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a b s t r a c t

Noticing that both the absolute and the relative velocity protocols can solve the second-order
consensus of multi-agent systems, this paper aims to investigate which of the above two protocols has
better anti-disturbance capability, in which the anti-disturbance capability is measured by the L2 gains
from disturbance to consensus errors. More specifically, by the orthogonal transformation technique,
the analytic expression of the L2 gain of a second-order multi-agent system with the absolute velocity
protocol is firstly derived, followed by the counterpart with the relative velocity protocol. It is shown
that both the L2 gains for the absolute and the relative velocity protocols are determined only by
the minimum non-zero eigenvalues of Laplacian matrices and the tunable gains of position-like and
velocity-like states. Then, we establish the graph conditions to tell which protocol has better anti-
disturbance capability. Moreover, we propose a two-step scheme to improve the anti-disturbance
capability of second-order multi-agent systems. Finally, numerical tests are given for different types
of interaction graphs.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past decades, the distributed coordination of multi-
gent systems (MASs) has been extensively investigated in con-
rol community. As a fundamental issue in multi-agent coordina-
ion, consensus problems have attracted tremendous attention.
oughly speaking, consensus means that a group of agents reach
n agreement regarding a common quantity of interest by design-
ng an appropriate communication protocol (Olfati-Saber, Fax, &
urray, 2007).
In retrospect, in the study of consensus problems, agents

re assumed to take first-order dynamics in early pioneering
orks (Jadbabaie, Lin, & Morse, 2003; Olfati-Saber & Murray,
004; Ren & Beard, 2005). However, the first-order dynamics
odel is hardly capable of describing many mechanical systems
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such as holonomic mobile robots, unmanned aerial vehicles and
underwater vehicles. Specifically, the dynamic models of the
holonomic mobile robots can be feedback linearized as double
integrators. Moreover, the unmanned aerial vehicles and the
underwater vehicles adjust their motions directly by accelera-
tions rather than speeds. Therefore, numerous researchers have
investigated the consensus protocols for second-order MASs to
overcome this shortcoming. Subsequently, two classic second-
order consensus protocols emerged and employed different treat-
ments to velocity information. One protocol proposed in Xie and
Wang (2007) introduced the absolute velocity information of
agents themselves as local feedbacks. Another protocol devised
in Ren and Atkins (2007) required each agent to use the relative
velocity measurements with respect to its neighbors. Then, a
series of researches on second-order consensus sprang up based
on these two classic protocols. More general forms of second-
order consensus protocols were studied in Mei, Ren, and Chen
(2015), Yu, Chen, and Cao (2010) and Zhu, Tian, and Kuang (2009).
Some results took the communication delays into considera-
tion (Hou, Fu, Zhang, & Wu, 2017; Lin & Jia, 2009; Qin, Gao, &
Zheng, 2011). The authors in Ai, Song, and You (2016) addressed
the consensus of second-order MASs with limited interaction
ranges. In order to reduce the resource consumption, an event-
based consensus protocol was developed for second-order MASs
in Zhu, Pu, Wang, and Li (2017). The resilient consensus was
studied in Dibaji and Ishii (2017) for second-order MASs with
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aulty or malicious agents. The authors in Zhao, Zheng, Liu, and
iu (2021), Zhao, Zheng, and Zhu (2020), Zheng, Zhao, Ma, and
ang (2019), Zheng, Zhu, and Wang (2011) investigated the

onsensus of heterogeneous and hybrid MASs, in which agents
ave different dynamics behaviors. Moreover, the game-based
onsensus of second-order hybrid MASs was considered in Zhou,
iu, Zheng, Xiao, and Xi (2023).
Since the disturbance is rife in reality, it is of great significance

o investigate the anti-disturbance capability for second-order
ASs with absolute or relative velocity protocols. In literature,

he L2 gain is popular in MAS community to characterize the
influence of disturbance on the consensus. For example, by linear
matrix inequalities (LMIs) technique, authors in Chen, Zhang, and
Zheng (2020), Han, Zhang, and Jiang (2016), Huang, Huang, and
Chen (2018), Li, Duan, and Chen (2011), Li, Qin, and Shi (2015),
Lin and Jia (2010), Lin, Jia, and Li (2008), Liu and Jia (2012) and
Wang, Duan, Li, and Wen (2014) aimed at reaching consensus
with a desired L2 gain. In a separate direction, some studies
apped into the role of networks on the L2 gain of MASs (Pirani,
andberg, & Johansson, 2019; Pirani, Shahrivar, Fidan, & Sun-
aram, 2018; Siami & Motee, 2014; Yang, Wang, & Tan, 2012).
n Siami and Motee (2014), the authors built the relation between
he L2 gains of first-order MASs and the minimum non-zero
igenvalues of the Laplacian matrices associated with undirected
raphs. As pointed out in Pirani et al. (2018), the L2 gains of
irst-order leader–follower MASs on undirected graphs relies on
he minimum eigenvalue of the grounded Laplacian matrices.
or first-order leader–follower MASs on directed graphs, it was
hown in Pirani et al. (2019) that the L2 gains of first-order
eader–follower MASs on directed graphs depends on the mini-
um singular values of the grounded Laplacian matrices. Besides,
uthors in Yang et al. (2012) analyzed the properties of L2 gains

for second-order leader–follower MASs with only the relative
velocity protocol in the presence of communication errors and
measurement errors rather than disturbances. They aimed to ob-
tain the most robust communication topology and optimal scaling
factor in a special class of directed tree graphs.

Note that the second-order consensus protocols in all afore-
mentioned literature were founded on the basic structure of the
classic absolute velocity protocol (Xie & Wang, 2007) and relative
velocity protocol (Ren & Atkins, 2007). Therefore, it is of great
significance to study the analytic expressions of L2 gains for the
second-order MASs with general absolute and relative velocity
protocols and tell which structure of the above two protocols has
better anti-disturbance capability for consensus of second-order
MASs. As far as we know, no previous study has investigated this
issue.

