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A B S T R A C T

This paper addresses the affine formation maneuver problem for second-order multi-agent
systems with distributed event-triggered controllers. For multiple leaders moving with constant
accelerations, a sampled-data-based event-triggered proportional–integral controller is proposed
to reduce the frequencies of controller update, where triggering moments are determined
by the relative states between agent and its neighbors. Moreover, based on the proposed
event-triggered control scheme, a self-triggered mechanism is designed to avoid continuous
measurements for relative states and continuous calculating of local events at each discrete
moment. Some sufficient conditions for achieving affine formation maneuver control are
obtained and the Zeno behavior is naturally eliminated due to periodic sampling setting. Finally,
the theoretical results are illustrated through numerical simulations.

1. Introduction

In recent years, formation control of multi-agent systems has attracted a lot of attention due to its wide applications in civil and
military fields, such as commercial light show, resource exploration and target enclosing. This problem can be classified as static and
dynamic formation control according to target formation shape. Static formation control focuses on generation and maintenance of
a time-invariant geometric shape. Different from static formation control, dynamic formation control means that formation shape of
all agents can change continuously, which has a more flexible respond to complex tasks and uncertain environments in cooperative
systems, such as formation penetration and obstacle avoidance task in battlefield environments.

For dynamic formation control, there are two formation architectures in the existing research of multi-agent systems. The first
one allows agents to form time-varying geometric configuration by using desired reference signals, e.g., time-varying absolute
positions [1–4], time-varying relative displacements [5], constant displacements with time-varying weighting matrix [6,7], time-
varying relative distances [8,9], and observer-based time-varying shape parameters [10]. However, in this architecture, expected
dynamic signals always need to be designed offline in advance or online in real-time for each agent, which requires good storage
or planning capability for all agents. Consequently, the formation control based on desired reference information is not suitable for
dealing with emergent situations and large-scale systems. To overcome the disadvantages of using dynamic expected signals, the
second architecture depends on special Laplacian matrix [11–19], whose constant weights involve desired nominal configuration
information, and the corresponding mathematical transformation’ invariance to parameters of formation geometric shape, such
as collinearity and ratios of distance. Different from the first architecture, the second formation architecture has the advantage
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that maneuverable configuration of agents can converge into the image space of nominal configuration without requiring global
reference information. The typical dynamic formation control based on special Laplacian includes similar formation maneuver
control [11–15], bearing-based formation maneuver control [16] and affine formation maneuver control [17–19]. Both similar and
bearing-based formation maneuver control can ensure agents to continuously track target formations with time-varying translation,
rotation and scaling transformations. And the difference between these two types of formation control is that the former is applicable
to two-dimensional space and the latter is made available for arbitrary dimensional space. Compared with similar and bearing-based
formation maneuver control, affine formation maneuver control can additionally realize shearing transformation based on nominal
configuration in arbitrary dimensional space. Due to more abundant types of formation transformation in any dimensional space,
affine formation maneuver control is more general and practical. Therefore, in this work, we adopt affine formation maneuver
control to realize dynamic reconfiguration of formation.

Unlike the classic topology settings, e.g., undirected connected graph and directed spanning tree, affine formation control
equires agents to equip with universally rigid or 𝑑 + 1-rooted networks for undirected or directed typologies in 𝑑-dimensional

space, respectively. The special topologies tend to have more complex structures and more network links, which means a higher
communication load. Therefore, the limitation of communication resources for affine formation maneuver control is an urgent
problem to be solved.

Event-triggered control is an effective technology to save consumption of communication and computation resources in multi-
agent systems, whose nature is to make agents only carry out necessary network transmission and control update. Although discrete
triggering actions are driven by event-triggered control, the real-time states of agents are continuously monitored. In order to reduce
resource usage caused by continuous detection, self-triggered control is developed, in which next triggering instants are predicted
according to the last triggering information. Up to now, these two triggering control laws are mostly utilized for the formation
based on time invariant/variant expected reference information [20–26] and static formation with special Laplacian [27–31], and
are rarely applied to dynamic formation with special Laplacian [32]. The literature [32] proposes a distributed event-triggered
affine maneuver formation control for first-order multi-agent systems, where parallel detection of position and velocity events is
implemented. Unfortunately, composed of a proportional–differential triggering control law and the triggering mechanism with
constant thresholds, this control strategy is nonperforming and demanding since it only guarantees the bounded convergence of
tracking errors for followers and requires an acyclic network topology to avoid Zeno behavior. Thus, it is essential to develop
efficient event-triggered or self-triggered control strategies for affine maneuver formation control problem, which can make a good
balance between control performance and triggering efficiency.

Inspired by the above mentioned, we focus on affine formation maneuver control problem manipulated by sampled-data event-
triggered and self-triggered mechanisms for second-order multi-agent systems containing multiple constant acceleration moving
leaders in a direct communication network. The main contributions of this paper include:

(1) A distributed sampled-data-based event-triggered mechanism is designed to extent the proportional-integral affine formation
maneuver control law reported in [17]. Compared with the existing event-triggered affine maneuver formation algorithm
in [32], the proposed event-triggered control algorithm in this paper can ensure that the position states of all agents
exponentially converge to the time-varying target configuration remaining the topology settings in [17].

(2) A self-triggered affine formation maneuver algorithm is presented, which can avoid continuous measurements of relative
states and continuous calculating of local events at each sampling time compared with event-triggered ones proposed in this
work and [32].

(3) Since sampled-data information is used in this paper, the proposed triggering algorithms does not exhibit Zeno behavior and
is more practical for applications.

The remainder of this paper is organized as follows: Section 2 introduces necessary preliminaries and states problem. Distributed
event-triggered and self-triggered affine formation maneuver algorithms are studied in Sections 3 and 4, respectively. Simulations
are given in Section 5. Section 6 summarizes the results of this paper and indicates further research directions.

Notations. Let R, N and N>1 denote the sets of real number, integer number and the integer number greater than 1, respectively. R𝑛

and R𝑛×𝑚 are the Euclidean spaces with dimensions 𝑛 × 1 and 𝑛 × 𝑚, respectively. 𝟏𝑛 denotes the 𝑛-dimensional column vector with
all entries equal to 1. 𝐼𝑛 and 𝟎𝑛×𝑚 denote the 𝑛× 𝑛-dimensional identity matrix and the 𝑛×𝑚-dimensional zero matrix, respectively.
‖⋅‖ means the Euclidean norm. Re(⋅) and Im(⋅) means the real and image parts of a complex real number, respectively. 𝐴𝑇 indicates
the transpose of the matrix 𝐴. 𝑑𝑖𝑎𝑔{𝑎1, 𝑎2,… , 𝑎𝑛} indicates the diagonal matrix with diagonal elements 𝑎1 to 𝑎𝑛. 𝐴⊗𝐵 indicates the
Kronecker product of matrices 𝐴 and 𝐵. ∏𝑛

𝑖=1 𝑎𝑖 represents the cumulative product from 𝑎1 to 𝑎𝑛.

2. Preliminaries and problem statement

2.1. Preliminaries

The network topology of a group consisting of 𝑛 agents is described by a signed weighted directed graph G = (V ,  ,W ), where
V = {1, 2,… , 𝑛} is the vertex set,  ⊆ V × V is the edge set, and W = [𝑤𝑖𝑗 ]𝑛×𝑛 ∈ R𝑛×𝑛 is the signed weighted adjacency matrix. The
edge (𝑗, 𝑖) ∈  represents that agent 𝑖 can receive information from agent 𝑗, and agent 𝑗 is an in-neighbor of agent 𝑖. The in-neighbor
set of agent 𝑖 is denoted as N𝑖 = {𝑗 ∈ V ∶ (𝑗, 𝑖) ∈ }. In directed graph G, 𝑤𝑖𝑗 ≠ 0 ⇔ (𝑗, 𝑖) ∈  and 𝑤𝑖𝑗 = 0 ⇔ (𝑗, 𝑖) ∉  . The elements

𝑛×𝑛 ∑𝑛
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of Laplacian matrix 𝐿 = [𝑙𝑖𝑗 ]𝑛×𝑛 ∈ R of signed graph G are defined as 𝑙𝑖𝑗 = −𝑤𝑖𝑗 for any 𝑖 ≠ 𝑗 and 𝑙𝑖𝑖 = 𝑗=1 𝑤𝑖𝑗 for any 𝑖. A path
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is an ordered combination of edges {(𝑖0, 𝑖1), (𝑖1, 𝑖2),… , (𝑖𝑙−1, 𝑖𝑙)}, where 𝑖0,… , 𝑖𝑙 are mutually different vertices. For directed graph G,
a vertex 𝜐 is said to be 𝑘-reachable from a non-singleton set U if there exists a directed path form a vertex in the set U to vertex 𝜐
after deleting any 𝑘−1 vertices except vertex 𝜐, which also means that there are 𝑘 disconnected directed paths from set U to vertex
𝜐. The directed graph G is said to be 𝑘-rooted if there is a subset of 𝑘 vertices called the root set, from which each other vertex is
𝑘-reachable. A spanning 𝑘-tree rooted at R = {𝑟1, 𝑟2,… , 𝑟𝑘} ⊂ V is a spanning subgraph T = (V , ̄) satisfying

(1) each vertex 𝑟 ∈ R has no in-neighbor;
(2) each vertex 𝜐 ∉ R has 𝑘 in-neighbors;
(3) each vertex 𝜐 ∉ R is 𝑘-reachable.

