
Information Sciences 662 (2024) 120240

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Global inverse optimality for a class of recurrent neural networks 

with multiple proportional delays

Weijun Ma a,b, Xuhui Guo c, Huaizhu Wang c, Yuanshi Zheng d,∗

a School of Information Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
b Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West, Ningxia 
University, Yinchuan, 750021, Ningxia, China
c School of Advanced Interdisciplinary Studies, Ningxia University, Zhongwei, 755000, Ningxia, China
d School of Mechano-electronic Engineering, Xidian University, Xi’an, 710071, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Input-to-state stability

Recurrent neural networks

Multiple proportional delays

Inverse optimality

This paper formulates two novel theoretical designs of input-to-state stabilizing control for a class 
of recurrent neural networks with multiple proportional delays. The analysis tool developed in 
this paper is based on Lyapunov function and inverse optimality method, which does not require 
solving Hamilton-Jacobi-Bellman equations. Two inverse optimal feedback laws are constructed 
via the dimensions of state and input, which ensure the input-state stability for the considered 
system. When the dimensions of state and input are different, we establish a scalar function 
and give one of the control laws by Sontag’s formula. Furthermore, the designs of inverse optimal 
control reach both global inverse optimality and global asymptotic stability of the system for some 
meaningful cost functional. Four numerical examples are provided to show the effectiveness of 
the inverse optimal control.

1. Introduction

Recurrent neural networks (RNNs) have notably attracted attentions since they are widely used in combinatorial optimization, 
pattern recognition, and associative memory [1]. However, these applications are largely dependent on the stability of the systems, 
namely, the long-time asymptotic behavior of the solutions to RNNs. For example, Akhmet, Aruğaslanc and Yılmaz [2] obtained the 
global exponential stability of RNNs with piecewise constant argument in terms of Lyapunov functions. For the Lipschitz continuous 
and monotone increasing activation functions, the global both asymptotic and exponential stability of the RNNs were discussed in 
Hu and Wang [3]. Fan and Zhu [4] investigated the mean square exponential stability of discrete-time stochastic neural networks 
(NNs) with partially unstable subsystems and mixed delays, which utilizes the approaches of Lyapunov-Krasovskii functional and 
stationary distribution of Markov chain. There is an intensive literature in this area, for example, [5,6], a few to name. Indeed, for a 
given RNNs, it is very important to determine whether the system is stable.

Time delay is another important issue and one of the potential causes of oscillation or instability and poor performance in neural 
networks. In particular, proportional delay [7–10] is a type of unbounded time-varying delays that is not same as other kinds of 
delays [4,11–16]. The research on the stability of NNs with proportional delay has attracted the attention of many scholars. For 
instance, by applying linear matrix inequality (LMI), Zhou [17] discussed the global asymptotic stability (GAS) of cellular NNs with 
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proportional delays. Jia [18] investigated the multiple proportional delays of fuzzy cellular NNs by using differential inequality 
techniques and finite-time stability theory. For more results we refer the reader to [19,20] and the references therein.

Note that the aforementioned works only focus on the case of the NNs with proportional delays under the same dimensions 
of state and input. These restrictions have huge impact on the application of NNs in automatic control and system identification. 
Therefore, NNs systems with different dimensions of state and input, represent a wide class of important nonlinear systems [21,22].

At present, there is a wealth of works [9,23,24] on optimal control for nonlinear systems. Among them, it is worth pointing out 
that this optimization problem [24], requires solving the nonlinear two-point boundary value problem, or the nonlinear Hamilton-

Jacobi-Bellman (HJB) equation. Nevertheless, it is difficult to get an analytical solution to the HJB equation for optimal control of 
nonlinear systems. Particularly, the problem of optimal control for most delayed nonlinear systems can only be solved numerically 
[25,26]. It is well known that the numerical methods also have some defects such as slow convergence rate and selection of the 
appropriate initial values. To conquer this difficulty, many scholars put forward the inverse optimal control approach, which is 
involved in linear systems [27], nonlinear systems [28–36], and delay systems [37,38]. Up to now, there are no related research 
results for nonlinear systems with proportional delay by using inverse optimal control.

In general, in many fields such as control and engineering, the dimensions of state and input for nonlinear systems may be the 
same or different [39,40]. Moreover, it is difficult to design feedback control law for optimal stabilization of such systems. Therefore, 
it is very interesting and challenging to investigate a control design method for delayed nonlinear systems such that desired system 
stability is achieved and a cost functional is minimized. The main contribution of this paper is twofold. First, two inverse optimal 
controllers are developed for input-to-state stability (ISS) of RNNs with multiple proportional delays by using the inverse optimality, 
Lyapunov technique and HJB equation. The presented approach is simpler than the existing LMI method. Second, for the different 
dimensions of state and input, a scalar function is constructed by using Sontag’s formula, and the control law is derived that can 
ensure the ISS of the system. This paper generalizes the previous results to the general nonlinear system with multiple proportional 
delays.

The remainder of this paper is proposed as follows. In Section 2, we present some preliminaries. In Section 3, we present the 
main results of this paper. In Section 4, numerical simulations are provided to illustrate the effectiveness of the proposed methods. 
Finally, a conclusion is given in Section 5.