Motivated by the above observations, this paper aims to de-
velop the protocol selection criteria between the general absolute
and relative velocity protocols for better anti-disturbance capa-
bility of the second-order consensus. The considered problem
is challenging as the general communication topology results
in difficulty in establishing the quantitative relations between
weighted adjacency matrices, tunable gains and the anti-
disturbance capability. In this paper, the anti-disturbance capa-
bility is measured by the L2 gain from disturbance to consensus
error, and we intend to establish the quantitative relations be-
tween weighted adjacency matrices, tunable gains and anti-
disturbance capability for the second-order MASs with absolute
and relative velocity protocols, respectively. Furthermore, on
the basis of the established quantitative relations, we give the
graph conditions of protocol selection for better anti-disturbance
capability. Our contributions are summarized as follows:

(1) By the orthogonal transformation technique, we establish

the quantitative relations between the weighted adjacency e

2

matrices, tunable gains, and the L2 gains for second-order
MASs with general absolute and relative velocity protocols,
respectively. It is shown that the L2 gains are monotonically
decreasing with respect to the minimum non-zero eigenval-
ues of the Laplacian matrices and the tunable state gains, and
non-increasing with respect to the tunable velocity gains.

(2) A protocol selection criteria is developed for second-order
MASs. We give the graph conditions to tell which one of
the absolute and relative velocity protocols has better anti-
disturbance capability.

(3) For any given connected undirected graph, we present a two-
step scheme to improve the anti-disturbance capability of
second-order MASs. It is tractable and highly efficient when
networks are unable to rearrange or expand.

The rest of this paper is organized as follows. In Section 2, we
give some preliminaries and formulate the problem. The quan-
titative relations between weighted adjacency matrices, tunable
gains and L2 gains, and the graph conditions for better anti-
disturbance capability are given in Section 3. In Section 4, numer-
ical tests are given for several different types of communication
graphs. We conclude our work in Section 5.

Notations. Throughout this paper, R denotes the set of real
numbers, Rn is the n-dimensional real column vector space, Rm×n

epresents the m × n real matrix space. Denote the all-one and
ll-zero matrices with appropriate dimensions by 1 and 0, respec-
ively. Specifically, 1n and 0n refer to the n × 1 all ones and all
eros column vectors, respectively. Let In be the n-dimensional
dentity matrix. j stands for the imaginary unit. For a matrix X ,
⊤ labels its transpose, XH denotes its conjugate transpose, and
max(X) represents its maximum singular value. For a Hermitian
atrix X , λmax(X) denotes its maximum eigenvalue. X ∈ Rn×n is
rthogonal if X⊤X = XX⊤

= In. diag{a1, a2, . . . , an} designates
diagonal matrix, where ai is the ith diagonal element. Define a
et In = {1, 2, . . . , n}. Null set is represented by ∅. For given sets
1 and R2, R1 ∪ R2 and R1 ∩ R2 indicate the set union and set

ntersection, respectively. L2 [0,∞) dictates the space of square-
ntegrable vector functions, i.e., f (t) ∈ L2 [0,∞) if and only if
∞

0 f ⊤(t)f (t) dt < ∞.

. Preliminaries and problem statement

.1. Preliminaries

Let G = (V, E,A) be a weighted undirected graph with n
ertices, where V = {s1, s2, . . . , sn} is the set of vertices, E ⊆ V×V
s the set of edges, and A = [aij]n×n is the weighted adjacency
matrix with aij = aji ≥ 0. εij = (si, sj) ∈ E if and only if there exist
information exchanges between vertices si and sj. The adjacency
element associated with the edge εij is aij, and aij > 0 if and
only if εij ∈ E . Moreover, suppose that G has no self-cycles for
every node, i.e., aii = 0. A path between two distinct vertices vi
and vj is a finite-ordered sequence of distinct edges in G with
the form (vi, vk1 ), (vk1 , vk2 ), . . . , (vkl , vj). An undirected graph is
called connected if there exists a path between any two distinct
vertices of the graph. The Laplacian matrix L = [lij] ∈ Rn×n

associated with graph G is defined as lii =
∑n

j=1,j̸=i aij and lij =

−aij, j ̸= i.
The following definitions and lemmas will be utilized to es-

tablish our main results.

Definition 1 (Silva & Zhao, 2016). For an undirected graph G with
n vertices, the network density d is defined as d =

ϵ
1
2 n(n−1)

, where
represents the total number of undirected edges in the graph G
nd 1

2n(n− 1) is the maximum theoretical number of undirected
dges between the n vertices.
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emma 1 (Jadbabaie et al., 2003). The Laplacian matrix L ∈ Rn×n

associated with the undirected graph G possesses a simple zero
eigenvalue with eigenvector 1n if and only if G is connected. In
addition, all the other non-zero eigenvalues are positive.

Denote the eigenvalues of Laplacian matrix L associated with
graph G by λi, i ∈ In. For convenience, if G is undirected and
connected, suppose that 0 = λ1 < λ2 ≤ · · · ≤ λn and let
Γ = {λ2, . . . , λn} be the set of all non-zero eigenvalues of L.

Lemma 2 (Liu & Jia, 2012). Let G be a connected undirected graph
with a Laplacian matrix L ∈ Rn×n and Φn = [ϕij] ∈ Rn×n be
a symmetric matrix whose elements are given as ϕii =

n−1
n and

ij = −
1
n , j ̸= i. Then, there exists an orthogonal matrix Q ∈ Rn×n

with the last column being 1n√
n such that

⊤ΦnQ = Φ̄n =

[
In−1 0n−1

0⊤

n−1 0

]
(1)

and

Q⊤LQ = L̄ =

[
L̄1 0n−1

0⊤

n−1 0

]
, (2)

where L̄1 ∈ R(n−1)×(n−1) is positive definite.

efinition 2 (Chen, 2000). The H∞ norm of an asymptotically sta-
le continuous-time transfer matrix T (s) is defined as ∥T (s)∥∞ =

upυ∈R σmax
[
T (jυ)

]
.

.2. Problem statement

In this paper, we consider a MAS consisting of n agents with
ouble-integrator dynamics

ẋi(t) = vi(t),
˙ i(t) = ui(t) + ωi(t), i ∈ In,

(3)

here xi(t) ∈ R, vi(t) ∈ R, ui(t) ∈ R, and ωi(t) ∈ R are the
osition-like, the velocity-like, the control input and the external
isturbance of the ith agent, respectively. In addition, we suppose
hat ωi(t) ∈ L2 [0,∞).

The multi-agent system (3) is said to reach second-order con-
ensus if and only if limt→∞ ∥xi(t) − xj(t)∥ = 0 and limt→∞

vi(t) − vj(t)∥ = 0, ∀i, j ∈ In. In the absence of disturbance,
.e., ωi(t) = 0, as one can observe from Yu et al. (2010) and Zhu
t al. (2009), the general absolute velocity protocol (4) and the
eneral relative velocity protocol (5) can both solve the second-
rder consensus under the condition that G is a connected undi-
ected graph.

i(t) = α

n∑
j=1

aij
[
xj(t) − xi(t)

]
− βvi(t), (4)

i(t) = α

n∑
j=1

aij
[
xj(t) − xi(t)

]
+ β

n∑
j=1

aij
[
vj(t) − vi(t)

]
, (5)

where aij is the (i, j)th entry of the weighted adjacency matrix
A associated with the undirected graph G, and the positive con-
stants α and β are the tunable state gain and the tunable velocity
gain, respectively.