In this paper, we consider that there are 𝑚 followers marked as agents 1 to 𝑚 and 𝑛 − 𝑚 leaders marked as agents 𝑚 + 1 to 𝑛 in
𝑑-dimensional space. The sets of followers and leaders are denoted by V𝑓 and V𝑙, respectively. And 𝑑 ∈ N>1. Suppose all leaders has
no in-neighbors. Then, the Laplacian matrix 𝐿 corresponding to the network topology G of multi-agent systems has the following
form:

𝐿 =
[

𝐿𝑓𝑓 𝐿𝑓𝑙
𝟎(𝑛−𝑚)×𝑚 𝟎(𝑛−𝑚)×(𝑛−𝑚)

]

where 𝐿𝑓𝑓 ∈ R𝑚×𝑚 and 𝐿𝑓𝑙 ∈ R𝑚×(𝑛−𝑚).

2.2. Problem statement

The double-integrator dynamic of follower 𝑖 ∈ V𝑓 is described by
{

�̇�𝑖(𝑡) = 𝑣𝑖(𝑡)

�̇�𝑖(𝑡) = 𝑢𝑖(𝑡)
(1)

where 𝑝𝑖(𝑡) ∈ R𝑑 is the position, 𝑣𝑖(𝑡) ∈ R𝑑 is the speed and 𝑢𝑖(𝑡) ∈ R𝑑 is the control input. The dynamic of leader 𝑖 ∈ V𝑙 is described
as follows

{

�̇�𝑖(𝑡) = 𝑣𝑖(𝑡)

�̇�𝑖(𝑡) = 𝑎𝑖
(2)

where 𝑎𝑖 ∈ R𝑑 is the constant acceleration.
A formation F𝑝 of multi-agent systems (1)–(2) is composed of position 𝑝 = [𝑝𝑇1 , 𝑝

𝑇
2 ,… , 𝑝𝑛]

𝑇 = [𝑝𝑇𝑓 , 𝑝
𝑇
𝑙 ]

𝑇 ∈ R𝑛𝑑 and directed
network topology G. The nominal formation of agents is described by F𝑞 = (G, 𝑞), where 𝑞 = [𝑞𝑇𝑓 , 𝑞

𝑇
𝑙 ]

𝑇 ∈ R𝑛𝑑 indicates the nominal
configuration. The affine span of configuration 𝑝 is defined as S(𝑝) = {

∑𝑛
𝑖=1 𝑎𝑖𝑝𝑖 ∶ 𝑎𝑖 ∈ R,

∑𝑛
𝑖=1 𝑎𝑖 = 1}. The affine image of nominal

configuration 𝑞 is denoted as

A(𝑞) ∶= {𝑝 = (𝐼𝑛 ⊗𝐴)𝑞 + 𝟏𝑛 ⊗ 𝑏|𝐴 ∈ R𝑑×𝑑 , 𝑏 ∈ R𝑑} (3)

where (𝐴, 𝑏) is the affine transformation. Rotation, scaling and shearing transformations to formation are described by matrix 𝐴,
and translation transformation is denoted by vector 𝑏.

Definition 1. The affine formation maneuver is said to be achieved if the time-varying configuration 𝑝(𝑡) satisfies

lim
𝑡→∞

𝑝(𝑡) = 𝑝∗(𝑡) = (𝐼𝑛 ⊗𝐴(𝑡))𝑞 + 𝟏𝑛 ⊗ 𝑏(𝑡) (4)

where 𝐴(𝑡) and 𝑏(𝑡) are continuous of 𝑡.

Assumption 1. The nominal configuration 𝑞𝑙 of 𝑛 − 𝑚 leaders satisfies {𝑞𝑖}𝑖∈V𝑙
affinely span in R𝑑 .

Assumption 2. The network topology G is 𝑑 + 1-rooted and the leader set is the root set.

Lemma 1 ([18]). Under Assumption 1–2, the nominal formation F𝑞 is affinely localizable in R𝑑 , that is,

(1) For any 𝑝 ∈ A(𝑞) in R𝑑 , 𝑝𝑓 can be uniquely determined by 𝑝𝑙;
(2) For formation F𝑝, there exists a signed Laplacian matrix 𝐿 corresponding to G satisfying (𝐿⊗ 𝐼𝑑 )𝑝 = 𝟎𝑛𝑑×1.

From Definition 1, it is clear that the target configuration 𝑝∗(𝑡) ⊆ A(𝑞) for all 𝑡. Assumption 1 implies that the column rank of
matrix [𝑞𝑚+1,… , 𝑞𝑛; 𝟏𝑇𝑛−𝑚] is 𝑑 + 1 at least. According to [33, Lemma 2.1], Assumption 2 is equivalent to that G has a spanning
𝑘-tree rooted at leader set. Therefore, the nominal configuration and the network of multi-agent systems (1)–(2) are further
designed by Assumption 1–2, respectively. Under the conditions of Lemma 1, the Laplacian matrix block 𝐿𝑓𝑓 is nonsingular and
∑𝑛

𝑗=1 𝑤𝑖𝑗 (𝑝𝑗 − 𝑝𝑖) = 𝟎𝑑×1 holds for any 𝑖. To achieve the affine formation maneuver, a real diagonal matrix 𝐷 = 𝑑𝑖𝑎𝑔{𝑑1, 𝑑2,… , 𝑑𝑛}
̄
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needs to be configured such that matrix 𝐿 = 𝐷𝐿 has 𝑑 +1 zero eigenvalues and the rest with positive real parts, which implies that
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the nonsingular matrix block −�̄�𝑓𝑓 = −𝑑𝑖𝑎𝑔{𝑑1, 𝑑2,… , 𝑑𝑚}𝐿𝑓𝑓 is Hurwitz. In this paper, we suppose the design of diagonal matrix
𝐷 has been finished referring to the literature [18,33].

In fact, the expected trajectories 𝑝∗𝑙 (𝑡) of leaders are described by the second-order polynomials from Eq. (2). And according
to Lemma 1, the target time-varying configuration 𝑝∗𝑓 (𝑡) of followers is −(�̄�−1

𝑓𝑓 �̄�𝑓𝑙 ⊗ 𝐼𝑑 )𝑝∗𝑙 (𝑡). Then the affine formation maneuver
problem is equivalent to how to make ∑𝑛

𝑗=1 𝑤𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝𝑖(𝑡)) → 𝟎𝑑×1 hold for any 𝑖 while 𝑡 → ∞.
The main purpose of this paper is to design a triggering strategy such that the affine formation maneuver is still achieved for

multi-agent systems (1)–(2).

3. Event-triggered affine formation maneuver algorithm

This section studies a distributed sampled-data-based event-triggered affine formation maneuver algorithm for multi-agent system
(1)–(2), which is based on the proportional-integral control law proposed in [17].

3.1. Event-triggered affine formation maneuver strategy

In this paper, suppose that each follower is only allowed to measure relative state, transmit triggering information and update
control input at each sampling instant 𝑙ℎ, where 𝑙 ∈ N and ℎ > 0 is the sampling period. Let 𝑡𝑖𝑘ℎ denote the 𝑘th triggering instant
for follower 𝑖. It is clear that 𝑡𝑖𝑘ℎ ⊆ 𝑙ℎ. Without loss of generality, assume 𝑡𝑖0 = 0 for any 𝑖 ∈ V𝑓 .

Based on sampled-data, an event-triggered affine formation maneuver control law is designed as
{

𝑢𝑖(𝑡) = −𝛼𝜄1𝑥𝑝𝑖(𝑡𝑖𝑘ℎ) − 𝛼𝜄2𝑥𝑣𝑖(𝑡𝑖𝑘ℎ) − 𝛽𝜉𝑖(𝑡𝑖𝑘ℎ)

�̇�𝑖(𝑡) = 𝜄1𝑥𝑝𝑖(𝑡𝑖𝑘ℎ) + 𝜄2𝑥𝑣𝑖(𝑡𝑖𝑘ℎ)
(5)

where 𝑡 ∈ [𝑡𝑖𝑘ℎ, 𝑡
𝑖
𝑘+1ℎ), 𝑥𝑝𝑖(𝑡𝑖𝑘ℎ) = 𝑑𝑖

∑𝑛
𝑗=1 𝑤𝑖𝑗(𝑝𝑖(𝑡𝑖𝑘ℎ) − 𝑝𝑗 (𝑡𝑖𝑘ℎ)) and 𝑥𝑣𝑖(𝑡𝑖𝑘ℎ) = 𝑑𝑖

∑𝑛
𝑗=1 𝑤𝑖𝑗 (𝑣𝑖(𝑡𝑖𝑘ℎ) − 𝑣𝑗 (𝑡𝑖𝑘ℎ)) are the combinational

measurement states of positions and velocities for follower 𝑖, respectively, 𝜉𝑖(𝑡) is the auxiliary variable, and control gains 𝜄1, 𝜄2, 𝛼, 𝛽 >
0. The event-triggered instant 𝑡𝑖𝑘+1ℎ for follower 𝑖 is determined by