2. Preliminaries

Let ℝ𝑛 be the 𝑛-dimensional Euclidean space, ℝ𝑛×𝑚 be the set of all 𝑛 × 𝑚 real matrices, the superscript “T” be the transpose of 
a matrix or vector, and ‖𝑥‖ =√

𝑥21 + 𝑥22 + ⋅ ⋅ ⋅+ 𝑥2
𝑛
=

√
𝑥𝑇 𝑥 be the Euclidean norm of a vector 𝑥. If A is a matrix, then ‖A‖ denotes 

the Frobenius matrix norm, i.e., ‖A‖ =√∑
𝑖𝑗

|𝑎𝑖𝑗 |2 =√
tr
(
A𝑇A

)
, where tr(⋅) is the trace of a matrix.

In this paper, we consider the following RNN with multiple proportional delays{
𝑥̇(𝑡) = −𝐴𝑥(𝑡) +𝐵𝑓 (𝑥(𝑡)) +𝐶𝑔(𝑥(𝑝𝑡)) +𝐷ℎ(𝑥(𝑞𝑡)) +𝐸𝑣, 𝑡 ≥ 1,

𝑥(𝑡) = 𝑥0, 𝑡 ∈ [𝑞′,1],
(1)

where 𝑥(𝑡) = (𝑥1(𝑡), ..., 𝑥𝑛(𝑡))𝑇 ∈ 𝑅𝑛 is the state vector associated with 𝑛 neurons, 𝐴 = diag(𝑎1, 𝑎2, ..., 𝑎𝑛) is a diagonal matrix with 
𝑎𝑖 > 0 being the firing rate, 𝐵, 𝐶 and 𝐷 are the connection weight matrix and delayed connection weight matrices, respectively, 
𝐸 is a given control input matrix with appropriate dimension, 𝑣 is the control input, 𝑓 (𝑥(𝑡)) = (𝑓1(𝑥1(𝑡)), ..., 𝑓𝑛(𝑥𝑛(𝑡)))𝑇 , 𝑔(𝑥(𝑝𝑡)) =
(𝑔1(𝑥1(𝑝𝑡)), ..., 𝑔𝑛(𝑥𝑛(𝑝𝑡)))𝑇 and ℎ(𝑥(𝑞𝑡)) = (ℎ1(𝑥1(𝑞𝑡)), ..., ℎ𝑛(𝑥𝑛(𝑞𝑡)))𝑇 are the activation functions. The constants 𝑝, 𝑞 are proportional 
delay factors and satisfy 0 < 𝑝, 𝑞 ≤ 1, 𝑝𝑡 = 𝑡 − (1 − 𝑝)𝑡 and 𝑞𝑡 = 𝑡 − (1 − 𝑞)𝑡, where (1 − 𝑝)𝑡 and (1 − 𝑞)𝑡 are time-varying continuous 
functions satisfying (1 − 𝑝)𝑡 → +∞ and (1 − 𝑞)𝑡 → +∞ as 𝑡 → +∞ and 𝑝 ≠ 1, 𝑞 ≠ 1, 𝑞′ = min{𝑝, 𝑞}. 𝑥0 = (𝑥10, ..., 𝑥𝑛0)𝑇 ∈ ℝ𝑛 is the 
initial value of 𝑥(𝑡) at 𝑡 ∈ [𝑞′, 1].

By defining the transformation for the variable 𝜁(𝑡) = 𝑥(𝑒𝑡), system (1) is reformulated as{
𝜁̇ (𝑡) = 𝑒𝑡

[
−𝐴𝜁(𝑡) +𝐵𝑓 (𝜁(𝑡)) +𝐶𝑔(𝜁(𝑡− 𝜍)) +𝐷ℎ(𝜁(𝑡− 𝜉)) +𝐸𝑣

]
, 𝑡 ≥ 0,

𝜁(𝑡) = 𝜁0(𝑡), 𝑡 ∈ [−𝜏,0],
(2)

where 𝜍 = − log𝑝, 𝜉 = − log 𝑞, 𝜏 =max{𝜍, 𝜉}, 𝜁0(𝑡) = (𝜁10(𝑡), 𝜁20(𝑡), ..., 𝜁𝑛0(𝑡))𝑇 ∈ ([−𝜏, 0]; ℝ𝑛).

Remark 2.1. The system (2) is a recurrent neural network with unbounded time-varying coefficients and multiple constant delays. 
If 𝑝 = 𝑞 = 1, then the system (1) is a RNN without delay in [11]. The system (1) is also completely different from the cellular neural 
network with bounded delays and time-varying coefficients [12]. Moreover, it is shown that the expression of control input is the 
major difference between the system (2) and the system in [12]. Therefore, system (1) is a more general nonlinear RNN with multiple 
proportional delays than those systems given in [10–12,17,34].