Remark 1. Classic absolute velocity protocol and relative velocity
protocol (see Ren & Atkins, 2007 and Xie & Wang, 2007) only
considered the velocity gain β . Protocols (4) and (5) maintain
their fundamental structure but take the gains α and β both into
consideration. Furthermore, (4) and (5) are the most fundamental

forms of protocols extracted from existing extensive researches

3

of second-order MASs. For instance, protocols in Ai et al. (2016),
Dibaji and Ishii (2017), Han et al. (2016), Hou et al. (2017), Huang
et al. (2018), Li et al. (2015), Lin and Jia (2009, 2010), Lin et al.
(2008), Mei et al. (2015), Qin et al. (2011), Yang et al. (2012), Yu
et al. (2010), Zhao et al. (2021, 2020), Zheng et al. (2019, 2011),
Zhou et al. (2023) and Zhu et al. (2017, 2009) were all based
on the structure of (4) and (5), and appropriately modified ac-
cording to different scenarios. Therefore, protocols (4) and (5) are
general and representative. We start with a preliminary attempt
on protocol selection between the two fundamental protocols,
rather than comparing all protocols to them. It will provide the
possibility of performance comparison between many different
protocols.

Different from existing works, we restrict our attention to
investigate which one of the above protocols has better anti-
disturbance capability. And we aim to bring forward simple graph
conditions for protocol selection.

Define yxi (t) = xi(t) −
1
n

∑n
j=1 xj(t) and yvi (t) = vi(t) −

1
n

∑n
j=1 vj(t), i ∈ In, for each agent to measure the consen-

us errors of position and velocity, respectively. Aggregating the
utputs of all agents into a vector y(t) ∈ R2n gives rise to
(t) = [yx⊤(t), yv⊤(t)]⊤, where the agglomerate vectors yx(t) =

yx1(t), . . . , y
x
n(t)]

⊤ and yv(t) = [yv1(t), . . . , y
v
n(t)]

⊤ denote the
ollective position error and the collective velocity error, re-
pectively. Here, the nominal output y(t) is termed as collective
onsensus error. Substituting the absolute velocity protocol (4)
nto (3) and taking y(t) into consideration yield the closed-loop
ystem⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
ẋ(t)
v̇(t)

]
=

[
0 In

−αL −βIn

][
x(t)
v(t)

]
+

[
0
In

]
ω(t),

y(t) =

[
Φn 0
0 Φn

][
x(t)
v(t)

]
,

(6)

here x(t) = [x1(t), . . . , xn(t)]⊤, v(t) = [v1(t), . . . , vn(t)]⊤,
(t) = [ω1(t), . . . , ωn(t)]⊤, and L is the Laplacian matrix associ-
ted with the graph G. Similarly, substituting the relative velocity
rotocol (5) into (3) and taking y(t) into consideration give the
losed-loop system⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
ẋ(t)
v̇(t)

]
=

[
0 In

−αL −βL

][
x(t)
v(t)

]
+

[
0
In

]
ω(t),

y(t) =

[
Φn 0
0 Φn

][
x(t)
v(t)

]
.

(7)

In this paper, we respectively use the L2 gains from distur-
bance ω(t) to collective consensus error y(t) of the systems (6)
and (7) to measure the anti-disturbance capabilities of the MAS
(3)–(4) and MAS (3)–(5). As shown in Pirani, Nekouei, Sandberg,
and Johansson (2022), the L2 gains of systems (6) and (7) are
defined by

sup
ω(t)̸=0

ω(t)∈L2[0,∞)

√ ∫
∞

0 y⊤(t)y(t) dt∫
∞

0 ω⊤(t)ω(t) dt
. (8)

However, it is impossible to enumerate innumerable disturbances
in L2 [0,∞). Therefore, we cannot directly use the L2 gains to
analyze the anti-disturbance capabilities of the considered MASs.
Let T1(s) and T2(s) be the transfer matrices from the disturbance
ω(t) to the collective consensus error y(t) of the systems (6)
and (7), respectively. It follows from Chen (2000) that the L2
gains of systems (6) and (7) are equal to ∥T1(s)∥∞ and ∥T2(s)∥∞,
respectively, where ∥Ti(s)∥∞ refers to the H∞ norm of Ti(s) (i =

1, 2). As shown in Definition 2, we can compute ∥Ti(s)∥∞ (i =

1, 2) by using frequency-domain analysis. Clearly, smaller H∞
norm of transfer matrix means better anti-disturbance capability.
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In the following, for the connected undirected graph G, we
directly use ∥T1(s)∥∞ and ∥T2(s)∥∞ to characterize the anti-
disturbance capabilities of the MAS (3)–(4) and MAS (3)–(5),
respectively. We say that the protocol (4) outperforms the proto-
col (5) if ∥T1(s)∥∞ ≤ ∥T2(s)∥∞, and the protocol (5) outperforms
the protocol (4) if ∥T2(s)∥∞ ≤ ∥T1(s)∥∞. If ∥T1(s)∥∞ ≡ ∥T2(s)∥∞,
the protocol (4) is said to perform as well as the protocol (5).

3. Main results

In this section, we will establish the graph conditions to tell
which protocol has better anti-disturbance for MAS (3).

3.1. Anti-disturbance capability of the second-order MAS using ab-
solute velocity information

Theorem 1 gives the analytic expression of the
anti-disturbance capability of the second-order MAS (3) with the
absolute velocity protocol (4).

Theorem 1. Consider the MAS (3)–(4) in which G is a connected
undirected graph with the Laplacian matrix L. Then, we obtain

∥T1(s)∥∞ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
(αλ2)2 −

[√
(αλ2 + 1)2 − β2 − 1

]2 ,
if 0 < β <

√
(αλ2)2 + 2αλ2,

1
αλ2

, if β ≥

√
(αλ2)2 + 2αλ2.