𝑡𝑖𝑘+1ℎ = inf{𝑙 ∶ 𝑙ℎ > 𝑡𝑖𝑘ℎ, 𝑓𝑖(𝑙ℎ) ≥ 0} (6)

where the event-triggered function 𝑓𝑖(𝑙ℎ) is given by

𝑓𝑖(𝑙ℎ) = 𝜌1‖𝑒𝑝𝑖(𝑙ℎ)‖ + 𝜌2‖𝑒𝑣𝑖(𝑙ℎ)‖ + 𝜌3‖𝑒𝜉𝑖(𝑙ℎ)‖ − 𝜎𝑖(𝜌1‖𝑥𝑝𝑖(𝑡𝑖𝑘ℎ)‖ + 𝜌2‖𝑥𝑣𝑖(𝑡𝑖𝑘ℎ)‖) − 𝜙𝑖𝑒
−𝛾𝑖𝑙ℎ (7)

with some constants 𝜌1, 𝜌2, 𝜌3, 𝜎𝑖, 𝜙𝑖, 𝛾𝑖 > 0. In Eq. (7), 𝑒𝑝𝑖(𝑙ℎ) = 𝑥𝑝𝑖(𝑙ℎ)−𝑥𝑝𝑖(𝑡𝑖𝑘ℎ), 𝑒𝑣𝑖(𝑙ℎ) = 𝑥𝑣𝑖(𝑙ℎ)−𝑥𝑣𝑖(𝑡𝑖𝑘ℎ) and 𝑒𝜉𝑖(𝑙ℎ) = 𝜉𝑖(𝑙ℎ)− 𝜉𝑖(𝑡𝑖𝑘ℎ)
enote the measurement errors.

emark 1. Different from general proportional event-triggered control law, the measurement error 𝑒𝜉𝑖(𝑙ℎ) in Eq. (7) is specially set
or the controller (5). States 𝜉𝑖(𝑙ℎ) and 𝑒𝜉𝑖(𝑙ℎ) are obtained by using all triggering information 𝑥𝑝𝑖(𝑡𝑖𝑘ℎ) and 𝑥𝑣𝑖(𝑡𝑖𝑘ℎ) for each agent
uring the whole process of movement.

.2. Stability analysis

Let 𝑥𝑝(𝑡) = [𝑥𝑇𝑝1(𝑡),… , 𝑥𝑇𝑝𝑚(𝑡)]
𝑇 , 𝑥𝑣(𝑡) = [𝑥𝑇𝑣1(𝑡),…, 𝑥𝑇𝑣𝑚(𝑡)]𝑇 , 𝜉(𝑡) = [𝜉𝑇1 (𝑡),… , 𝜉𝑇𝑚 (𝑡)]

𝑇 , 𝑒𝑝(𝑡) = [𝑒𝑇𝑝1(𝑡),…, 𝑒𝑇𝑝𝑚(𝑡)]𝑇 , 𝑒𝑣(𝑡) =

𝑒𝑇𝑣1(𝑡),… , 𝑒𝑇𝑣𝑚(𝑡)]
𝑇 and 𝑒𝜉 (𝑡) = [𝑒𝑇𝜉1(𝑡),… , 𝑒𝑇𝜉𝑚(𝑡)]

𝑇 . Take the transformation 𝑥𝑐 (𝑡) = −𝛽(�̄�𝑓𝑓 ⊗ 𝐼𝑑 )𝜉(𝑡) + (�̄�𝑓𝑙 ⊗ 𝐼𝑑 )𝑎𝑙. Then denote

𝑐 (𝑡) = −𝛽(�̄�𝑓𝑓 ⊗𝐼𝑑 )𝑒𝜉 (𝑡), 𝑥(𝑡) = [𝑥𝑇𝑝 (𝑡), 𝑥
𝑇
𝑣 (𝑡), 𝑥

𝑇
𝑐 (𝑡)]

𝑇 and 𝑒(𝑡) = [𝑒𝑇𝑝 (𝑡), 𝑒
𝑇
𝑣 (𝑡), 𝑒

𝑇
𝑐 (𝑡)]

𝑇 . Hence, substituting Eq. (5) into Eqs. (1)–(2) yields

�̇�(𝑡) = (𝐴1 ⊗ 𝐼𝑑 )𝑥(𝑡) − (𝐴2 ⊗ 𝐼𝑑 )𝑥(𝑙ℎ) + (𝐴2 ⊗ 𝐼𝑑 )𝑒(𝑙ℎ) (8)

here

𝐴1 =
⎡

⎢

⎢

⎣

𝟎𝑚×𝑚 𝐼𝑚 𝟎𝑚×𝑚
𝟎𝑚×𝑚 𝟎𝑚×𝑚 𝟎𝑚×𝑚
𝟎𝑚×𝑚 𝟎𝑚×𝑚 𝟎𝑚×𝑚

⎤

⎥

⎥

⎦

, 𝐴2 =
⎡

⎢

⎢

⎣

𝟎𝑚×𝑚 𝟎𝑚×𝑚 𝟎𝑚×𝑚
𝛼𝜄1�̄�𝑓𝑓 𝛼𝜄2�̄�𝑓𝑓 −𝐼𝑚
𝛽𝜄1�̄�𝑓𝑓 𝛽𝜄2�̄�𝑓𝑓 𝟎𝑚×𝑚

⎤

⎥

⎥

⎦

emma 2 ([34]). For a third-order complex coefficient polynomial 𝑓 (𝑠) = 𝑠3 + 𝑐1𝑠2 + 𝑐2𝑠+ 𝑐3 (𝑐𝑖 = 𝑐𝑅𝑖 +
√

−1𝑐𝐼𝑖, 𝑖 = 1, 2, 3), 𝑓 (𝑠) has all
its zeros in the left half-plane if and only if

𝛥1 = 𝑐𝑅1 > 0, 𝛥2 =
|

|

|

|

|

|

|

𝑐𝑅1 𝑐𝑅3 −𝑐𝐼2
1 𝑐𝑅2 −𝑐𝐼1
0 𝑐𝐼2 𝑐𝑅1

|

|

|

|

|

|

|

> 0, 𝛥3 =

|

|

|

|

|

|

|

|

|

|

𝑐𝑅1 𝑐𝑅3 0 −𝑐𝐼2 0
1 𝑐𝑅2 0 −𝑐𝐼1 −𝑐𝐼3
0 𝑐𝑅1 𝑐𝑅3 0 −𝑐𝐼2
0 𝑐𝐼2 0 𝑐𝑅1 𝑐𝑅3

|

|

|

|

|

|

|

|

|

|

> 0
14648
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Lemma 3. Let 𝜆𝑖 and 𝜇𝑖𝑗 denote the eigenvalues of matrices �̄�𝑓𝑓 and 𝐴1−𝐴2 (𝑖 = 1,… , 𝑚, 𝑗 = 1, 2, 3), respectively. Under Assumption 1–2,
atrix 𝐴1 − 𝐴2 is negative definite if and only if

𝛼2𝜄22(𝛼𝜄1 + 𝛽𝜄2)Re(𝜆𝑖)(Re(𝜆𝑖)
2 + Im(𝜆𝑖)

2) − 𝛼𝛽𝜄1𝜄2Re(𝜆𝑖)
2 − 1

2
(𝛼𝜄1 + 𝛽𝜄2)2Im(𝜆𝑖)

2

− 1
2
{(𝛼𝜄1 + 𝛽𝜄2)4Im(𝜆𝑖)

4 + 4𝛼𝛽𝜄1𝜄2(𝛼𝜄1 + 𝛽𝜄2)2Re(𝜆𝑖)
2Im(𝜆𝑖)

2}
1
2 > 0 (9)

for all complex eigenvalues 𝜆𝑖 and
𝛽𝜄1

𝛼2𝜄1𝜄2 + 𝛼𝛽𝜄22
< min(𝜆𝑖) (10)

or other real eigenvalues 𝜆𝑖.

roof. Let 𝜇 denote an eigenvalue of the matrix 𝐴1 − 𝐴2. Then det(𝜇𝐼3𝑚 − (𝐴1 − 𝐴2)) = 0. Note that

det(𝜇𝐼3𝑚 − (𝐴1 − 𝐴2)) =
|

|

|

|

|

|

|

𝜇𝐼𝑚 −𝐼𝑚 𝟎
𝑚×𝑚

𝛼𝜄1�̄�𝑓𝑓 𝜇𝐼𝑚 + 𝛼𝜄2�̄�𝑓𝑓 −𝐼𝑚
𝛽𝜄1�̄�𝑓𝑓 𝛽𝜄2�̄�𝑓𝑓 𝜇𝐼𝑚

|

|

|

|

|

|

|

= |

|

|

𝜇3𝐼𝑚 + 𝜇2𝛼𝜄2�̄�𝑓𝑓 + 𝜇(𝛼𝜄1 + 𝛽𝜄2)�̄�𝑓𝑓 + 𝛽𝜄1�̄�𝑓𝑓
|

|

|

=
𝑚
∏

𝑖=1
(𝜇3 + 𝜇2𝛼𝜄2𝜆𝑖 + 𝜇(𝛼𝜄1 + 𝛽𝜄2)𝜆𝑖 + 𝛽𝜄1𝜆𝑖) = 0 (11)