Lemma 2.2. [41,42] For any vectors 𝑦, 𝑧 ∈𝑅𝑛, the matrix inequality holds
2

2𝑦𝑇 𝑧 ≤ 𝑦𝑇 𝑦+ 𝑧𝑇 𝑧. (3)
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Lemma 2.3. [32,35] Assume that there exists a positive semidefinite function 𝑈 (𝑡, 𝜁) ∈ 1 associated with the following nonlinear system

𝜁̇ (𝑡) = (𝜁) +(𝜁)𝑣, (4)

the HJB equation satisfies as follows

𝑈𝑡(𝑡, 𝜁) +𝑈𝜁 (𝑡, 𝜁)(𝜁) − 1
4
𝑈𝜁 (𝑡, 𝜁)(𝜁)−1(𝜁)𝑇 (𝜁)𝑈𝑇

𝜁
(𝑡, 𝜁) + (𝜁) = 0. (5)

Moreover, there is a feedback control

𝑣∗(𝜁) = −1
2
−1(𝜁)

(
𝑈𝜁 (𝑡, 𝜁)(𝜁))𝑇 (6)

reaches the GAS for system (4) at the origin by minimizing the cost functional

(𝑣) =
+∞

∫
0

((𝜁) + 𝑣𝑇(𝜁)𝑣
)
d𝑡 (7)

where (𝜁) ≥ 0 and (𝜁) > 0 for all 𝜁 . Then 𝑣∗ is the optimal stabilizing control, and 𝑈 (𝑡, 𝜁) is the optimal value function.

Assumption 2.1. Assume that activation functions 𝑓𝑗 (⋅), 𝑔𝑗 (⋅) and ℎ𝑗 (⋅) satisfy the following conditions:

(i) 𝑓𝑗 (0) = 0, 𝑔𝑗 (0) = 0, ℎ𝑗 (0) = 0;

(ii)
|||𝑓𝑗 (𝑤𝑗 ) − 𝑓𝑗 (𝜁𝑗 )

||| ≤ 𝑘𝑗
|||𝑤𝑗 − 𝜁𝑗

|||, |||𝑔𝑗 (𝑤𝑗 ) − 𝑔𝑗 (𝜁𝑗 )
||| ≤ 𝑙𝑗

|||𝑤𝑗 − 𝜁𝑗
|||, |||ℎ𝑗 (𝑤𝑗 ) − ℎ𝑗 (𝜁𝑗 )

||| ≤𝑚𝑗
|||𝑤𝑗 − 𝜁𝑗

|||
where ∀𝑤𝑗, 𝜁𝑗 ∈ℝ, 𝑘𝑗 , 𝑙𝑗 and 𝑚𝑗 (𝑗 = 1, 2, ..., 𝑛) are nonnegative constants, and | ⋅ | denotes the absolute value.

Assumption 2.2. Assume that the weight matrix 𝐸 of system (2) satisfies the following conditions:

(i) if 𝐸 ∈ℝ𝑛×𝑛 is a square matrix, then 𝐸 is invertible, i.e., det(𝐸) ≠ 0;

(ii) if 𝐸 ∈ℝ𝑛×𝑚 is not a square matrix, then 𝐸 is selected to satisfy the inequality 𝐸𝐸𝑇 ≥ 0.

Remark 2.4. The activation functions in this paper are no longer needed to be monotonous, bounded and differentiable (see, e.g. 
[4–6,16,37,38]). For example, the sigmoid function is selected as the activation function in [5], which is a strictly monotonically 
increasing bounded function.

3. The main results

In this section, the input-to-state stabilizing control for system (2) based on the inverse optimality method and Lyapunov function 
is investigated under Assumptions 2.1 and 2.2. According to the same and different dimensions of input and state, we will give two 
inverse optimal feedback laws. Before that, we calculate the Lyapunov function to facilitate the discussion of the following two cases.

We now build a candidate Lyapunov function as

𝑈 (𝑡, 𝜁) = 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) +

𝑡

∫
𝑡−𝜍

(
𝐶𝑔(𝜁(𝑠))

)𝑇 (
𝐶𝑔(𝜁(𝑠))

)
d𝑠+

𝑡

∫
𝑡−𝜉

(
𝐷ℎ(𝜁(𝑠))

)𝑇 (
𝐷ℎ(𝜁(𝑠))

)
d𝑠. (8)

Differentiating 𝑈 (𝑡, 𝜁) gives

𝑈̇ (𝑡, 𝜁) = − 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡)

+ 𝑒−𝑡𝑒𝑡𝜁𝑇 (𝑡)
[
−𝐴𝜁(𝑡) +𝐵𝑓 (𝜁(𝑡)) +𝐶𝑔(𝜁(𝑡− 𝜍)) +𝐷ℎ(𝜁(𝑡− 𝜉)) +𝐸𝑣

]
+
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
+
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
−
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
−
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
.

(9)

Since 𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) ≥ 0, one obtains

𝑈̇ (𝑡, 𝜁) ≤ 𝜁𝑇 (𝑡)
[
−𝐴𝜁(𝑡) +𝐵𝑓 (𝜁(𝑡)) +𝐶𝑔(𝜁(𝑡− 𝜍)) +𝐷ℎ(𝜁(𝑡− 𝜉)) +𝐸𝑣

]
+
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
+
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
−
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
−
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)

3

= −𝜁𝑇 (𝑡)𝐴𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡)) + 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) + 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉)) (10)
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+𝜁𝑇 (𝑡)𝐸𝑣+
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
+
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
−
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
−
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
.

