((

⨂𝑘
𝑙=0 𝐴(𝑙))𝑖𝑗 = 𝜀) > 0, (1 − 𝑝𝑑𝑖𝑗 )𝑘+1 > 0, then ∑∞

𝑘=0 𝑃 ((
⨂𝑘

𝑙=0 𝐴(𝑙))𝑖𝑗 =
) and ∑∞

𝑘=0(1 − 𝑝𝑑0 )𝑘+1 are both positive series. By the comparison principle of the positive series, we can obtain that the
eries ∑∞

𝑘=0 𝑃 (
|

|

|

(
⨂𝑘

𝑙=0 𝐴(𝑙))𝑖𝑗
|

|

|

> 𝜖) is convergence. And ∑∞
𝑘=0(1 − 𝑝𝑑𝑖𝑗 )𝑘+1 = lim𝑛→∞

∑𝑛
𝑘=0(1 − 𝑝𝑑𝑖𝑗 )𝑘+1 = 1−𝑝𝑑𝑖𝑗

𝑝𝑑𝑖𝑗
< ∞, then

∑∞
𝑘=0 𝑃 (

|

|

|

(
⨂𝑘

𝑙=0 𝐴(𝑙))𝑖𝑗
|

|

|

> 𝜖) < ∞. By Lemma 1 (Borel–Cantelli Lemma), ∀𝜖 > 0, and ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, it is obtained that

𝑃

(

lim sup
𝑘→∞

|

|

|

|

|

|

(
𝑘

⨂

𝑙=0
𝐴(𝑙))𝑖𝑗

|

|

|

|

|

|

> 𝜖

)

= 0. (23)

Ultimately, we conclude that 𝑃 (lim𝑘→∞(
⨂𝑘

𝑙=0 𝐴(𝑙))𝑖𝑗 = 𝑒) = 1.
(Necessity). If the expected graph is not strongly connected, there exists 𝑖0, 𝑗0 ∈ 𝑉 and 𝑖0 ≠ 𝑗0, such that 𝑃 ((

⨂𝑘
𝑙=0 𝐴(𝑙))𝑖0𝑗0 =

𝜀) = 1,∀𝑘 ∈ N, which is conflict with the known condition ∀𝜖 > 0, ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, 𝑃 (lim𝑘→∞(
⨂𝑘

𝑙=0 𝐴(𝑙))𝑖𝑗 = 𝜀) = 0. The necessity is
proved. □
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