By Lemma 2, we can know that if eigenvalue 𝜆𝑖 is complex, all roots of equation 𝜇3+𝜇2𝛼𝜄2𝜆𝑖+𝜇(𝛼𝜄1+𝛽𝜄2)𝜆𝑖+𝛽𝜄1𝜆𝑖 = 0 have negative
real parts if and only if the following inequalities hold:

𝛥1𝑖 = 𝛼𝜄2Re(𝜆𝑖) > 0 (12)

𝛥2𝑖 =
|

|

|

|

|

|

|

𝛼𝜄2Re(𝜆𝑖) 𝛽𝜄1Re(𝜆𝑖) −(𝛼𝜄1 + 𝛽𝜄2)Im(𝜆𝑖)
1 (𝛼𝜄1 + 𝛽𝜄2)Re(𝜆𝑖) −𝛼𝜄2Im(𝜆𝑖)
0 (𝛼𝜄1 + 𝛽𝜄2)Im(𝜆𝑖) 𝛼𝜄2Re(𝜆𝑖)

|

|

|

|

|

|

|

> 0 (13)

𝛥3𝑖 =

|

|

|

|

|

|

|

|

|

|

|

𝛼𝜄2Re(𝜆𝑖) 𝛽𝜄1Re(𝜆𝑖) 0 −(𝛼𝜄1 + 𝛽𝜄2)Im(𝜆𝑖) 0
1 (𝛼𝜄1 + 𝛽𝜄2)Re(𝜆𝑖) 0 −𝛼𝜄2Im(𝜆𝑖) −𝛽𝜄1Im(𝜆𝑖)
0 𝛼𝜄2Re(𝜆𝑖) 𝛽𝜄1Re(𝜆𝑖) 0 −(𝛼𝜄1 + 𝛽𝜄2)Im(𝜆𝑖)
0 (𝛼𝜄1 + 𝛽𝜄2)Im(𝜆𝑖) 0 𝛼𝜄2Re(𝜆𝑖) 𝛽𝜄1Re(𝜆𝑖)
0 𝛼𝜄2Im(𝜆𝑖) 𝛽𝜄1Im(𝜆𝑖) 1 (𝛼𝜄1 + 𝛽𝜄2)Re(𝜆𝑖)

|

|

|

|

|

|

|

|

|

|

|

> 0 (14)

t is easy to known that all eigenvalues 𝜆𝑖 have positive real parts under Assumption 1–2. Therefore, 𝛥1𝑖 > 0 obviously holds. By
ome calculations,

𝛥2𝑖 = 𝛼2𝜄22(𝛼𝜄1 + 𝛽𝜄2)Re(𝜆𝑖)(Re(𝜆𝑖)
2 + Im(𝜆𝑖)

2) − 𝛼𝛽𝜄1𝜄2Re(𝜆𝑖)
2 − (𝛼𝜄1 + 𝛽𝜄2)2Im(𝜆𝑖)

2 (15)

𝛥3𝑖 = 𝛽𝜄1(𝛼𝜄1 + 𝛽𝜄2)(Re(𝜆𝑖)
2 + Im(𝜆𝑖)

2)𝛥2𝑖 − 𝛼𝛽2𝜄21𝜄2(𝛼𝜄1 + 𝛽𝜄2)Re(𝜆𝑖)
2(Re(𝜆𝑖)

2 + Im(𝜆𝑖)
2) + 𝛽3𝜄31Re(𝜆𝑖)

3 (16)

Using Eq. (15), Eq. (16) can be further calculated as follows:

𝛥3𝑖 =𝛽𝜄1(𝛼𝜄1 + 𝛽𝜄2)(Re(𝜆𝑖)
2 + Im(𝜆𝑖)

2)𝛥2𝑖 −
𝛽2𝜄21
𝛼𝜄2

Re(𝜆𝑖)(𝛥2𝑖 + (𝛼𝜄1 + 𝛽𝜄2)2Im(𝜆𝑖)
2)

=
𝛽𝜄1

𝛼2𝜄22Re(𝜆𝑖)
{𝛥2𝑖(𝛥2𝑖 + (𝛼𝜄1 + 𝛽𝜄2)2Im(𝜆𝑖)

2) − 𝛼𝛽𝜄1𝜄2(𝛼𝜄1 + 𝛽𝜄2)2Re(𝜆𝑖)
2Im(𝜆𝑖)

2} (17)

Observing Eq. (17), 𝛥3𝑖 > 0 is equivalent to

𝛥2𝑖
2 + (𝛼𝜄1 + 𝛽𝜄2)2Im(𝜆𝑖)

2𝛥2𝑖 − 𝛼𝛽𝜄1𝜄2(𝛼𝜄1 + 𝛽𝜄2)2Re(𝜆𝑖)
2Im(𝜆𝑖)

2 > 0 (18)

Combining the solution of Eq. (17) and inequality 𝛥2𝑖 > 0, condition (9) holds. If eigenvalue 𝜆𝑖 has zero imaginary part, condition (9)
can be reduced to (𝛼2𝜄1𝜄2 + 𝛼𝛽𝜄22)𝜆𝑖 − 𝛽𝜄1 > 0. Hence, Re(𝜇𝑖𝑗 ) < 0 for any 𝑖 = 1,… , 𝑚, 𝑗 = 1, 2, 3 if and only if Eqs. (9) and (10) hold
for all complex 𝜆𝑖 and other real 𝜆𝑖, respectively. □

Give some constants 𝛾, 𝛾∗, 𝜅 > 0 and let �̄� denote the maximum eigenvalue of real symmetric matrix �̄�𝑇
𝑓𝑓 �̄�𝑓𝑓 . The following

notations will be used in this section: 𝜎max = max{𝜎𝑖}, 𝜙max = max{𝜙𝑖}, 𝛾min = min{𝛾𝑖}, 𝑏0 = max{1∕(𝜌1 − 𝜌1𝜎max), 1∕(𝜌2 −
𝜌2𝜎max), 𝛽

√

�̄�∕𝜌3}, 𝑏1 = 𝑚𝜎max(𝜌1+𝜌2)𝑏0, 𝑏2 = 𝑚𝜙max𝑏0, ℎ∗ = (𝛾−𝜅𝛼1𝑏1)∕(𝜅𝛼2+𝜅𝛼3+𝜅𝛼3𝑏1), 𝜎∗ = sup{𝜎max|𝛾−𝜅𝛼1𝑏1 > 0, 𝜎max ∈ [0, 1)},
𝛼1 = ‖

‖

𝐴2
‖

‖

, 𝛼2 = ‖

‖

𝐴2𝐴1
‖

‖

, 𝛼3 = ‖

‖

𝐴2𝐴2
‖

‖

, 𝛼4 = (𝛼1𝑏2𝑒𝛾
∗ℎ𝛾∗+𝛼3𝑏2𝑒𝛾

∗ℎ(𝑒𝛾∗ℎ−1))∕((𝛾 − 𝛾∗)𝛾∗), 𝛼5 = (𝛼1𝑏1𝛾∗𝑒𝛾
∗ℎ+(𝛼2+(𝛼3+𝛼3𝑏1)𝑒𝛾

∗ℎ)(𝑒𝛾∗ℎ−
1))∕((𝛾 − 𝛾∗)𝛾∗), 𝛼6 = (𝑎1𝑏2𝑒𝛾minℎ𝛾min + 𝑎3𝑏2𝑒𝛾minℎ(𝑒𝛾minℎ −1))∕((𝛾min − 𝛾)𝛾min), 𝛼7 = (𝑎1𝑏2𝑒𝛾minℎ𝛾min + 𝑎3𝑏2𝑒𝛾minℎ(𝑒𝛾minℎ −1))∕((𝛾min − 𝛾∗)𝛾min),
14649

𝑍1 = max{𝜅𝛼4∕(1 − 𝜅𝛼5), 𝜅 ‖𝑥(0)‖}, 𝑍2 = max{𝜅𝛼6∕(1 − 𝜅𝛼5), 𝜅 ‖𝑥(0)‖ + 𝜅𝛼6}, 𝑍3 = max {𝜅𝛼7∕(1 − 𝜅𝛼5), 𝜅 ‖𝑥(0)‖ + 𝜅𝛼7}.
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Theorem 1. Suppose Assumption 1–2 hold. Consider multi-agent systems (1)–(2) with control law (5) and the triggering instants are
determined by the distributed event-triggered mechanism (6). The affine formation maneuver is achieved if the following conditions are
satisfied:

(1) Control gains 𝜄1, 𝜄2, 𝛼, 𝛽 satisfy Eqs. (9) and (10) for all complex eigenvalues 𝜆𝑖 and for other real eigenvalues 𝜆𝑖, respectively.
(2) For some 𝜌1 > 0, 𝜌2 > 0, 𝜌3 > 0, there exist 𝜎𝑖 ∈ (0, 𝜎∗). 𝜙𝑖 > 0 and 𝛾𝑖 > 0 can be arbitrary.
(3) The sampling period ℎ ∈ (0, ℎ∗).