From Lemma 2.2, the following three inequalities hold:

𝜁𝑇 (𝑡)𝐵𝑓
(
𝜁(𝑡)

) ≤1
2
‖‖‖𝐵𝑓(𝜁(𝑡))‖‖‖2 + 1

2
𝜁𝑇 (𝑡)𝜁(𝑡)

≤1
2
‖‖‖𝐵‖‖‖2‖‖‖𝑓(𝜁(𝑡))‖‖‖2 + 1

2
𝜁𝑇 (𝑡)𝜁(𝑡),

(11)

𝜁𝑇 (𝑡)𝐶𝑔
(
𝜁(𝑡− 𝜍)

) ≤ 1
2
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
+ 1

2
𝜁𝑇 (𝑡)𝜁(𝑡) (12)

and

𝜁𝑇 (𝑡)𝐷ℎ
(
𝜁(𝑡− 𝜉)

) ≤ 1
2
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
+ 1

2
𝜁𝑇 (𝑡)𝜁(𝑡). (13)

Note from Assumption 2.1 that‖‖‖𝑓 (𝜁(𝑡))‖‖‖2 ≤ (𝐾𝜁(𝑡))𝑇 (𝐾𝜁(𝑡)) = 𝜁𝑇 (𝑡)𝐾2𝜁(𝑡) ≤ 𝑘2𝜁𝑇 (𝑡)𝜁(𝑡), (14)‖‖‖𝑔(𝜁(𝑡))‖‖‖2 ≤ (𝐿𝜁(𝑡))𝑇 (𝐿𝜁(𝑡)) = 𝜁𝑇 (𝑡)𝐿2𝜁(𝑡) ≤ 𝑙2𝜁𝑇 (𝑡)𝜁(𝑡) (15)

and ‖‖‖ℎ(𝜁(𝑡))‖‖‖2 ≤ (𝑀𝜁(𝑡))𝑇 (𝑀𝜁(𝑡)) = 𝜁𝑇 (𝑡)𝑀2𝜁(𝑡) ≤𝑚2𝜁𝑇 (𝑡)𝜁(𝑡), (16)

where 𝐾 = diag(𝑘1, 𝑘2, ..., 𝑘𝑛), 𝑘 = max
1≤𝑗≤𝑛

{
𝑘𝑗

}
, 𝐿 = diag(𝑙1, 𝑙2, ..., 𝑙𝑛), 𝑙 = max

1≤𝑗≤𝑛
{
𝑙𝑗
}

, 𝑀 = diag(𝑚1, 𝑚2, ..., 𝑚𝑛), and 𝑚 = max
1≤𝑗≤𝑛

{
𝑚𝑗

}
.

In addition, from (11) and (14), we can get

𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡)) ≤1
2
𝑘2‖𝐵‖2𝜁𝑇 (𝑡)𝜁(𝑡) + 1

2
𝜁𝑇 (𝑡)𝜁(𝑡)

=𝜁𝑇 (𝑡)
(
1 + 𝑘2‖𝐵‖2

2

)
𝜁(𝑡).

(17)

Applying Assumption 2.1 yields(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

) ≤ 𝑙2‖𝐶‖2𝜁𝑇 (𝑡)𝜁(𝑡) (18)

and (
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

) ≤𝑚2‖𝐷‖2𝜁𝑇 (𝑡)𝜁(𝑡). (19)

Substituting (12), (13), (17), (18) and (19) into (10) results in

𝑈̇ (𝑡, 𝜁) ≤− 𝜁𝑇 (𝑡)𝐴𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐸𝑣+ 𝜁𝑇 (𝑡)
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2

2

)
𝜁(𝑡)

− 1
2
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
− 1

2
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
.

(20)

Since 
(
𝐶𝑔(𝜁(𝑡 − 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡 − 𝜍))

) ≥ 0 and 
(
𝐷ℎ(𝜁(𝑡 − 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡 − 𝜉))

) ≥ 0, (20) is guaranteed by

𝑈̇ (𝑡, 𝜁) ≤ −𝜁𝑇 (𝑡)𝐴𝜁(𝑡) + 𝜁𝑇 (𝑡)
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2

2

)
𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐸𝑣. (21)

The control design is carried out using the dimensions of state 𝜁 and input 𝑣, and split into two cases.

Case 1: 𝜁 ∈ℝ𝑛, 𝑣 ∈ℝ𝑛, and 𝐸 ∈ℝ𝑛×𝑛.
Considering

𝜁𝑇 (𝑡)
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2

2

)
𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐸𝑣 = 0,

then it is admissible to choose a control law from Assumption 2.2 (i)

𝑣 = −𝐸−1
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2

2

)
𝜁(𝑡) (22)
4

namely 𝑈̇ (𝑡, 𝜁) ≤ −𝜁𝑇 (𝑡)𝐴𝜁(𝑡) ≤ 0, (22) as a stabilizing control.
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The three derivatives of 𝑈 (𝑡, 𝜁) (8) along the trajectory of the system (2) are

𝑈𝑡(𝑡, 𝜁) = − 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) +

(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
+
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
−
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
−
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
,

(23)

𝑈𝜁 (𝑡, 𝜁)(𝜁) = − 𝜁𝑇 (𝑡)𝐴𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐵𝑓
(
𝜁(𝑡)

)
+ 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) + 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉))

(24)

and

𝑈𝜁 (𝑡, 𝜁)(𝜁) = 𝜁𝑇 (𝑡)𝐸. (25)

Substituting (23), (24) and (25) into (5) leads to

0 = − 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) + (𝜁) − 𝜁𝑇 (𝑡)𝐴𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡))

+ 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) + 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉)) − 1
4
𝜁𝑇 (𝑡)𝐸−1(𝜁)𝐸𝑇 𝜁(𝑡)

+
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
+
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
−
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
−
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
.