(9)

Proof. Since the undirected graph G is connected, it follows from
Lemma 2 that there exists an orthogonal matrix Q ∈ Rn×n such
hat (1) and (2) hold. Then introducing the following orthogonal
ransformation

x̂(t)
v̂(t)

]
=

[
Q⊤ 0
0 Q⊤

][
x(t)
v(t)

]
, ŷ(t) =

[
Q⊤ 0
0 Q⊤

]
y(t),

ω̂(t) = Q⊤ω(t),
(10)

for system (6) gives rise to⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

˙̂x(t)
˙̂v(t)

]
=

[
0 In

−αL̄ −βIn

][
x̂(t)
v̂(t)

]
+

[
0
In

]
ω̂(t),

ŷ(t) =

[
Φ̄n 0
0 Φ̄n

][
x̂(t)
v̂(t)

]
,

(11)

where L̄ =

[
L̄1 0n−1

0⊤
n−1 0

]
. As evidenced from Lemma 1 and (2), the

positive definite matrix L̄1 possesses the same non-zero eigenval-
ues of L which implies that −L̄1 is Hurwitz stable.

As stated in Definition 2, ∥T1(s)∥∞ is only defined for the
asymptotically stable system. But the system (6) is marginally
stable since its system matrix contains the eigenvalue 0. We need
to further confirm the existence of ∥T1(s)∥∞. Clearly, system (11)
is composed of an asymptotically stable subsystem of order 2n−2
and a marginally stable subsystem of order 2. Since the asymptot-
ically stable modes is observable and the marginally stable modes
is unobservable from y(t) such that

∫
∞

0 y⊤(t)y(t) dt < ∞, the L2
gain (8) still exists. Thus, ∥T1(s)∥∞ still exists and is completely
determined by the asymptotically stable subsystem. Consider the
asymptotically stable subsystem of (11) taking the form of⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
˙̂x1(t)
˙̂v1(t)

]
=

[
0 In−1

−αL̄1 −βIn−1

][
x̂1(t)
v̂1(t)

]
+

[
0

In−1

]
ω̂1(t),

ŷ1(t) =

[
In−1 0

][
x̂1(t)
1

]
,

(12)
0 In−1 v̂ (t) c

4

where x̂1(t) = [In−1 0n−1]x̂(t), v̂1(t) = [In−1 0n−1]v̂(t) and
ω̂1(t) = [In−1 0n−1]ω̂(t). Since L̄1 is positive definite and possesses
the same non-zero eigenvalues of L, according to the spectral
theorem (Horn & Johnson, 2012), there exists an orthogonal ma-
trix V ∈ R(n−1)×(n−1) such that V⊤L̄1V = Λ, where Λ =

diag{λ2, λ3, . . . , λn} is composed of the non-zero eigenvalues of
L. Then performing the following orthogonal transformation[
x̃(t)
ṽ(t)

]
=

[
V⊤ 0
0 V⊤

][
x̂1(t)
v̂1(t)

]
, ỹ(t) =

[
V⊤ 0
0 V⊤

]
ŷ1(t),

ω̃(t) = V⊤ω̂1(t),
(13)

for the system (12) provides⎧⎪⎪⎨⎪⎪⎩
[
˙̃x(t)
˙̃v(t)

]
=

[
0 In−1

−αΛ −βIn−1

][
x̃(t)
ṽ(t)

]
+

[
0

In−1

]
ω̃(t),

ỹ(t) =

[
In−1 0
0 In−1

][
x̃(t)
ṽ(t)

]
.

(14)

Denote the transfer matrices of the systems (11), (12) and (14) by
T3(s), T4(s) and T5(s), respectively. Then, we can obtain

T3(s) =

[
Q⊤ 0
0 Q⊤

]
T1(s)Q =

⎡⎢⎢⎢⎣
1
sΨ 0n−1

0⊤

n−1 0
Ψ 0n−1

0⊤

n−1 0

⎤⎥⎥⎥⎦
nd T4(s) =

[
V 0
0 V

]
T5(s)V⊤

=

[
1
sΨ

Ψ

]
, where Ψ = [(s +

β)In−1+
α
s L̄1]

−1. It follows from TH
3 (jυ)T3(jυ) = Q⊤TH

1 (jυ)T1(jυ)Q ,
H
4 (jυ)T4(jυ) = VTH

5 (jυ)T5(jυ)V⊤ and TH
3 (jυ)T3(jυ) =

TH4 (jυ)T4(jυ) 0n−1

0⊤
n−1 0

]
that λmax[TH

1 (jυ)T1(jυ)] = λmax[TH
3 (jυ)T3(jυ)] =

λmax[TH
4 (jυ)T4(jυ)] = λmax[TH

5 (jυ)T5(jυ)] . Therefore, according
to Definition 2, we can deduce that ∥T1(s)∥∞ = ∥T3(s)∥∞ =

T4(s)∥∞ = ∥T5(s)∥∞.
Then, we turn to compute ∥T5(s)∥∞. The transfer matrix T5(s)

s shown as T5(s) = [Ξ⊤ Υ ⊤
]
⊤, where Ξ = diag{Ξ2, . . . ,Ξn},

= diag{Υ2, . . . ,Υn}, Ξi =
1

s2+βs+αλi
and Υi =

s
s2+βs+αλi

, i =

, . . . , n. It can be obtained that TH
5 (jυ)T5(jυ) = diag{δ2(υ), . . . ,

n(υ)}, where δi(υ) =
1+υ2

(αλi−υ2)2+(βυ)2
> 0, i = 2, . . . , n, υ ∈ R.

ccording to Definition 2 and ∥T1(s)∥∞ = ∥T5(s)∥∞, ∥T1(s)∥∞ can
be treated as

∥T1(s)∥∞ = sup
υ∈R

√
λmax

[
TH
5 (jυ)T5(jυ)

]
= max

i=2,...,n

√
sup
υ∈R

δi(υ).
(15)

t follows from dδi(υ)
dυ =

−2υ
[
υ4+2υ2+β2−(αλi)2−2αλi

][
υ4+(β2−2αλi)υ2+(αλi)2

]2 = 0 that

υ
[
υ4

+ 2υ2
+ β2

− (αλi)2 − 2αλi
]

= 0. (16)