Proof. Let 𝜏(𝑡) = 𝑡 − 𝑙ℎ for any 𝑡 ∈ [𝑙ℎ, 𝑙ℎ + ℎ), and then Eq. (8) can be rewritten as

�̇�(𝑡) = (𝐴1 ⊗ 𝐼𝑑 )𝑥(𝑡) − (𝐴2 ⊗ 𝐼𝑑 )𝑥(𝑡 − 𝜏(𝑡)) + (𝐴2 ⊗ 𝐼𝑑 )𝑒(𝑡 − 𝜏(𝑡)) (19)

Applying the Newton–Leibnitz formula for Eq. (19), we have

�̇�(𝑡) =((𝐴1 − 𝐴2)⊗ 𝐼𝑑 )𝑥(𝑡) + (𝐴2 ⊗ 𝐼𝑑 )𝑒(𝑡 − 𝜏(𝑡)) + (𝐴2 ⊗ 𝐼𝑑 )∫

𝑡

𝑡−𝜏(𝑡)

{

(𝐴1 ⊗ 𝐼𝑑 )𝑥(𝑠) − (𝐴2 ⊗ 𝐼𝑑 )(𝑥(𝑠 − 𝜏(𝑠))

−𝑒(𝑠 − 𝜏(𝑠)))} 𝑑𝑠 (20)

The solution of Eq. (20) is given by

𝑥(𝑡) =𝑒((𝐴1−𝐴2)⊗𝐼𝑑 )𝑡𝑥(0) + ∫

𝑡

0
𝑒((𝐴1−𝐴2)⊗𝐼𝑑 )(𝑡−𝑠){(𝐴2 ⊗ 𝐼𝑑 )𝑒(𝑠 − 𝜏(𝑠)) + (𝐴2 ⊗ 𝐼𝑑 )∫

𝑠

𝑠−𝜏(𝑠)
((𝐴1 ⊗ 𝐼𝑑 )𝑥(𝑧)

− (𝐴2 ⊗ 𝐼𝑑 )(𝑥(𝑧 − 𝜏(𝑧)) − 𝑒(𝑧 − 𝜏(𝑧))))𝑑𝑧}𝑑𝑠 (21)

By Lemma 3, it is known that matrix 𝐴1 − 𝐴2 is negative definite. Hence, there exist constants 𝜅 ≥ 1 and 𝛾 > 0 such that

‖𝑥(𝑡)‖ ≤ 𝜅𝑒−𝛾𝑡 ‖𝑥(0)‖ + ∫

𝑡

0
𝜅𝑒−𝛾(𝑡−𝑠){𝛼1 ‖𝑒(𝑠 − 𝜏(𝑠))‖ + ∫

𝑠

𝑠−𝜏(𝑠)
(𝛼2 ‖𝑥(𝑧)‖ + 𝛼3 ‖𝑥(𝑧 − 𝜏(𝑧))‖ + 𝛼3 ‖𝑒(𝑧 − 𝜏(𝑧))‖)𝑑𝑧}𝑑𝑠 (22)

The triggering condition (6) enforces that

𝜌1‖𝑒𝑝𝑖(𝑙ℎ)‖ + 𝜌2‖𝑒𝑣𝑖(𝑙ℎ)‖ + 𝜌3‖𝑒𝜉𝑖(𝑙ℎ)‖ ≤ 𝜎𝑖(𝜌1‖𝑥𝑝𝑖(𝑡𝑖𝑘ℎ)‖ + 𝜌2‖𝑥𝑣𝑖(𝑡𝑖𝑘ℎ)‖) + 𝜙𝑖𝑒
−𝛾𝑖𝑙ℎ (23)

hich means

(1 − 𝜎max)(𝜌1
‖

‖

‖

𝑒𝑝𝑖(𝑙ℎ)
‖

‖

‖

+ 𝜌2 ‖‖𝑒𝑣𝑖(𝑙ℎ)‖‖) + 𝜌3
‖

‖

‖

𝑒𝜉𝑖(𝑙ℎ)
‖

‖

‖

≤ 𝜎max

(

𝜌1
‖

‖

‖

𝑥𝑝(𝑙ℎ)
‖

‖

‖

+ 𝜌2 ‖‖𝑥𝑣(𝑙ℎ)‖‖
)

+ 𝜙max𝑒
−𝛾min𝑙ℎ (24)

otice that

‖

‖

𝑒𝑐 (𝑙ℎ)‖‖ = 𝛽
√

𝑒𝑇𝜉 (𝑙ℎ)(�̄�
𝑇
𝑓𝑓 �̄�𝑓𝑓 ⊗ 𝐼𝑑 )𝑒𝜉 (𝑙ℎ) ≤ 𝛽

√

�̄� ‖‖
‖

𝑒𝜉 (𝑙ℎ)
‖

‖

‖

(25)

Applying Eqs. (24)–(25), we can derive

‖𝑒(𝑙ℎ)‖ ≤
𝑚
∑

𝑖=1
(‖‖
‖

𝑒𝑝𝑖(𝑙ℎ)
‖

‖

‖

+ ‖

‖

𝑒𝑣𝑖(𝑙ℎ)‖‖) + ‖

‖

𝑒𝑐 (𝑙ℎ)‖‖ ≤
𝑚
∑

𝑖=1
(‖‖
‖

𝑒𝑝𝑖(𝑙ℎ)
‖

‖

‖

+ ‖

‖

𝑒𝑣𝑖(𝑙ℎ)‖‖ + 𝛽
√

�̄�‖‖
‖

𝑒𝜉𝑖(𝑙ℎ)
‖

‖

‖

)

≤𝑏0𝑚(𝜎max(𝜌1
‖

‖

‖

𝑥𝑝(𝑙ℎ)
‖

‖

‖

+ 𝜌2 ‖‖𝑥𝑣(𝑙ℎ)‖‖) + 𝜙max𝑒
−𝛾min𝑙ℎ) ≤ 𝑏0𝑚(𝜎max(𝜌1 + 𝜌2) ‖𝑥(𝑙ℎ)‖ + 𝜙max𝑒

−𝛾min𝑙ℎ) (26)

hich ensures that the following inequality holds:

‖𝑒(𝑙ℎ)‖ ≤ 𝑏1 ‖𝑥(𝑙ℎ)‖ + 𝑏2𝑒
−𝛾min𝑙ℎ (27)

Substituting Eq. (27) into Eq. (22), we can obtain

‖𝑥(𝑡)‖ ≤𝜅𝑒−𝛾𝑡 ‖𝑥(0)‖ + ∫

𝑡

0
𝜅𝑒−𝛾(𝑡−𝑠)𝛼1𝑏1 ‖𝑥(𝑠 − 𝜏(𝑠))‖ 𝑑𝑠 + ∫

𝑡

0
𝜅𝑒−𝛾(𝑡−𝑠) ∫

𝑠

𝑠−ℎ
(𝛼2 ‖𝑥(𝑧)‖ + 𝛼3 ‖𝑥(𝑧 − 𝜏(𝑧))‖

+ 𝛼3𝑏1 ‖𝑥(𝑧 − 𝜏(𝑧))‖)𝑑𝑧𝑑𝑠 + ∫

𝑡

0
𝜅𝑒−𝛾(𝑡−𝑠)𝛼1𝑏2𝑒

−𝛾min(𝑠−ℎ)𝑑𝑠 + ∫

𝑡

0
𝜅𝑒−𝛾(𝑡−𝑠)𝛼3𝑏2 ∫

𝑠

𝑠−ℎ
𝑒−𝛾min(𝑧−ℎ)𝑑𝑧𝑑𝑠 (28)

In the next, it will be proved that there exist 𝜂 > 1 and 𝛾∗ ∈ (0, 𝛾) satisfying

𝜅𝛼1𝑏1𝛾∗𝑒𝛾
∗ℎ + 𝜅(𝛼2 + (𝛼3 + 𝛼3𝑏1)𝑒𝛾

∗ℎ)(𝑒𝛾∗ℎ − 1)
(𝛾 − 𝛾∗)𝛾∗

< 1 (29)

such that for any 𝑡 ≥ 0

‖𝑥(𝑡)‖ < 𝜂𝑍𝑒−𝛾
∗𝑡 ≜ 𝛿(𝑡) (30)

where

𝑍 =

⎧

⎪

⎨

⎪

𝑍1, 𝛾 > 𝛾min

𝑍2, 𝛾 < 𝛾min
14650

⎩
𝑍3, 𝛾 = 𝛾min
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First, the existence of 𝛾∗ will be proved. Define function 𝜒(𝛾∗) = 𝜅𝛼1𝑏1𝛾∗𝑒𝛾
∗ℎ + 𝜅(𝛼2 + (𝛼3 + 𝛼3𝑏1)𝑒𝛾

∗ℎ)(𝑒𝛾∗ℎ − 1) − (𝛾 − 𝛾∗)𝛾∗. It
an be easily derived that 𝜒(0) = 0 and �̇�(0) = 𝜅𝛼1𝑏1 + 𝜅(𝛼2 + 𝛼3 + 𝛼3𝑏1)ℎ − 𝛾. 𝜎𝑖 ∈ (0, 𝜎∗) means 𝜅𝛼1𝑏1 − 𝛾 < 0. Then �̇�(0) < 0 from
∈ (0, ℎ∗). Hence there must be 𝛾∗ ∈ (0, 𝛾) such that 𝜒(𝛾∗) < 0, which implies Eq. (29) holds.