(26)

After making a modification of the control law (22), one has

𝑣 =− 𝜃𝐸−1
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2

2

)
𝜁(𝑡)

= − 𝜃𝐸−1
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2

2

)
(𝐸𝑇 )−1𝐸𝑇 𝜁(𝑡)

= − 𝜃(𝐸𝑇𝐸)−1
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2

2

)
𝐸𝑇 𝜁(𝑡)

= − 𝜃

2
(𝐸𝑇𝐸)−1

(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2)𝐸𝑇 𝜁(𝑡)

(27)

where 𝜃 > 2 is a constant.

Substituting (25) into (6), and noting (27), one can choose

(𝜁) = 𝜃−1𝐸𝑇𝐸
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2)−1 . (28)

Then, one can get from (26) that

(𝜁) =1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐴𝜁(𝑡) − 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡))

− 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) − 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉)) + 1
4
𝜁𝑇 (𝑡)𝐸−1(𝜁)𝐸𝑇 𝜁(𝑡)

−
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
−
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
+
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
+
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
.

(29)

The following theorem gives the design of inverse optimal control to the same dimensions of state and input.

Theorem 3.1. There exist positive definite and strictly positive functions (𝜁) (29) and (𝜁) (28), respectively, such that the system (2)

with the feedback control law

𝑣 = 𝑣∗ = −1
2
−1(𝜁)𝐸𝑇 𝜁(𝑡) (30)

reaches global inverse optimality at the origin by minimizing the cost functional

(𝑣) =
+∞

∫
0

((𝜁) + 𝑣𝑇(𝜁)𝑣
)
d𝑡. (31)
5

Therefore, the optimal control law (i.e., control input) (30) reaches both ISS and GAS for the system (2).
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Proof. Construct a Lyapunov function 𝑈 (𝑡, 𝜁) described by (8) whose derivative along system (2) is given as

𝑈̇ (𝑡, 𝜁) = − 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) − 𝜁𝑇 (𝑡)𝐴𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡))

+ 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) + 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉)) + 𝜁𝑇 (𝑡)𝐸𝑣

+
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
+
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
−
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
−
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
.

(32)

Under the control law (30), we have

𝑈̇ (𝑡, 𝜁) = − 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) − 𝜁𝑇 (𝑡)𝐴𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡))

+ 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) + 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉))

− 𝜃

2
𝜁𝑇 (𝑡)𝐸(𝐸𝑇𝐸)−1

(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2)𝐸𝑇 𝜁(𝑡)

+
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
+
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
−
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
−
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
=− 1

2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) − 𝜁𝑇 (𝑡)𝐴𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡))

+ 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) + 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉))

− 𝜃

2
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2) 𝜁𝑇 (𝑡)𝜁(𝑡)

+
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
+
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
−
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
−
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
.

(33)

For ∀𝜁 ≠ 0, substituting (12), (13), (17), (18), (19) into (33) and noting the fact 𝜃 > 2 results in

𝑈̇ (𝑡, 𝜁) ≤− 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) − 𝜁𝑇 (𝑡)𝐴𝜁(𝑡)

− (𝜃 − 1)
2

(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2)𝜁𝑇 (𝑡)𝜁(𝑡)

− 1
2
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
− 1

2
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
,

(34)

which implies that 𝑈̇ (𝑡, 𝜁) < 0. Therefore, the feedback control law (30) reaches GAS for the system (2) at the origin 𝜁 = 0 and ensures 
lim
𝑡→+∞

𝜁(𝑡) = 0.

Next, we will discuss (𝜁) and (𝜁).
Based on (28) and (29), one has

(𝜁) =1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) + 1

4
𝜁𝑇 (𝑡)𝐸−1(𝜁)𝐸𝑇 𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐴𝜁(𝑡)

− 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡)) − 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) − 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉))

−
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
−
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
+
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
+
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
=1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐴𝜁(𝑡) − 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡))

− 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) − 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉))

+ 𝜃

4
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2)𝜁𝑇 (𝑡)𝜁(𝑡)

−
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
−
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
+
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
+
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
.

(35)

Substituting (12), (13), (17), (18), (19) into (35), one obtains

(𝜁) ≥1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐴𝜁(𝑡)

+ (𝜃 − 2)
2

(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2

2

)
𝜁𝑇 (𝑡)𝜁(𝑡)

+ 1
2
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
+ 1

2
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

) (36)
6

≥0.
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(36) implies that (𝜁) is a positive definite and radially unbounded function.

Recalling det(𝐸) ≠ 0 in Assumption 2.2 (i), we can then obtain 𝐸𝑇𝐸 > 0 such that

(𝜁) = 𝜃−1𝐸𝑇𝐸
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2)−1 > 0. (37)

From (28) and (29), it holds that

𝑈̇ (𝑡, 𝜁) = −(𝜁) − 𝑣𝑇(𝜁)𝑣+ (𝑣− 𝑣∗)𝑇(𝜁)(𝑣− 𝑣∗). (38)

Hence, one obtains

𝑈̇ (𝑡, 𝜁) + (𝜁) + 𝑣𝑇(𝜁)𝑣 = (𝑣− 𝑣∗)𝑇(𝜁)(𝑣− 𝑣∗) ≥ 0. (39)

Namely, 𝑣 = 𝑣∗ fulfills

min
𝑣

[(𝜁) + 𝑣𝑇(𝜁)𝑣+ 𝑈̇ (𝑡, 𝜁)
]
= 0.