Obviously, supυ∈R δi(υ) depends on β2
− (αλi)2 − 2αλi. If β ≥√

(αλi)2 + 2αλi, by solving (16), we can obtain supυ∈R δi(υ) =

δi(υ∗

i,1) = g1(λi) =
1

(αλi)2
, where υ∗

i,1 = 0. If β <
√
(αλi)2 + 2αλi,

y solving (16), it can be concluded that supυ∈R δi(υ) = δi(υ∗

i,2) =

i(υ∗

i,3) = g2(λi) =
1

(αλi)2−(
√
∆i−1)2

, where υ∗

i,2, υ
∗

i,3 = ±

√√
∆i − 1,

nd ∆i = (αλi + 1)2 − β2.
Building on these preliminary observations, we refer to R1 =

r ∈ Γ | β ≥

√
(αr)2 + 2αr} and R2 = {r ∈ Γ | β <√

(αr)2 + 2αr} as two sets of non-zero eigenvalues of L. Recall
that Γ = {λ2, . . . , λn} is the set of all the non-zero eigenvalues
f L. Obviously, R1 ∪ R2 = Γ and R1 ∩ R2 = ∅ hold. We will
omplete the proof by enumeration.
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(I) R1 = Γ and R2 = ∅;
In this case, we have β ≥

√
(αλi)2 + 2αλi,∀i ∈ {2, . . . , n}

hich leads to supυ∈R δi(υ) = g1(λi),∀i ∈ {2, . . . , n}. Accord-
ng to Lemma 3 in Appendix A, g1(t) is decreasing on (0,+∞).
Combining with 0 < λ2 ≤ · · · ≤ λn, one can deduce that
maxi=2,...,n g1(λi) = g1(λ2). Therefore, (15) can be written as
∥T1(s)∥∞ = maxi=2,...,n

√
g1(λi) =

√
g1(λ2) =

1
αλ2

.
(II) R1 = ∅ and R2 = Γ ;
Under this circumstance, we can obtain that β <√
(αλi)2 + 2αλi,∀i ∈ {2, . . . , n} which leads to λi >

√
1+β2−1
α

>
β−1
α
,∀i ∈ {2, . . . , n} and supυ∈R δi(υ) = g2(λi),∀i ∈ {2, . . . , n}.

ccording to Lemma 3 in Appendix A, g2(t) is decreasing on
β−1
α
,+∞). Combining with β−1

α
< λ2 ≤ · · · ≤ λn, we have

maxi=2,...,n g2(λi) = g2(λ2). Thus, (15) becomes ∥T1(s)∥∞ =

maxi=2,...,n
√
g2(λi) =

√
g2(λ2) =

1√
(αλ2)2−(

√
∆2−1)2

.

(III) R1 ̸= ∅ and R2 ̸= ∅;
In this case, there must exist an eigenvalue λl (2 ≤ l ≤

n − 1) of L such that R1 = {λ2, . . . , λl}, R2 = {λl+1, . . . , λn}

and λ2 < λl+1. Thus, we can get β ≥

√
(αλi)2 + 2αλi,∀i ∈

{2, . . . , l} and β <
√
(αλi)2 + 2αλi,∀i ∈ {l + 1, . . . , n} which

espectively imply that supυ∈R δi(υ) = g1(λi),∀i ∈ {2, . . . , l}
nd supυ∈R δi(υ) = g2(λi),∀i ∈ {l + 1, . . . , n}. Moreover, it is
nferred from β <

√
(αλi)2 + 2αλi,∀i ∈ {l + 1, . . . , n} that

i >

√
1+β2−1
α

>
β−1
α
,∀i ∈ {l+1, . . . , n}. Since 0 < λ2 ≤ · · · ≤ λl

and β−1
α

< λl+1 ≤ · · · ≤ λn, it follows from Lemma 3 in Ap-
pendix A that maxi=2,...,l g1(λi) = g1(λ2) and maxi=l+1,...,n g2(λi) =

2(λl+1). Therefore, based on above facts, (15) can be written
as ∥T1(s)∥∞ = max{maxi=2,...,l

√
g1(λi),maxi=l+1,...,n

√
g2(λi)} =

ax{
√
g1(λ2),

√
g2(λl+1)}.

Let ξ =
√
(αλl+1 + 1)2 − (αλ2 + 1)2 + 1. Since λ2 < λl+1 and

> 0, we have 2αλl+1 − αλ2 > αλ2 which gives rise to

ξ = 2
√
(αλl+1)2 − (αλ2)2 + 2αλl+1 − 2αλ2 + 1

> 2
√
(αλl+1)2 − αλ2(2αλl+1 − αλ2) + 2αλl+1 − 2αλ2 + 1

= 2
√
(αλl+1 − αλ2 + 1)2 = 2(αλl+1 − αλ2 + 1) > 0.

Therefore, it follows from β ≥

√
(αλ2)2 + 2αλ2 that

2(λl+1) ≤
1

(αλl+1)2 − (ξ − 1)2

=
1

(αλ2)2 − 2(αλl+1 − αλ2 + 1) + 2ξ

<
1

(αλ2)2
= g1(λ2).

Thus, we get ∥T1(s)∥∞ = max{
√
g1(λ2),

√
g2(λl+1)} =

√
g1(λ2) =

1
αλ2

.
To sum up the above cases, we have ∥T1(s)∥∞ =

1
αλ2

as long
s λ2 ∈ R1, i.e., β ≥

√
(αλ2)2 + 2αλ2. Otherwise, ∥T1(s)∥∞ =

1√
(αλ2)2−(

√
∆2−1)2

. Namely, (9) is derived. □

.2. Anti-disturbance capability of the second-order MAS using rel-
tive velocity information

The following theorem gives the analytic expression of the
nti-capability of the second-order MAS (3) with the relative
elocity protocol (5).

heorem 2. Consider the MAS (3)–(5) in which G is a connected
ndirected graph with L being its Laplacian matrix. Then, we obtain
5

∥T2(s)∥∞ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
(αλ2)2 −

[√
(αλ2 + 1)2 − (βλ2)2 − 1

]2 ,
if 0 < β <

√
α2 +

2α
λ2
,

1
αλ2

, if β ≥

√
α2 +

2α
λ2
.

(17)

roof. The proof is provided in Appendix B. □

emark 2. It is observed from Theorems 1 and 2 that ∥T1(s)∥∞

nd ∥T2(s)∥∞ are both monotonically decreasing with respect
o λ2 for any given tunable gains, which is consistent with the
orresponding result for first-order MASs (Siami & Motee, 2014).
n other words, optimizing networks to generate a larger λ2 is still
alid to improve the anti-disturbance capability for second-order
ASs.