Second, Eq. (30) will be proved by contradiction. Suppose Eq. (30) is not true, and then there exists 𝑡∗ > 0 such that

‖

‖

𝑥(𝑡∗)‖
‖

= 𝜂𝑍𝑒−𝛾
∗𝑡∗ = 𝛿(𝑡∗), (31)

nd for 0 ≤ 𝑡 < 𝑡∗,

‖𝑥(𝑡)‖ < 𝛿(𝑡). (32)

By Eq. (28) and Eqs. (31)–(32), we obtain

𝛿(𝑡∗) <𝜂𝜅{𝑒−𝛾𝑡
∗
‖𝑥(0)‖ + 𝑎1𝑏1𝑒

𝛾∗ℎ𝑍𝑒−𝛾𝑡
∗

∫

𝑡∗

0
𝑒−(𝛾

∗−𝛾)𝑠𝑑𝑠 + (𝑎2 + (𝑎3 + 𝑎3𝑏1)𝑒𝛾
∗ℎ)𝑍𝑒−𝛾𝑡

∗

∫

𝑡∗

0
𝑒𝛾𝑠 ∫

𝑠

𝑠−ℎ
𝑒−𝛾

∗𝑧𝑑𝑧𝑑𝑠

+ 𝑎1𝑏2𝑒
𝛾minℎ𝑒−𝛾𝑡

∗

∫

𝑡∗

0
𝑒−(𝛾min−𝛾)𝑠𝑑𝑠 + 𝑎3𝑏2𝑒

𝛾minℎ𝑒−𝛾𝑡
∗

∫

𝑡∗

0
𝑒𝛾𝑠 ∫

𝑠

𝑠−ℎ
𝑒−𝛾min𝑧𝑑𝑧𝑑𝑠} (33)

he calculation of Eq. (32) will be further divided into three cases.
Case 1: 𝛾 > 𝛾min.
Choose 𝛾∗ = 𝛾min and then Eq. (33) can be further written as

𝛿(𝑡∗) = ‖

‖

𝑥(𝑡∗)‖
‖

< 𝜂𝑒−𝛾
∗𝑡∗𝜅(𝛼4 +𝑍1𝛼5) + 𝜂𝑒−𝛾𝑡

∗
(𝜅 ‖𝑥(0)‖ − 𝜅(𝛼4 +𝑍1𝛼5)) (34)

f 𝑍1 = 𝜅𝛼4∕(1 − 𝜅𝛼5), 𝜅 ‖𝑥(0)‖ − 𝜅(𝛼4 +𝑍1𝛼5) ≤ 0 holds and then by Eq. (34) we obtain

𝛿(𝑡∗) < 𝜂𝜅(𝛼4 +𝑍1𝛼5)𝑒−𝛾
∗𝑡∗ = 𝜂𝑍1𝑒

−𝛾∗𝑡∗ = 𝛿(𝑡∗) (35)

f 𝑍1 = 𝜅 ‖𝑥(0)‖ and 1 − 𝜅𝛼5 > 0, 𝜅 ‖𝑥(0)‖ − 𝜅(𝛼4 +𝑍1𝛼5) ≥ 0 holds and then

𝛿(𝑡∗) < 𝜂𝜅 ‖𝑥(0)‖ 𝑒−𝛾
∗𝑡∗ = 𝜂𝑍1𝑒

−𝛾∗𝑡∗ = 𝛿(𝑡∗) (36)

Case 2: 0 < 𝛾 < 𝛾min.
Choose 𝛾∗ satisfying 𝛾∗ < 𝛾, and then

𝛿(𝑡∗) = ‖

‖

𝑥(𝑡∗)‖
‖

< 𝜂𝑒−𝛾𝑡
∗
𝜅(‖𝑥(0)‖ −𝑍2𝛼5) + 𝜂𝑒−𝛾

∗𝑡∗𝜅(𝑍2𝛼5 + 𝛼6) (37)

f 𝑍2 = 𝜅𝛼6∕(1 − 𝜅𝛼5), 𝜅 ‖𝑥(0)‖ − 𝜅𝑍2𝛼5 ≤ 0 holds, and then by Eq. (37) we derive

𝛿(𝑡∗) < 𝜂𝑒−𝛾
∗𝑡∗𝜅(𝑍2𝛼5 + 𝛼6) = 𝜂𝑍2𝑒

−𝛾∗𝑡∗ = 𝛿(𝑡∗) (38)

f 𝑍2 = 𝜅 ‖𝑥(0)‖ + 𝜅𝛼6 and 1 − 𝜅𝛼5 > 0, 𝜅 ‖𝑥(0)‖ − 𝜅𝑍2𝛼5 ≥ 0 holds, and then

𝛿(𝑡∗) < 𝜂𝑒−𝛾
∗𝑡∗ (𝜅 ‖𝑥(0)‖ + 𝜅𝛼6) = 𝜂𝑍2𝑒

−𝛾∗𝑡∗ = 𝛿(𝑡∗) (39)

Case 3: 0 < 𝛾 = 𝛾min.
Choose 𝛾∗ satisfying 𝛾∗ < 𝛾, and then

𝛿(𝑡∗) < 𝜂𝜅{‖𝑥(0)‖ 𝑒−𝛾𝑡
∗
+𝑍3𝛼5(𝑒−𝛾

∗𝑡∗ − 𝑒−𝛾𝑡
∗
) + 𝛼7(𝛾 − 𝛾∗)𝑡∗𝑒−𝛾𝑡

∗
} (40)

olds. Applying inequality (𝛾 − 𝛾∗)𝑡∗ < 𝑒(𝛾−𝛾∗)𝑡∗ into Eq. (40), we derive

𝛿(𝑡∗) = ‖

‖

𝑥(𝑡∗)‖
‖

< 𝜂𝑒−𝛾𝑡
∗
𝜅(‖𝑥(0)‖ −𝑍3𝛼5) + 𝜂𝑒−𝛾

∗𝑡∗𝜅(𝑍3𝛼5 + 𝛼7) (41)

f 𝑍3 = 𝜅𝛼7∕(1 − 𝜅𝛼5), 𝜅 ‖𝑥(0)‖ − 𝜅𝑍3𝛼5 ≤ 0 holds, and then by Eq. (41) we can derive

𝛿(𝑡∗) < 𝜂𝑒−𝛾
∗𝑡∗𝜅(𝑍3𝛼5 + 𝛼7) = 𝜂𝑍3𝑒

−𝛾∗𝑡∗ = 𝛿(𝑡∗) (42)

f 𝑍3 = 𝜅 ‖𝑥(0)‖ + 𝜅𝛼7 and 1 − 𝜅𝛼5 > 0, 𝜅 ‖𝑥(0)‖ − 𝜅𝑍3𝛼5 ≥ 0 holds, and then

𝛿(𝑡∗) < 𝜂𝑒−𝛾
∗𝑡∗ (𝜅 ‖𝑥(0)‖ + 𝜅𝛼7) = 𝜂𝑍3𝑒

−𝛾∗𝑡∗ = 𝛿(𝑡∗) (43)

he contradiction of any one of Eq. (35), Eq. (36), Eq. (38), Eq. (39), Eq. (42) and (43) indicates that Eq. (30) is valid for any
, 𝛾min > 0. Let 𝜂 → 1, and we can obtain

‖𝑥(𝑡)‖ < 𝑍𝑒−𝛾
∗𝑡 (44)

or 𝑡 ≥ 0. Eq. (44) implies 𝑥(𝑡) will exponentially converge to zero. Therefore, the affine formation maneuver is achieved. □

emark 2. According to the event-triggered mechanism (6), it can be known that the triggering frequency of agent 𝑖 will get lower
s 𝛾𝑖 gets smaller and 𝜙𝑖 gets bigger. And the proof process of Eq. (44) in Theorem 1 means that if 𝛾𝑚𝑖𝑛 < 𝛾, the convergence rate
f error system (8) will get slower while 𝛾𝑚𝑖𝑛 gets smaller and 𝜙𝑚𝑎𝑥 gets bigger for some initial value ‖𝑥(0)‖. Thus, the triggering
requency performance and convergence performance of dynamic formation proposed in this paper can be mostly balanced by
14651

electing appropriate values of parameters 𝛾𝑖 and 𝜙𝑖.
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Remark 3. The event-triggered mechanism based on sampled-data makes the lengths of all triggering intervals greater than or
qual to the sampling period. In scheme (6), it is obvious that there does not exist Zeno behavior, that is, an infinite number of
riggering will not occur within a limited time.

emark 4. When event-triggered function contains an exponential function term about 𝑡 like Eq. (6), analytic method and Lyapunov
unction method are used in literature [29,35,36] and literature [37–39], respectively. The proof process of Theorem 1 is similar
o [29,35,36]. However, different from literature [29,35,36], Theorem 1 indicates that the relationship between 𝛾 and 𝛾min in value

size does not determine whether the dynamic formation converges or not while using the triggering condition with an exponential
term, which is consistent with the results in [37–39]. Meanwhile, sampled-data-based event-triggered mechanism can be regarded as
the event-triggered mechanism with time delay like [35]. To achieve the affine formation maneuver, the triggering control strategy
does not allow the sampling interval to be arbitrary, which results in the formal difference between the sampling interval constraint
or the delay constraint given in Theorem 1 and literature [35]. As a result, the analysis strategy of Theorem 1 can further improve
the results in [29,35,36]. Notice that the significant differences between our work and [35] are the analysis process and the form of
control scheme where the control law and event-triggered function contain an integral term in this paper, which can make followers
track leaders moving with constant acceleration and multi-agent systems achieve affine formation maneuver.