Furthermore, 𝑈 (𝑡, 𝜁) (8) fulfills the following HJB equation

𝑈𝑡(𝑡, 𝜁) +𝑈𝜁 (𝑡, 𝜁)(𝜁) − 1
4
𝑈𝜁 (𝑡, 𝜁)(𝜁)−1(𝜁)𝑇 (𝜁)𝑈𝑇

𝜁
(𝑡, 𝜁) + (𝜁) = 0, (40)

where (𝜁) = 𝑒𝑡
[
−𝐴𝜁(𝑡) +𝐵𝑓 (𝜁(𝑡)) +𝐶𝑔(𝜁(𝑡 − 𝜍)) +𝐷ℎ(𝜁(𝑡 − 𝜉))

]
and (𝜁) = 𝑒𝑡𝐸.

Thus, 𝑈 (𝑡, 𝜁) is the optimal value function of the cost function (31).

According to [43], it concludes that the input control (30) reaches ISS for the system (2). The proof is complete. □

Case 2: 𝜁 ∈ℝ𝑛, 𝑣 ∈ℝ𝑚, 𝐸 ∈ℝ𝑛×𝑚, and 𝑚 ≠ 𝑛 (𝑚 < 𝑛 𝑜𝑟 𝑚 > 𝑛).
Let

𝛼(𝜁) = 𝜁𝑇 (𝑡)
(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2

2

)
𝜁(𝑡), (41)

𝛽𝑇 (𝜁) = 𝜁𝑇 (𝑡)𝐸. (42)

In view of Sontag’s formula [44], we define a scalar function with respect to 𝜁

𝛾(𝜁) =
⎧⎪⎨⎪⎩
𝛼(𝜁) +

√
𝛼2(𝜁) + (𝛽𝑇 (𝜁)𝛽(𝜁))2

𝛽𝑇 (𝜁)𝛽(𝜁)
, 𝜁 ≠ 0,

0, 𝜁 = 0.
(43)

Construct a control signal as

𝑣 = −𝛾(𝜁)𝛽(𝜁).

Because of (42), we have

𝑣 = −𝛾(𝜁)𝐸𝑇 𝜁(𝑡). (44)

It is inferred from (6), (25), (26) and (44) that

(𝜁) =1
4
𝛽𝑇 (𝜁)−1(𝜁)𝛽(𝜁) + 1

2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐴𝜁(𝑡)

− 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡)) − 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) − 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉))

−
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
−
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
+
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
+
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
,

(45)

(𝜁) = 1
2
𝛾−1(𝜁). (46)

The following theorem states the inverse optimal control design with different dimensions of state and input.

Theorem 3.2. There exist positive definite and strictly positive functions (𝜁) (45) and (𝜁) (46), respectively, such that the system (2)

with the feedback control law

𝑣 = 𝑣∗ = −1
2
−1(𝜁)𝐸𝑇 𝜁(𝑡) (47)
7

reaches global inverse optimality at the origin by minimizing the cost functional
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(𝑣) =
+∞

∫
0

((𝜁) + 𝑣𝑇(𝜁)𝑣
)
d𝑡. (48)

Therefore, the optimal control law (i.e., control input) (47) reaches both ISS and GAS for the system (2).

Proof. The derivative of 𝑈 (𝑡, 𝜁) (8) along the system (2) is

𝑈̇ (𝑡, 𝜁) = − 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) − 𝜁𝑇 (𝑡)𝐴𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡))

+ 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) + 𝜁𝑇 (𝑡)𝐷ℎ (𝜁(𝑡− 𝜉)) + 𝜁𝑇 (𝑡)𝐸𝑣

+
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
+
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
−
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
−
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
.

(49)

For ∀𝜁 ≠ 0, substituting (12), (13), (17), (18), (19) and (47) into (49) leads to

𝑈̇ (𝑡, 𝜁) ≤− 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) − 𝜁𝑇 (𝑡)𝐴𝜁(𝑡) − 1

2
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
− 1

2
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
−
√
𝛼2(𝜁) +

(
𝛽𝑇 (𝜁)𝛽(𝜁)

)2
,

(50)

which implies that 𝑈̇ (𝑡, 𝜁) < 0. Therefore, the feedback control law (47) reaches GAS for the system (2) at the origin 𝜁 = 0 and ensures 
lim
𝑡→+∞

𝜁(𝑡) = 0.

Next, we will discuss (𝜁) and (𝜁).
It follows from (45) that

(𝜁) =1
2

(
𝛼(𝜁) +

√
𝛼2(𝜁) +

(
𝛽𝑇 (𝜁)𝛽(𝜁)

)2)+ 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡)

− 𝜁𝑇 (𝑡)𝐵𝑓 (𝜁(𝑡)) − 𝜁𝑇 (𝑡)𝐶𝑔(𝜁(𝑡− 𝜍)) − 𝜁𝑇 (𝑡)𝐷ℎ(𝜁(𝑡− 𝜉))

−
(
𝐶𝑔(𝜁(𝑡))

)𝑇 (
𝐶𝑔(𝜁(𝑡))

)
−
(
𝐷ℎ(𝜁(𝑡))

)𝑇 (
𝐷ℎ(𝜁(𝑡))

)
+ 𝜁𝑇 (𝑡)𝐴𝜁(𝑡)

+
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
+
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
.