.3. Protocol selection for better anti-disturbance capability

According to the analytic expressions presented in Theorems 1
nd 2, in Theorem 3 we will establish the graph conditions of
rotocol selection for better anti-disturbance capability.

heorem 3. Consider the second-order MAS (3) on a connected
ndirected graph G with the Laplacian matrix L. Then, we conclude
hat

(1) Protocol (4) outperforms protocol (5) if λ2 < 1;
(2) Protocol (5) outperforms protocol (4) if λ2 > 1;
(3) Protocol (4) performs as well as protocol (5) if λ2 = 1.

roof. Firstly, we intend to prove the conclusion (3). By substi-
uting λ2 = 1 into (9) and (17), respectively, we can verify that
T1(s)∥∞ ≡ ∥T2(s)∥∞ for any α > 0 and β > 0. Therefore, we can
ay that the protocol (4) performs as well as the protocol (5).
Next, we will prove the conclusion (1). Let p =

(αλ2)2 + 2αλ2 and q =

√
α2 +

2α
λ2

. Note that p = λ2q. Recall
hat ∆2 = (αλ2 + 1)2 − β2 and Θ2 = (αλ2 + 1)2 − (βλ2)2. It
ollows from λ2 < 1 that p < q and ∆2 < Θ2. We will complete
he proof of conclusion (1) by enumeration.

(I) β < p < q;
As seen in Theorems 1 and 2, we can obtain ∥T1(s)∥∞ =

1√
(αλ2)2−(

√
∆2−1)2

and ∥T2(s)∥∞ =
1√

(αλ2)2−(
√
Θ2−1)2

. Since β <

p and ∆2 < Θ2, we have 1 < ∆2 < Θ2. It follows that
(αλ2)2 − (

√
Θ2 − 1)2 <

√
(αλ2)2 − (

√
∆2 − 1)2 which means

hat ∥T1(s)∥∞ < ∥T2(s)∥∞.
(II) p ≤ β < q;
In terms of Theorems 1 and 2, one can obtain that ∥T1(s)∥∞ =

1
αλ2

and ∥T2(s)∥∞ =
1√

(αλ2)2−(
√
Θ2−1)2

. It is inferred from√
(αλ2)2 − (

√
Θ2 − 1)2 <

√
(αλ2)2 that ∥T1(s)∥∞ < ∥T2(s)∥∞.

(III) p < q ≤ β .
It follows from Theorems 1 and 2 that ∥T1(s)∥∞ = ∥T2(s)∥∞ =

1
αλ2

.
In summary, ∥T1(s)∥∞ ≤ ∥T2(s)∥∞ holds for any α > 0 and

β > 0 when λ2 < 1. Therefore, we can say that the protocol (4)
outperforms the protocol (5) if λ2 < 1. Similarly, if λ2 > 1, we
can also conclude that the protocol (5) outperforms the protocol
(4). For saving space, we omit it. □

As one can see, the protocol selection for better
anti-disturbance capability exclusively relies on the
graph-theoretic feature λ . It means that we do not have to
2
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xecute complicated calculations and comparisons on ∥T1(s)∥∞

nd ∥T2(s)∥∞ for all positive tunable gains α and β , the graph
onditions about λ2 are more concise and tractable. Further-
ore, better protocol structure implies more or at least the same
erformance improvement by equally tuning gains.
Additionally, our results embody a twofold approach for im-

roving the anti-disturbance capability of the MAS (3). In a
ixed communication network scenario, we can first opt for a
etter communication protocol in terms of Theorem 3. Then the
mportance of the tunable gains α and β now comes to the
ore. As shown in (9) and (17), ∥T1(s)∥∞ and ∥T2(s)∥∞ can be
iewed as the functions of tunable gains α and β . The partial
erivatives of ∥T1(s)∥∞ and ∥T2(s)∥∞ with respect to α and β

are all continuous, and we have ∂∥T1(s)∥∞

∂α
< 0, ∂∥T1(s)∥∞

∂β
≤ 0,

∂∥T2(s)∥∞

∂α
< 0 and ∂∥T2(s)∥∞

∂β
≤ 0, where the equations ∂∥T1(s)∥∞

∂β
= 0

and ∂∥T2(s)∥∞

∂β
= 0 hold if and only if β ≥

√
(αλ2)2 + 2αλ2 and

≥

√
α2 +

2α
λ2

, respectively. Therefore, we are able to further
improve the anti-disturbance capability by increasing the tunable
gain α or β . Nevertheless, on account of limα→∞ ∥T1(s)∥∞ =

1
β
,

imβ→∞ ∥T1(s)∥∞ =
1
αλ2

, limα→∞ ∥T2(s)∥∞ =
1
βλ2

and
imβ→∞ ∥T2(s)∥∞ =

1
αλ2

, adjusting single tunable gain to improve
the anti-disturbance capability is limited. Consequently, the op-
timal anti-disturbance capability is obtained when both tunable
gains are sufficiently large.

Remark 3. In this paper, we use L2 gain as the measure of anti-
isturbance capability. It is proved that apart from α and β , the
nalytic expressions (9) and (17) of the L2 gains both depend
n λ2 rather than the whole spectrum of the Laplacian matrix
. The graph conditions for protocol selection are derived from
omparing (9) and (17) under the same tunable gains. Therefore,
he protocol selection only depends on λ2 rather than the whole
pectrum of L. If we use other performance indices, the results
may be different.

Remark 4. In addition, for a connected undirected graph G,
directly comparing the partial derivatives yields⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂∥Ti(s)∥∞

∂α
<

∂∥Ti(s)∥∞

∂β
= 0, if φi(α, β) ≥ 0

∂∥Ti(s)∥∞

∂α
<

∂∥Ti(s)∥∞

∂β
< 0, if φi(α, β) < 0, ψi(α, β) < 0

∂∥Ti(s)∥∞

∂α
=

∂∥Ti(s)∥∞

∂β
< 0, if φi(α, β) < 0, ψi(α, β) = 0

∂∥Ti(s)∥∞

∂β
<

∂∥Ti(s)∥∞

∂α
< 0, if φi(α, β) < 0, ψi(α, β) > 0

i = 1, 2,

where ψ1(α, β) = αλ22 − (λ2 + β)[
√
(αλ2 + 1)2 − β2 − 1],

2(α, β) = αλ22 − (λ2 +βλ22)[
√
(αλ2 + 1)2 − (βλ2)2 −1], φ1(α, β)

β−

√
(αλ2)2 + 2αλ2 and φ2(α, β) = β−

√
α2 +

2α
λ2

. According
o φi(α, β) and ψi(α, β), we can judge which gain is more critical.
or instance, when φi(α, β) < 0 and ψi(α, β) > 0 hold for given
unable gains, increasing gain β producing higher performance
improvement than equally increasing gain α since ∂∥Ti(s)∥∞

∂β
<

∂∥Ti(s)∥∞

∂α
< 0. It means that the gain β is more critical than the

gain α in this case. In other words, one can be guided by φi(α, β)
and ψi(α, β) to prioritize increasing more critical gain.