Remark 5. In fact, the event-triggered affine formation maneuver problem can be regarded as an event-triggered containment
problem for multi-agent systems. But the type of triggering control law is proportional for containment problem in the existing
literature [40–43], where the control input of leaders is considered as zero like [40–42] or all the states information of leader
dynamics is known by followers like [43]. Different from [40–43], the setting of constant acceleration in the leader dynamic (2)
means that the control input or the external input signal of leaders is nonzero, which leads to the integral term being considered in
the control law (5) to ensure zero tracking errors for followers. The compensation item appears not only in the controller (5) but
also in the event-triggered function (7) and makes the stability analysis of the proposed algorithms different from that in [40–43].
The analysis strategies displayed in this paper can be referenced for addressing distributed event-triggered containment scheme
problem with proportional-integral controller.

4. Self-triggered affine formation maneuver algorithm

In the distributed event-triggered mechanism (6), agent 𝑖 still needs to continuously measure the relative states between itself and
its neighbors and continuously detect local events. Hence, a self-triggered algorithm will be proposed based on the event-triggered
mechanism (6), which can further reduce the frequency of measurement for relative states and detection for triggering condition.

Assume that all followers already know the accelerations of neighbor leaders before the movement starts. In the non-triggering
interval (𝑡𝑖𝑘ℎ, 𝑡

𝑖
𝑘+1ℎ), denote the triggering time of all neighbors of agent 𝑖 by 𝑡𝑗1𝑘𝑖ℎ < 𝑡𝑗2𝑘𝑖ℎ < ⋯ < 𝑡𝑗𝑠𝑘𝑖ℎ < ⋯, and let 𝑡𝑗0𝑘𝑖ℎ = 𝑡𝑖𝑘ℎ. The

elf-triggered function 𝑓𝑖(𝑡) can be designed as

𝑓𝑖(𝑡) = �̄�𝑖(𝑡) − 𝜎𝑖(𝜌1
‖

‖

‖

𝑥𝑝𝑖(𝑡𝑖𝑘ℎ)
‖

‖

‖

+ 𝜌2
‖

‖

‖

𝑥𝑣𝑖(𝑡𝑖𝑘ℎ)
‖

‖

‖

) − 𝜙𝑖𝑒
−𝛾𝑖𝑡 (45)

where for 𝑡 ∈ (𝑡𝑗𝑠𝑘𝑖ℎ, 𝑡
𝑗𝑠+1
𝑘𝑖

ℎ],

�̄�𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝛷𝑖(𝑡
𝑗𝑠
𝑘𝑖
ℎ)(𝑒𝑡−𝑡

𝑗𝑠
𝑘𝑖
ℎ − 1), 𝑠 = 0

𝑒𝑡−𝑡
𝑗𝑠
𝑘𝑖
ℎ(𝛷𝑖(𝑡

𝑗𝑠
𝑘𝑖
ℎ) + �̄�𝑖(𝑡

𝑗𝑠
𝑘𝑖
ℎ)) −𝛷𝑖(𝑡

𝑗𝑠
𝑘𝑖
ℎ), 𝑠 > 0

𝛷𝑖(𝑡) =𝜌1
‖

‖

‖

𝑥𝑣𝑖(𝑡𝑖𝑘ℎ)
‖

‖

‖

+ 𝜌2‖𝑑𝑖
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑢𝑖(𝑡𝑖𝑘ℎ) − 𝑑𝑖

𝑚
∑

𝑗=1
𝑤𝑖𝑗𝑢𝑗 (𝑡) − 𝑑𝑖

𝑛
∑

𝑗=𝑚+1
𝑤𝑖𝑗𝑎𝑗‖ + 𝜌3

‖

‖

‖

𝜄1𝑥𝑝𝑖(𝑡𝑖𝑘ℎ) + 𝜄2𝑥𝑣𝑖(𝑡𝑖𝑘ℎ)
‖

‖

‖

Knowing the current triggering instant 𝑡𝑖𝑘ℎ and the last neighbor triggering instant 𝑡𝑗𝑠𝑘𝑖ℎ, the next triggering instant of follower 𝑖 is
determined by

𝑡𝑖𝑘+1ℎ = 𝑖𝑛𝑓 {𝑙 ∶ 𝑙ℎ > 𝑡𝑖𝑘ℎ, 𝑓𝑖(𝑙ℎ) ≥ 0} (46)

In the self-triggered mechanism (46), agent 𝑖 will measure the relative states between itself and its neighbors to obtain 𝑥𝑝𝑖(𝑡𝑖𝑘ℎ),
𝑥𝑣𝑖(𝑡𝑖𝑘ℎ) and 𝜉𝑖(𝑡𝑖𝑘ℎ) at each triggering time 𝑡𝑖𝑘ℎ, which will be send to its neighbors simultaneously through network transmission
and then control input 𝑢𝑖(𝑡) will be updated immediately. Although communication network is additionally operated in scheme
(46), the frequency of measurement for each agent is reduced and is same as that of network transmission. Notice that the flow of
measurement actions between adjacent agents finally constitutes measurement network. Thus, it can be pointed that the times of
information interaction involving non-local states will diminish under the proposed self-triggered algorithm.

Remark 6. Applying the self-triggered mechanism (46), agent 𝑖 will first calculate the next triggering instant 𝑡𝑖𝑘ℎ according to the
last information at 𝑡𝑖𝑘ℎ. If no neighbor of agent 𝑖 is triggered during (𝑡𝑖𝑘ℎ, 𝑡

𝑖
𝑘ℎ), then let 𝑡𝑖𝑘+1ℎ = 𝑡𝑖𝑘ℎ; otherwise, update the parameters

of self-triggered function 𝑓𝑖(𝑡) and recalculate 𝑡𝑖𝑘ℎ at each last triggering instant of neighbors for agent 𝑖; repeat these steps until the
𝑖
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alue of 𝑡𝑘+1ℎ is given.
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Fig. 1. The directed network topology and the nominal configuration.

emark 7. If all followers only know the maximum acceleration of leaders, then the second item of 𝛷𝑖(𝑡) can be replaced by
2‖𝑑𝑖

∑𝑛
𝑗=1 𝑤𝑖𝑗𝑢𝑖(𝑡𝑖𝑘ℎ) − 𝑑𝑖

∑𝑚
𝑗=1 𝑤𝑖𝑗𝑢𝑗 (𝑡)‖ + max𝑖∈V𝑙

(‖𝑎𝑖‖)‖
∑𝑛

𝑗=𝑚+1 𝑤𝑖𝑗‖. At this time, 𝛷𝑖(𝑡) in Eq. (45) is amplified, which leads to a
igher triggering frequency.

heorem 2. Suppose Assumption 1–2 hold. Consider multi-agent systems (1)–(2) with control law (5) and the triggering instants are
determined by the self-triggered mechanism (46). If all conditions of Theorem 1 hold, then the affine formation maneuver is achieved.