(51)

Substituting (12), (13), (17), (18) and (19) into (51) yields

(𝜁) ≥1
2

(
𝛼(𝜁) +

√
𝛼2(𝜁) +

(
𝛽𝑇 (𝜁)𝛽(𝜁)

)2)+ 𝜁𝑇 (𝑡)𝐴𝜁(𝑡)

+ 1
2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) − 𝜁𝑇 (𝑡)

(
3 + 𝑘2‖𝐵‖2 + 2𝑙2‖𝐶‖2 + 2𝑚2‖𝐷‖2

2

)
𝜁(𝑡)

+ 1
2
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
+ 1

2
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
≥1
2

(√
𝛼2(𝜁) +

(
𝛽𝑇 (𝜁)𝛽(𝜁)

)2 − 𝛼(𝜁)
)
+ 1

2
𝑒−𝑡𝜁𝑇 (𝑡)𝜁(𝑡) + 𝜁𝑇 (𝑡)𝐴𝜁(𝑡)

+ 1
2
(
𝐶𝑔(𝜁(𝑡− 𝜍))

)𝑇 (
𝐶𝑔(𝜁(𝑡− 𝜍))

)
+ 1

2
(
𝐷ℎ(𝜁(𝑡− 𝜉))

)𝑇 (
𝐷ℎ(𝜁(𝑡− 𝜉))

)
≥0,

(52)

then, this immediately implies that (𝜁) is a positive definite and radially unbounded function.

According to (46), one has

(𝜁) =1
2
𝛾−1(𝜁)

=1
2

⎛⎜⎜⎜⎝
𝛽𝑇 (𝜁)𝛽(𝜁)

𝛼(𝜁) +
√
𝛼2(𝜁) +

(
𝛽𝑇 (𝜁)𝛽(𝜁)

)2
⎞⎟⎟⎟⎠ > 0.

(53)

In addition, from (45) and (46), one obtains

𝑈̇ (𝑡, 𝜁) = −(𝜁) − 𝑣𝑇(𝜁)𝑣+ (𝑣− 𝑣∗)𝑇(𝜁)(𝑣− 𝑣∗). (54)

Consequently
8

𝑈̇ (𝑡, 𝜁) + (𝜁) + 𝑣𝑇(𝜁)𝑣 = (𝑣− 𝑣∗)𝑇(𝜁)(𝑣− 𝑣∗) ≥ 0. (55)
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Namely, 𝑣 = 𝑣∗ fulfills

min
𝑣

[(𝜁) + 𝑣𝑇(𝜁)𝑣+ 𝑈̇ (𝑡, 𝜁)
]
= 0. (56)

Meanwhile, 𝑈 (𝑡, 𝜁) (8) fulfills the following HJB equation

𝑈𝑡(𝑡, 𝜁) +𝑈𝜁 (𝑡, 𝜁)(𝜁) − 1
4
𝑈𝜁 (𝑡, 𝜁)(𝜁)−1(𝜁)𝑇 (𝜁)𝑈𝑇

𝜁
(𝑡, 𝜁) + (𝜁) = 0, (57)

where (𝜁) and (𝜁) are the same as (40).

Thus, 𝑈 (𝑡, 𝜁) is the optimal value function of the cost function (48).

According to [43], it concludes that system (2) under the input control (47) reaches ISS. The proof is complete. □

Remark 3.3. We give two stabilization controls (30) and (47) in terms of constructing the appropriate Lyapunov function. Because 
the stabilization controls have much to do with the design parameters in the practical applications, by choosing suitable parameter 
𝜃, (𝜁) of (28) becomes a constant under the conditions that all weights of NNs and Lipschitz coefficients of activation functions are 
constants. Then the control (30) becomes an implementable constant state feedback control.

Remark 3.4. As mentioned in the introduction, the proportional delay differs from other types of delays [11,12,16]. Thus the 
stabilization results in [11] can not be applied to system (1) or (2). The stabilization control for RNNs with constant delay in terms of 
LMI was investigated in [11]. It should be noted that, the LMI method has some difficulties in determining the constraint conditions 
of the network parameters, because it requires further verification of the positive definiteness of some higher-dimensional matrices. 
Moreover, the (inverse) optimality results in Theorems 3.1 and 3.2 are derived and they provide an optimal value function 𝑈 (𝑡, 𝜁)
that is actually a Lyapunov functional for the system (2). The advantage of this approach is that it does not need to solve the HJB 
equation.

Remark 3.5. It is still an open problem to find the solution of HJB equation (5) for the general nonlinear system (4) [32,35]. 
Obviously, it is difficult or even impossible to solve HJB equations (40) and (57) for the RNN (2) with unbounded time-varying 
coefficients and multiple constant delays. In fact, in many cases, the HJB has no solution or the solution is not unique. Therefore, 
how to design suitable controllers to stabilize the considered system such that the cost function is optimized, is a very important 
topic for nonlinear systems.

4. Numerical examples

We will illustrate the inverse optimal control via numerical examples in this section.

Example 4.1. The RNN with multiple proportional delays is given[
𝑥̇1
𝑥̇2

]
=−

[
2 0
0 2

][
𝑥1
𝑥2

]
+
[

1 2
−3 4

][
tanh(𝑥1)
tanh(𝑥2)

]
+
[
−2 1
−1 −1

][
tanh(𝑝1𝑥1)
tanh(𝑝2𝑥2)

]
+
[
0.1 0.5
0.2 0.7

][
tanh(𝑞1𝑥1)
tanh(𝑞2𝑥2)

]
+
[
1 0
0 1

][
𝑣1
𝑣2

] (58)

where 𝑝1 = 𝑝2 = 𝑞1 = 𝑞2 = 0.4, 𝑥10 = 3, 𝑥20 = −3, and 𝑚 = 𝑛 = 2.