Remark 5. The most fundamental criterion that distinguishes
protocol (4) from (5) is the way of using velocity information
rather than the tunable gains α and β . vi(t) and its counterpart

n
j=1 aij[vj(t) − vi(t)] play the same role in dealing with velocity

nformation. We only aim to reveal which is the better structure
o use velocity information against disturbance. Therefore, we
 T

6

comply with the control variate method in the proof of Theo-
rem 3. It inherently requires α and β to be the same for both
rotocols, and then study the effect of the way using veloc-
ty information on anti-disturbance capability. Although we can
hoose particular tunable gains such that a protocol outperforms
he other one, the performance improvement is caused by the
unable gains rather than the structure of protocols. Tuning gains
iolates the rule of control variate method and covers the role
f the structure of protocol. Furthermore, the tunable gains are
sually implemented by proportional elements that are inde-
endent of the local measurements. Improving performance by
uning gains needs additional costs. In brief, protocols (4) and
5) should equally weight the state information and the velocity
nformation in order to perform a fair performance comparison.
ur result lays a foundation for designing better protocol from
he view of underlying structure when facing more realistic and
omplex scenario. Furthermore, although it is intuitively true that
he protocol selection may be related to the network topology
ecause the two protocols differ in whether using the velocity
nformation from neighbors, it is nontrivial to verify this fact from
theoretical perspective. However, Theorem 3 tells the over-
helming conclusion that the protocol selection indeed depends
n the graph-theoretic feature λ2.

emark 6. Our results in this paper are valid only for connected
ndirected graphs. The difficulties that extending the results to
he case of directed graphs are twofold. Firstly, most Laplacian
atrices associated with directed graphs are not orthogonally
iagonalizable such that the frequency-domain analysis used in
his paper is hard to perform. Secondly, the asymmetry of the
irected graph makes the L2 gain very sensitive to the real part,
he imaginary part and the modulus of the complex eigenvalues
f the Laplacian matrix. Therefore, it is difficult to obtain a general
nalytic expression of the L2 gain for all directed graphs. Then
he protocol selection by quantitative comparison is also hard to
ealize, which may be solved by qualitative comparison in future
orks.

emark 7. The protocol selection approach embodies potential
dvantages in practical applications. Specifically, if networks are
nable to rearrange or expand, which means that modifying net-
orks to improve the anti-disturbance capability is impracticable,
e can still optimize the anti-disturbance capability by manipu-

ating every agents to follow the identical optimal communication
rotocol. Moreover, for a certain control task of a MAS, selecting
rom existing practicable protocols rather than designing a new
rotocol is more tractable and highly efficient in the distributed
cenario.

. Numerical tests

We discuss the graph conditions for protocol selection on
ome different types of communication graphs. Consider the fol-
owing well-known graphs with n ≥ 2 vertices and 0-1 edge
eights, which include the undirected complete graphs Kn, the
ndirected star graphs Sn, the undirected path graphs Pn, and the
ndirected 2k-regular ring lattices Ck,n. It should be stressed that
k,n (n ≥ 2k + 1) are highly structured networks with nodes
laced on a ring, each connecting to its 2k nearest neighbors.
or more details about those networks, one can refer to Lewis,
hang, Hengster-Movric, and Das (2014) and Wu (2007). For
bove networks, Table 1 gives the analytic expressions of the
inimum non-zero eigenvalue and the network density.
In addition, we summarize the relationship between the num-

er of agents and our graph conditions for these graphs in Table 1.

hen, we can directly select better protocol according to the
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Table 1
The analytic expressions of the minimum non-zero eigenvalue and the network density.
Graph Value of λ2 Network density d λ2 < 1 λ2 = 1 λ2 > 1

Kn λ2 = n d = 1 ✗ ✗ n ≥ 2

Sn
λ2 = 1 (n ≥ 3) d =

2
n ✗ n ≥ 3 n = 2

λ2 = 2 (n = 2)
Pn λ2 = 4 sin2(

π

2n
) d =

2
n n > 3 n = 3 n = 2

C1,n λ2 = 3 −
sin 3π

n

sin π
n

d =
2

n−1 n ≥ 7 n = 6 n ≤ 5

C2,n λ2 = 5 −
sin 5π

n

sin π
n

d =
4

n−1 n ≥ 14 ✗ n ≤ 13

C3,n λ2 = 7 −
sin 7π

n

sin π
n

d =
6

n−1 n ≥ 24 ✗ n ≤ 23
s

i

O

m

t
λ

a
a

{

number of agents. Furthermore, our graph conditions seem to
be consistent with the variation of the network density d. The
etwork density d is diminishing with the growth in the number
f nodes except the complete graphs which retain the highest
ensity all through. It is obvious that absolute velocity protocol
4) can be viewed as the optimal selection when the network
ensity d is not higher than a certain threshold, otherwise the

relative velocity protocol (5) is always the best. And the threshold
varies from different families of graphs.

5. Conclusion

In this paper, we investigated the anti-disturbance capabil-
ty for the second-order MASs with the absolute velocity pro-
ocol and the relative velocity protocol, respectively, and gave
he graph conditions to show which protocol owns better anti-
isturbance capability. The anti-disturbance capability was char-
cterized by the L2 gains from disturbance to consensus errors.
irstly, we built the analytic expression of the L2 gain of the MAS
ith absolute velocity protocol. Then the analytic expression of
he L2 gain of the MAS with the relative velocity protocol was also
stablished. It was shown that both the L2 gains for the absolute

and the relative velocity protocols only depend on the minimum
non-zero eigenvalue λ2 of the Laplacian matrix L and the tunable
gains α and β . Secondly, based on the analytic expressions of
the L2 gain, we put forward the graph conditions related to
λ2 for protocol selection for better anti-disturbance capability.
Moreover, we presented a two-step method for improving anti-
disturbance capability. Finally, we provided numerical tests for
some well-known graphs. Although it might be intuitively true
that the network density is associated with protocol selection,
this fact deserves to be further verified in future works.