Proof. Let 𝑔𝑖(𝑡) = 𝜌1
‖

‖

‖

𝑒𝑝𝑖(𝑡)
‖

‖

‖

+ 𝜌2 ‖‖𝑒𝑣𝑖(𝑡)‖‖ + 𝜌3
‖

‖

‖

𝑒𝜉𝑖(𝑡)
‖

‖

‖

. For any 𝑡 ∈ [𝑡𝑖𝑘ℎ, 𝑡
𝑖
𝑘+1ℎ), take the derivative of 𝑔𝑖(𝑡) and we have

�̇�𝑖(𝑡) ≤ 𝜌1
‖

‖

‖

�̇�𝑝𝑖(𝑡)
‖

‖

‖

+ 𝜌2 ‖‖�̇�𝑣𝑖(𝑡)‖‖ + 𝜌3
‖

‖

‖

�̇�𝜉𝑖(𝑡)
‖

‖

‖

≤ 𝑔𝑖(𝑡) +𝛷𝑖(𝑡) (47)

If no neighbor of agent 𝑖 is triggered during (𝑡𝑖𝑘ℎ, 𝑡
𝑖
𝑘+1ℎ), that is 𝑠 = 0, it can be deduced from Eq. (47) that

�̇�𝑖(𝑡) ≤ 𝑔𝑖(𝑡) +𝛷𝑖(𝑡𝑖𝑘ℎ) (48)

which can be further calculated as follows:

𝑔𝑖(𝑡) ≤ 𝛷𝑖(𝑡𝑖𝑘ℎ)(𝑒
𝑡−𝑡𝑖𝑘ℎ − 1) (49)

If there are exactly 𝑠 > 0 neighbors of agent 𝑖 triggered during (𝑡𝑖𝑘ℎ, 𝑡
𝑖
𝑘+1ℎ), Eq. (47) can be solved as

𝑔𝑖(𝑡) ≤ 𝛷𝑖(𝑡
𝑗𝑠
𝑘𝑖
ℎ)(𝑒𝑡−𝑡

𝑗𝑠
𝑘𝑖
ℎ − 1) +𝛷𝑖(𝑡

𝑗𝑠−1
𝑘𝑖

ℎ)(𝑒𝑡−𝑡
𝑗𝑠−1
𝑘𝑖

ℎ − 𝑒𝑡−𝑡
𝑗𝑠
𝑘𝑖
ℎ) +⋯ +𝛷𝑖(𝑡𝑖𝑘ℎ)(𝑒

𝑡−𝑡𝑖𝑘ℎ − 𝑒𝑡−𝑡
𝑗1
𝑘𝑖
ℎ) (50)

According to Eqs. (49)–(50), 𝑔𝑖(𝑡) ≤ �̄�𝑖(𝑡) holds. Obviously, if 𝑓𝑖(𝑡) < 0, 𝑓𝑖(𝑡) < 0 holds. The rest of proof is same with the proof of
Theorem 1. □

5. Simulation

In this section, we will provide simulation examples to illustrate effectiveness of the proposed algorithms.
In three-dimensional space, consider multi-agent systems composed of 5 followers and 4 leaders which are labeled as 1, 2, ⋯,

9. The coordinate axis of three-dimensional space is represented by 𝑋 axis, 𝑌 axis and 𝑍 axis. The network topology and nominal
configuration are shown in Fig. 1. And the corresponding Laplacian matrix blocks are as follows:

�̄�𝑓𝑓 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.5 0 0 0 1
0 0.8 0 0.6 0.4
0 0.15 1 0.2 1.3
0 0 0.1 0.8 1.4
0.1 0 0 0 2.2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, �̄�𝑓𝑙 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.5 −0.5 −0.5 0
−0.2 −0.8 0 −0.8
−0.8 0 −0.85 −1
0 −0.7 −0.8 −0.8

−0.6 −0.6 −0.6 −0.5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The dynamics (2) of leaders can be described as 2th-order polynomial trajectories and decide affine transformations of the overall
formation. Therefore, based on the nominal formation shown in Fig. 1, an ideal affine transformation is designed as (𝐴∗(𝑡), 𝑏∗(𝑡)) =
(𝐴𝑎𝑡2 + 𝐴𝑣𝑡 + 𝐴𝑝, 𝑏𝑎𝑡2 + 𝑏𝑣𝑡 + 𝑏𝑝), where 𝐴𝑝 = [𝐴𝑝𝑋 , 𝐴𝑝𝑌 , 𝐴𝑝𝑍 ]𝑇 , 𝐴𝑝𝑋 = [0.9529,−0.5066,−0.1277]𝑇 , 𝐴𝑝𝑌 = [0.3012, 1.0413,−0.1206]𝑇 ,
𝐴𝑝𝑍 = [0.3166, 0.9977, 1.9761]𝑇 , 𝐴𝑣 = 𝑑𝑖𝑎𝑔(0,−0.6, 0.2), 𝐴𝑎 = 𝑑𝑖𝑎𝑔(0, 0.02,−0.025), 𝑏𝑝 = [5, 3.3, 0.02]𝑇 , 𝑏𝑣 = [1, 0.2, 0.05]𝑇 and 𝑏𝑎 =
[0.2, 0.01,−0.01]𝑇 . Notice that this affine transformation includes translation and scaling transformations with certain accelerations,
and rotation and shearing transformations with given magnitudes. The initial positions of followers are given by 𝑝1(0) = [3.3, 4.8, 0]𝑇 ,
𝑝2(0) = [1.1,−2, 0]𝑇 , 𝑝3(0) = [−0.9, 3.8, 0]𝑇 , 𝑝4(0) = [6.5, 0.1, 0]𝑇 and 𝑝5(0) = [2.5, 1.6, 0]𝑇 ; the initial values of velocities, control inputs

𝑇 𝑇 𝑇
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and auxiliary states for follower 𝑖 are 𝑣𝑖(0) = [0.1, 0, 0] , 𝑢𝑖(0) = [0, 0, 0] and 𝜉𝑖(0) = [0, 0, 0] , respectively. In order to satisfy all
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Fig. 2. The motion trajectories of each agent.

Fig. 3. The norm of position tracking error 𝑥𝑝(𝑡) for followers.

onditions of Theorems 1 and 2, choose control gains 𝜄1 = 1, 𝜄2 = 1.7, 𝛼 = 1, 𝛽 = 0.3, triggering parameters 𝜌1 = 𝜌2 = 𝜌3 = 1, 𝜙𝑖 = 3,
𝛾𝑖 = 0.2, 𝜎𝑖 = 0.001, and sampling period ℎ = 0.005. The simulation time interval is set to 0 to 30 s.

The simulation results are shown in Fig. 2–6 under the event-triggered and self-triggered algorithms proposed in this paper.
he motion trajectories of agents are depicted in Fig. 2, where real configuration and the network topologies without direction
t 𝑡 = 0𝑠, 15𝑠, 23.7𝑠, 30 s are also marked by shape symbols and black lines. Fig. 3 shows the evolution of the norm of position
racking error for each follower. Observing Fig. 2 and Fig. 3, it is known that the time-varying configuration of 9 agents will
onverge into the affine image space of nominal configuration as time goes, which indicates that affine formation maneuver for
ulti-agent system (1)–(2) is achieved under the event-triggered and self-triggered algorithms. The value jumps of control input

rajectories shown in Fig. 4 correspond to the triggering intervals for each follower in Fig. 5 and Fig. 6. The minimum and maximum
riggering intervals for sampling mode are both 0.005 s. For event-triggered mode, the minimum and maximum triggering intervals

of all followers are 0.065 s and 1.965 s. For self-triggered mode, these two intervals are 0.01 s and 1.75 s. These interval values and
Fig. 4–6 mean low frequency triggering times and indicate that the controller update times of followers are effectively reduced
under both event-triggered and self-triggered algorithms.

To further compare the work performances of the event-triggered algorithm and self-triggered one proposed in this paper,
Tables 1 and 2 record the times of triggering, controller update, measurement, and network transmission of each follower under
the corresponding algorithms. Setting the same parameters, it can be known that the measurement times of relative states and
triggering detection times are smaller while the triggering times and controller update times of each other are similar, and the
network transmission with a low frequency is added to support the realization for the self-triggering strategy. Finally, the resources
of information interaction and calculation are efficiently saved for the affine formation maneuver problem.

As a result, the effectiveness of the proposed triggering algorithms in this paper is verified through above simulations.

6. Conclusion

This paper studied the distributed event-triggered and self-triggered strategies for affine formation maneuver of second-order
multi-agents based on sampled-data. The proposed triggering mechanisms extended the work reported in [17] for affine formation
maneuver, where the controller is proportional-integral type for multiple moving leaders with constant accelerations. As a result,
the frequencies of information interaction and controller update are significantly reduced. Nevertheless, the setting of constant
14654
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Fig. 4. The control inputs for followers.

Table 1
Work performances under the event-triggered algorithm.
Agent 1 2 3 4 5 Total

Triggering/Controller update times 101 82 54 62 45 344
Triggering detection times 6000 6000 6000 6000 6000 30 000
Measurement times 6000 6000 6000 6000 6000 30 000
Network transmission times 0 0 0 0 0 0

Table 2
Work performances under the self-triggered algorithm.
Agent 1 2 3 4 5 Total

Triggering/Controller update times 173 169 141 152 112 747
Triggering detection times 275 407 526 386 275 1869
Measurement times 173 169 141 152 112 747
Network transmission times 173 169 141 152 112 747
14655
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Fig. 5. The triggering intervals for followers under the event-triggered algorithm.

ccelerations for leaders will lead to only one formation maneuver scheme unless any constant acceleration of leaders is changed,
nd the selection pattern of algorithm parameters is centralized, which may limit practical application of the proposed algorithm.
herefore, future research will focus on introducing more effective triggering control scheme for affine formation maneuver
onsidering time-varying acceleration leaders, and designing a fully distributed event-triggered maneuver control. In addition, it
hould be pointed that the directed topology design for 𝑑 + 1-rooted networks mentioned in Section 2.1 may be temporarily blank
14656

nd is necessary.
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Fig. 6. The triggering intervals for followers under the self-triggered algorithm.
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