The RNN with multiple proportional delays (58) is not global asymptotic stable under control 𝑣 = 0 in Fig. 1. Moreover, it is easy 
to show that system (58) achieves ISS and GAS by feedback control 𝑣 of Theorem 3.1 (Fig. 2). However, system (58) is restrict to the 
same dimensions of state and input.

Example 4.2. The RNN with multiple proportional delays is given[
𝑥̇1
𝑥̇2

]
=−

[
2 0
0 2

][
𝑥1
𝑥2

]
+
[

1 2
−3 4

][
tanh(𝑥1)
tanh(𝑥2)

]
+
[
−2 1
−1 −1

][
tanh(𝑝1𝑥1)
tanh(𝑝2𝑥2)

]
+
[
0.1 0.5
0.2 0.7

][
tanh(𝑞1𝑥1)
tanh(𝑞2𝑥2)

]
+
[

1
−1

][
𝑣1
𝑣2

] (59)

where 𝑥10 = 3, 𝑥20 = −3, 𝑚 = 1, and 𝑛 = 2. The parameters are the same as in Example 4.1 except for the control input 𝐸.

Then system (59) under the feedback control 𝑣 of Theorem 3.2 reaches ISS and GAS (Fig. 3).

Example 4.3. The RNN with multiple proportional delays is given by[
𝑥̇1
𝑥̇2

]
=−

[
4 0
0 4

][
𝑥1
𝑥2

]
+
[

4 5
−6 7

][
sin(𝑥1)
sin(𝑥2)

]
+
[
−2 1
−2 −1

][
2 sin

(
𝑝1𝑥1

)
2 sin

(
𝑝2𝑥2

) ]
[
0.2 0.4

][
sin(𝑞1𝑥1)

] [
4 0

][
𝑣1

] (60)
9

+ 0.2 1.8 sin(𝑞2𝑥2)
+ 0 4 𝑣2
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Fig. 1. The trajectories of time response (left), and phase plane (right) under control 𝑣 = 0.

Fig. 2. The trajectories of time response (left), and phase plane (right) under control 𝑣 of Theorem 3.1.

where 𝑝1 = 𝑝2 = 𝑞1 = 𝑞2 = 0.5, 𝑥10 = −4, 𝑥20 = 4, and 𝑚 = 𝑛 = 2.

Fig. 4 indicates that RNN with multiple proportional delays (60) is not globally asymptotically stable under control 𝑣 = 0. 
However, it is easy to show that the system (60) achieves ISS and GAS by feedback control 𝑣 of Theorem 3.1 (Fig. 5).

Example 4.4. The RNN with multiple proportional delays is given by[
𝑥̇1
𝑥̇2

]
=−

[
4 0
0 4

][
𝑥1
𝑥2

]
+
[

4 5
−6 7

][
sin(𝑥1)
sin(𝑥2)

]
+
[
−2 1
−2 −1

][
2 sin

(
𝑝1𝑥1

)
2 sin

(
𝑝2𝑥2

) ]
+
[
0.2 0.4
0.2 1.8

][
sin(𝑞1𝑥1)
sin(𝑞2𝑥2)

]
+
[

4
−4

][
𝑣1
𝑣2

] (61)

where 𝑥10 = −4, 𝑥20 = 4, 𝑚 = 1, and 𝑛 = 2. The parameters are the same as in Example 4.3 except for the control input 𝐸. By using 
10

feedback control 𝑣 of Theorem 3.2, it is obvious that system (61) achieves ISS and GAS (Fig. 6).
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Fig. 3. The trajectories of time response (left), and phase plane (right) under control 𝑣 of Theorem 3.2.

Fig. 4. The trajectories of time response (left), and phase plane (right) under control 𝑣 = 0.

5. Conclusion

This paper has developed a new approach for input-to-state stabilizing control of RNNs with multiple proportional delays, which 
generalizes the previous results [5,11,34]. The presented designs have been derived from the nonlinear inverse optimal approach 
that does not require solving the HJB equation. Due to the difficulty in solving HJB equation, it is impossible to design a feedback 
control to reach optimal stabilization of nonlinear systems. However, inverse optimality provides us with a feasible method to solve 
such problems by applying the Lyapunov function. According to the Lyapunov function, Sontag’s formula and inverse optimality, 
we have obtained two sufficient conditions of input-to-state stabilizing control for RNNs with multiple proportional delays, which 
depend on the dimensions of state and input. Several examples are given to show that our approach is simple and effective to be 
applied in real systems. The approach can also be extended to the more general stochastic nonlinear systems (including continuous 
and discrete systems) [22,39,45,46]. It is useful and interesting to consider the case where the weight matrixes 𝐵, 𝐶 and 𝐷 are 
time-varying in system (1) via convex optimization, inverse optimal control and reinforcement learning [15,47–49]. However, due 
11

to the page limit here, we will report these results elsewhere.
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Fig. 5. The trajectories of time response (left), and phase plane (right) under control 𝑣 of Theorem 3.1.

Fig. 6. The trajectories of time response (left), and phase plane (right) under control 𝑣 of Theorem 3.2.
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