Appendix A. A useful lemma

Lemma 3. Let g1(t) =
1

(αt)2
, g2(t) =

1
(αt)2−(

√
∆−1)2

and g3(t) =

1
(αt)2−(

√
Θ−1)2

, where∆ = (αt+1)2−β2,Θ = (αt+1)2−(βt)2, and
he constants α and β are positive. Then the following statements
old:

(1) g1(t) is decreasing on (0,+∞);
(2) g2(t) is decreasing on ( β−1

α
,+∞);

(3) g3(t) is decreasing on (0,+∞) if β ≤ α;

(4) g3(t) is decreasing on (0, 2α
β2−α2

) if β > α.

Proof. These can be proved by general analysis of the first deriva-
tions and the second derivations of g (t), i = 1, 2, 3. □
i

7

Appendix B. Proof of Theorem 2

Similar to the proof of Theorem 1, by orthogonal transforma-
tion (10) and (13), we can get the asymptotically stable subsystem
of (7). Denote the transfer matrix of this subsystem by T6(s). One
can verify that

∥T2(s)∥∞ = sup
υ∈R

√
λmax

[
TH
6 (jυ)T6(jυ)

]
= max

i=2,...,n

√
sup
υ∈R

θi(υ),
(B.1)

where θi(υ) =
1+υ2

(αλi−υ2)2+(βλiυ)2
> 0, i = 2, . . . , n, υ ∈ R. By

olving dθi(υ)
dυ = 0, we get supυ∈R θi(υ) = θi(υ∗

i,1) = g1(λi) =
1

(αλi)2

f β ≥

√
α2 +

2α
λi
, and supυ∈R θi(υ) = θi(υ∗

i,2) = θi(υ∗

i,3) = g3(λi) =

1
(αλi)2−(

√
Θi−1)2

if β <
√
α2 +

2α
λi
, where υ∗

i,1 = 0, υ∗

i,2, υ
∗

i,3 =

±

√√
Θi − 1 and Θi = (αλi + 1)2 − (βλi)2.

Aforementioned analysis prompts us to dictate two sets of
non-zero eigenvalues of L, which are given as K1 = {k ∈ Γ |

β ≥

√
α2 +

2α
k } and K2 = {k ∈ Γ | β <

√
α2 +

2α
k }. Recall

that Γ = {λ2, . . . , λn} is the set of all non-zero eigenvalues of L.
bviously, we can get K1 ∪ K2 = Γ and K1 ∩ K2 = ∅. We will

complete the proof by enumeration.
(I) K1 = Γ and K2 = ∅;
In this case, we have β ≥

√
α2 +

2α
λi
,∀i ∈ {2, . . . , n} which

implies that supυ∈R θi(υ) = g1(λi),∀i ∈ {2, . . . , n}. According
to Lemma 3 in Appendix A, g1(t) is decreasing on (0,+∞).
Combining with the fact 0 < λ2 ≤ · · · ≤ λn, one can obtain
that maxi=2,...,n g1(λi) = g1(λ2). Then, (B.1) becomes ∥T2(s)∥∞ =

axi=2,...,n
√
g1(λi) =

√
g1(λ2) =

1
αλ2

.
(II) K1 = ∅ and K2 = Γ ;
In this case, we get β <

√
α2 +

2α
λi
,∀i ∈ {2, . . . , n} which

leads to supυ∈R θi(υ) = g3(λi),∀i ∈ {2, . . . , n}. If β ≤ α, it is
inferred from 0 < λ2 ≤ · · · ≤ λn and Lemma 3 in Appendix A
hat maxi=2,...,n g3(λi) = g3(λ2). If β > α, it follows from 0 <

2 ≤ · · · ≤ λn and β <
√
α2 +

2α
λi
,∀i ∈ {2, . . . , n} that

0 < λ2 ≤ · · · ≤ λn <
2α

β2−α2
. Then according to Lemma 3 in

Appendix A, maxi=2,...,n g3(λi) = g3(λ2) still holds. Building on the
bove analysis, no matter β ≤ α or β > α, (B.1) can be written
s ∥T2(s)∥∞ = maxi=2,...,n

√
g3(λi) =

√
g3(λ2) =

1√
(αλ2)2−(

√
Θ2−1)2

.

(III) K1 ̸= ∅ and K2 ̸= ∅.
Under this circumstance, there must exists an eigenvalue λm

(2 ≤ m ≤ n − 1) of L such that K1 = {λm+1, . . . , λn}, K2 =

λ2, . . . , λm} and λ2 < λm+1. Then, we have β ≥

√
α2 +

2α
λi
,∀i ∈

{m + 1, . . . , n} and β <
√
α2 +

2α ,∀i ∈ {2, . . . ,m} which

λi
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espectively lead to supυ∈R θi(υ) = g1(λi),∀i ∈ {m + 1, . . . , n}
nd supυ∈R θi(υ) = g3(λi),∀i ∈ {2, . . . ,m}. According to Lemma 3
n Appendix A, g1(t) is decreasing on (0,+∞). Combining with
< λm+1 ≤ · · · ≤ λn, we can derive that maxi=m+1,...,n g1(λi) =

1(λm+1). Furthermore, it can be concluded that α <
√
α2 +

2α
λn

≤

· · · ≤

√
α2 +

2α
λm+1

≤ β . Since α < β , it follows from 0 < λ2 ≤

· · · ≤ λm and β <
√
α2 +

2α
λi
,∀i ∈ {2, . . . ,m} that 0 < λ2 ≤

· · ≤ λm <
2α

β2−α2
. According to Lemma 3 in Appendix A, we can

btain maxi=2,...,m g3(λi) = g3(λ2).
Based on the above analysis, (B.1) can be written as ∥T2(s)∥∞

max{maxi=m+1,...,n
√
g1(λi),maxi=2,...,m

√
g3(λi)} =

ax{
√
g1(λm+1),

√
g3(λ2)} . It follows from supυ∈R θi(υ) = g3(λi),

i ∈ {2, . . . ,m} and θi(υ) > 0 that g3(λ2) > 0. Then, according
o λ2 < λm+1, we can deduce that g3(λ2) =

1
(αλ2)2−(

√
Θ2−1)2

>
1

(αλ2)2
> 1

(αλm+1)2
= g1(λm+1). Therefore, we can obtain ∥T2(s)∥∞

√
g3(λ2) =

1√
(αλ2)2−(

√
Θ2−1)2

.

To summarize the above cases, we can conclude that ∥T2(s)∥∞

1√
(αλ2)2−(

√
Θ2−1)2

as long as λ2 ∈ K2, i.e., β <
√
α2 +

2α
λ2

.

therwise, ∥T2(s)∥∞ =
1
αλ2

. That is to say, (17) is obtained.
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